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Comparing the impact of different cameras and
image resolution to recognize the data matrix codes
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Data matrix codes are two-dimensional (2D) matrix bar codes, which are the descendants of the well known 1D bar
codes. However, compared to 1D bar codes, they allow to store much more information in the same area. Comparing data
matrix codes with QR codes, for example, we find them much more effective in marking small objects or in the case that you
have only a very small area for placing a code in. Their capacity and ability of decoding also a code that is partly damaged
make them an appropriate solution for industrial applications. In the following paper we compare the impact of various
cameras on the detection and decoding of data matrix codes in real scene images. The location of the code is based on the
fact that typical bordering of a data matrix code forms a region of connected points which create “L”, the so-called finder
pattern, and the parallel dotting, the so-called timing pattern. In the first step, we try to locate the finder pattern using
adaptive thresholding and connecting neighbouring points to continuous regions. Then we search for the regions where 3
outer boundary points form a isosceles right triangle that could represent the finder pattern. In the second step, we have to
verify the timing pattern. We look for an even number of crossings between the background and foreground. Experimental
results show that the algorithm we have proposed provides better results than competitive solutions.
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1 Introduction

Traditional linear or 1D barcodes can only contain a

limited amount of information, roughly the equivalent of

about 20–25 characters. 2D barcodes can store much more

information, up to thousands of characters. There are a

wide range of barcode readers on the market, including

mobile devices and phones equipped with cameras that

can scan both 2D and 1D barcodes. Creating and using

2D barcodes is inexpensive.

While 1D barcodes store information only in one direc-

tion (in one row), usually as parallel black lines of various

widths, altered with various width spaces, 2D barcodes
contain many different rows of data.

Data matrix belongs to a group of 2D bar codes (like

the QR code) and consists of black and white squares

(the so-called modules) organized into a 2D matrix. They

represent the binary 1 (black) or 0 (white). Data matrix

could be square or rectangular shaped whereby the ad-

jacent sides are bordered by black modules creating an

“L” (the so-called finder pattern) which is there for lo-

cation of the code. On the facing sides, there are black

and white squares placed alternatively (so-called timing

pattern) and they serve for determining the number of

rows and columns. The data themselves are coded inside.

See Fig. 1 – sample of a data matrix codes 10 × 10 and

12× 12.

Data matrix is usually used for marking of small ob-
jects such as electronic components as it allows effectively
to code up to 50 characters into a small area from 2 to
3mm2 .

There is a capacity of 3 alphanumeric (alt. 6 numeric)
characters in the data matrix of minimal size 10 × 10
and capacity up to 2335 alphanumeric (alt. 3116 numeric)
characters in the data matrix of maximal size 144× 144.
Data matrix in specification ECC 200 allows to decode
even a partly damaged code (up to 30% damage if the
code can be located).

In this article we are focusing on location and decoding
of the data matrix (DMX) code that is laser marked in
a metal tool (Fig. 2). Here DMX code specifies a serial
number of the tool, which serves for tracing the tool in the
production process and using the tool on a machine and
following storing. We pursue a price effective solution that
enables us to scan DMX in real time after every operation
with the tool in the production process.

1.1 Related work

In our previous articles [1, 2] we presented and com-
pared several methods for DMX code location. They all
try to locate DMX by first locating Finder Pattern “L”
which consists (in our case) of two mutually vertical lines
of the same length.

Here we summarize in brief these methods:
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Fig. 1. Structure of a sample data matrix code

Fig. 2. Samples of DMX code marked with laser on metal surface

Fig. 3. (a) – original image, (b) – edge image, (c) – continuous
regions in edge image

Fig. 4. (a) – original image, (b) – continuous region with 3 vertices

• Lines that form the finder pattern can be found in

places, where edges in an image are present. So we

convolve the image with a 3 × 3 Sobel kernel and

select points with “strong” magnitude – edge points,

Fig. 3(b). Then we connect these edge points that have

“similar” gradient angles into continuous regions (such

region will contain edge points a “one-direction” edge

– linear segment). Consequently we look for perpendic-

ular regions, Fig. 3(c). A similar technique is also used

by Qiang Huang et al in [3] who make use of the al-

gorithm for detection of linear segments (line segment
detector) [4, 5].

Color conversion to gray scale (optional smoothing)

Local Thresholding Global Thresholding

Connected Component Labeling,
Region description - Bounding Box

Search regions for 3 boundary points,
which forms right-angled triangle

Locate and check Finder Pattern

Locate and check Timing Pattern

Try decode Data Matrix code

Rescale image Increase threshold

Fig. 5. Processing scheme

• Lines that form the finder pattern represent a continu-
ous region. In this region we look for 3 outer boundary
points forming the 3 vertices of a right-angled trian-
gle (with two sides of equal length, see Fig. 4, with
vertices V1, V2, V3).

• Beside this approaches, there were other techniques
published which use the Radon transform [6] or the
Hough transform [7] and many approaches for detect-
ing QR codes [8–10] including deep learning meth-
ods [11].

2 Theory

2.1 Location of the data matrix code

The presented method goes step by step and in each
step we come closer to the exact position or dimensions of
DMX code. In this process, we reject a candidate region
if it does not meet classification criteria. The simplified
image processing scheme is shown in Fig. 5.

Before starting location, we transfer an original image
(possibly colour) into a gray scaled image. Each point of
such an image is coded in 8 bits (0 – black colour, 255 –
white colour).

Next we convert the gray scaled image into a binary
image (0 background, 1 foreground) using adaptive
thresholding (with window size 31 and with delta 10; the
window size we choose to be at least 5 times the size of
the expected size of DMX module) [12]. We expect that
black points which belong to DMX code will become fore-
ground points.
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Fig. 6. Sample of an outer boundary of a continuous region
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Fig. 7. Outer boundaries of region

We use the well known adaptive thresholding tech-
nique that calculates individual thresholds for every point
in the image. This threshold is calculated as the average
intensity of points under the sliding window. To speed up
the thresholding we pre-calculate the integral sum image
and we also use the global threshold value (points with
intensity above 150 we always consider as background
points)

B(x, y) =











0 ← I(x, y) > 150 ,

0 ← I(x, y) ≥ T (x, y) ,

1 ← I(x, y) < T (x, y) ,

T (x, y) =
1

961

15
∑

i=−15

15
∑

j=−15

I(x + i, y + j)− 10 .
(1)

Consequently we apply the 2-pass connected-compo-
nent labelling algorithm [15], whereby we connect the
points into continuous regions. A set of descriptors is
maintained for every region. When adding a new point in
the region, we have to update its descriptors as follows:

– Area: M00←M00 + 1

– Border points: top-left, top-right, right-top, right-
bottom, bottom-right, bottom-left, left-bottom, left-top

Once we have segmented the image into continuous
regions, the location of DMX runs in two basic steps.
First, the finder pattern is located. This means that the
two mutually perpendicular sides of the square are de-
tected (ie two perpendicular line segments of the same

length). In the following step, we check the timing pat-
tern, verifying if the opposite sides to the finder pattern
have the same number of crossings between black (fore-
ground) and white (background). At the same time the
number of crossings determines the number of rows and
columns (dimensions) of DMX.

We scan region descriptors looking for regions that
have the area bigger than 80 points (we ignore small
regions which cannot set-up the finder pattern), aspect
ratio (region width to height) between 0.5 and 2.0 and
the region where it is possible to make up a right-angled
isosceles triangle from border points.

In Fig. 6, one can see an example of the marked con-
tinuous region (in magenta colour) enclosed by a green
octagon defined by 8 boundary points. There are at least
3 such boundary points which make up vertices of a right-
angled isosceles triangle.

We take 8 edge points and make up two boundary
squares, which are defined by the following points:

• top-left (TL), right-top (RT), bottom-right (BR) and
left-bottom (LB)

• top-right (TR), right-bottom (RB), bottom-left (BL)
and left-top (LT)

From these squares we select that one whose perimeter
is bigger (ie it represents outer boundary of a continuous
region). In this way we get 4 border points labelled as P1,
P2, P3, P4. In Fig. 7 there are outer boundaries marked
with a solid red line (unlike the red dashed lines, which
also connect boundary points but do not form an outer
bounding box).

We test these 4 points subsequently taking 3 of them in
one testing step (ie P1-P2-P3, P2-P3-P4, P3-P4-P1, P4-
P1-P2). We check whether we can make up a right-angled
isosceles triangle. For example, the first three points P1-
P2-P3 must match the following conditions

|P1, P3|2 ∼= |P1, P2|
2
+ |P2, P3|

2
and |P1, P2| ∼=

|P2, P3| whereby the maximal deviation allowed is 4. If
we do not find 3 such points, we shrink the region by 1
point and repeat the step once again with new boundary
points. If we find 3 such points, we suppose that they are
the vertices of the “L” which defines the finder pattern.
Their location, however, is not completely exact due to
inaccuracy of thresholding. This is why we have to get
their location more exactly in the following steps to get
the possible best outlines defining the finder pattern.

The following method is based on these 3 starting
points which are defined by line segments P1-P2 and P2-
P3 and have one common vertex P2. These points lie
in the same continuous region “O”. We process indepen-
dently both line segments and after getting their location
more exact, we finish the process by calculating their mu-
tual intersection point.

The line segment P1-P2 is moved in a vertical way
away from region O at the beginning and then the ends
of the line are alternately approached to region O until
the overlapping of the line and region O achieves at least
90%.
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Fig. 8. Line is approaching region O

Fig. 9. DMX code candidate

Fig. 10. Projection along the timing pattern

We can describe this procedure as follows:

1. We shift the starting location of line segment P1-P2

by 5 points away from region O in the direction perpen-

dicular to this line. In this way we get a new position of

the line segment P1-P2, now P1’-P2’, see Fig. 8.

2. Then we move line segment P1’-P2’ closer to the

region O, approaching alternatively by one point firstly

point P1’ (so we get the new position P1”) and then we

make the same with point P2’ (we get a new position

P2”) until the line touches region O at least in one point.

3. In every step of approaching we count the number

of points which are common to the first half of the line

segment (P1-C) and region O. We make the same for the

other half of the line segment (C-P2). In next approaching

we move only that end of the line segment which has

smaller overlapping with region O.

4. We stop approaching when we have achieved at least

90% overlapping.

2.2 Verification of the timing pattern

We have a candidate for DMX defined by 4 vertices P1,
P2, P3, P4, where P1-P2-P3 form the Finder Pattern. In
the next step we verify whether the other two sides P1-P4
and P3-P4 correspond with the outlines, where “black”
and “white” modules alternate (Fig. 9).

For the separation of the foreground and background
points we have to set the threshold for region defined by
P1, P2, P3, P4:

Treg =
1

N

∑

i∈ region

Ii , (2)

where N is the number of points in the region. Points
with brightness over the threshold will be considered as
“white” the others as “black” (we assume uniform light-
ing conditions in the region).

The bounding box does not define DMX code exactly,
so we have to look for a sequence of black and white
modules (the Timing Pattern). We have to search in wider
surroundings of the initial bounding box (Fig. 10).

For every shift we count the number of black to white
crossings (ie modules) and the sum of gradients. We look
for the maximum sum of gradients (for non-uniform light-
ning, it is better to count the number of local extremes
that differ by more than 10).

If the number of modules is at least 10 (minimum
DMX size) and the same in both directions (both vertical
and horizontal), then the DMX candidate will be marked
as a valid DMX code.

2.3 Decoding of the data matrix

DMX code is made up by 2D matrix which consists
of black and white modules representing bits 1 and 0. In
a real image every such module corresponds to a group
of neighbouring points. If we want to decode data in
DMX code, we have to compose this 2D matrix that will
have elements of 1 or 0 value. The size of the matrix is
determined by the number of modules detected in the
previous step.

Value 1 represents those points of image, where the
brightness is lower than the threshold and value 0 repre-
sents the other points. We consider the decisive point will
be the central point of the module and the brightness is
determined by bilinear interpolation (if the calculated lo-
cation of the central point does not correspond to integer
coordinates in the image).

We used the open-source library libdmtx [16] for the
final decoding of the binary matrix to receive the original
text.

3 Experiments

The method mentioned above was tested on the test
set consisting of 60 samples of DMX codes marked with
laser on metal tools. Each sample was captured by 3 vari-
ous cameras and we compared the impact of the cameras
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Fig. 11. Testing samples captured by various cameras

and of the image size on correct decoding of the DMX
codes. The samples of the test codes are in Fig. 11, where
a) mid-size samples were captured by Logitech USB Web
Cam C920, b) big-size samples by Lindner digital USB
microscope V6 and c) small-size samples by Raspberry
Pi Camera Module V2.

Table 1. Results in location and decoding

Camera size location decoding

Logitex C920
100 56 (93%) 55 (92%)

+75 60 (100%) 58 (96%)

100 36 (60%) 32 (53%)

Lindner microscope V6 +75 51 (85%) 49 (82%)

+50 58 (96%) 56 (93%)

Raspberry Pi Camera V2
100 58 (96%) 58 (96%)

+75 59 (98%) 59 (98)

Table 1 presents the results for images as they were
captured and also combined results, where the location

of DMX code runs for original images (100% of original
size) and subsequently for 75% and 50% of original size.

The results obtained by Lindner microscope were bad.
Using the 100% size the defects in material and DMX
code were amplified. When we smooth the image with a
3 × 3 Gaussian kernel, we got better results. When we
decreased the size of the image, we obtained a smoother
image and even better results. We can achieve the best re-
sults by combining the smoothing and appropriate adop-
tion of the size. In this way we can get the same results
independent of the used camera.

In Tab. 2 there are our results compared against com-
petitive DMX decoding software (open-source and also
commercial). In the table there are the numbers of suc-
cessfully recognized/decoded DMX codes out of a total
of 60 codes for each of the three cameras.

4 Discussion

Our solution outperformed the competitive solutions.
We have tested competitive software using their default

Table 2. Our results compared to competitive solutions

Software Logitech C920 Lindner mic. V6 Raspberry cam. V2

Google ZXing (open-source) [17] – – –

OnBarcode .NET Barcode Reader [18] 1 2 2

Dynamsoft Barcode Reader SDK [19] 32 18 19

LEADTOOLS data matrix SDK [20] 25 26 26

libdmtx (open-source) [16] 47 45 52

Inlite Barcode Reader SDK [21] 52 53 34

Our solution 58 56 59
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Fig. 12. Our results compared to competitive solutions

Fig. 13. Imperfect local thresholding; (a) – original image, (b) –
binarized image

Fig. 14. Imperfect local thresholding; (a) – original image, (b) –
binarized image

settings, mostly using an on-line decoding service, which
does not allow us to set-up or tune-up recognition pa-
rameters. A surprise was the Google ZXing which failed
to decode any of our testing DMX codes. Maybe the re-
sults of competitive software could be better if we had
the possibility to adjust the recognition parameters. We
have performed black-box testing, because most of com-
petitive decoders are closed source solutions and therefore
we cannot compare their and our detection algorithms in
detail.

Most frequent reasons of failure in the location were
structural defects on the surface of the tools which caused
light reflections and they consequently failures in local
thresholding (Fig. 13). These defects caused also discon-
tinuity of the regions and thereby an incomplete identifi-
cation of data matrix in image (Fig. 14).

As a solution to overcome these problems we have
tested these improvements to local thresholding.

When the intensity of the central point of a sliding
window falls between the local intensity average and av-
erage minus delta, then we have shifted the local window
in 4 directions (up, down, left, right) and we have com-
pared the new local intensity average with the intensity
of the central point. If any difference was greater than
delta, then we have marked such a point as black, else it
remains as white.

Decreasing of the local threshold for bright points
(with intensity above 60) by [I(x, y − 60]/5, because the
brighter the point, the lower the probability that such a
point is part of “black” DMX code.

Decreasing of the local threshold for edge points (with
magnitude above 20) by 10, because edge points are ex-
pected to form borders between foreground and back-
ground points.

However, all of the above mentioned improvements
bring only slightly better results.

We have proposed and tested also a modified local
thresholding technique which combines the local point
intensity, the mean and the variance under sliding window
and calculates the local threshold as follows

T (x, y) = m(x, y)−
I(x, y)

k1
−

s2(x, y)

k2
(3)

where m(x, y) and s2(x, y) are the local mean and vari-
ance of the pixels inside the local window and k1, k2
are constants. We have empirically set k1 to 10 and
k2 to 120–130, where k1 controls penalisation of bright
points (DMX code in image is the darkest object) and
k2 controls decreasing of local threshold for points in
which neighbourhood intensity significantly varies. This
technique can be effectively implemented by using inte-
gral sum images of I(x, y) and I2(x, y) and unlike the
Niblack’s and the Sauvola’s techniques this one does not
require computing the square root for every point to get
standard deviation and we have observed that it is less
sensitive to selection of k parameters.
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As a viable solution we have used also iterative global
thresholding with predefined fixed set of thresholds (30,
40, 50, 60, 70, 80, 90). At least one of these thresholds
successfully differentiates the foreground and background
points in images in our testing set.

5 Conclusion

We have proposed and tested a computationally ef-
ficient method for location of 2D data matrix codes in
images. This method is suitable also for real time pro-
cessing. The proposed method uses typical patterns of
data matrix codes, the so-called finder pattern and tim-
ing pattern to identify data matrix codes in images. This
method utilizes local thresholding, connected component
labelling, outer region boundaries to localize finder pat-
tern. We count local extremes to verify the opposite dot-
ted timing pattern.

We have proposed and modified a computationally ef-
ficient local thresholding technique which uses the local
mean and variance under sliding window. This technique
has achieved significantly better results in the special
cases which we had to resolve than the classic local thresh-
olding that uses only the local mean and delta constant.

We have shown that image resolution has an impact
on the recognition rate and we have also shown that
iterative image rescaling and following recognition can
further improve the results.

This method was validated on the testing set from a
real industrial world and it was compared with compet-
itive solutions. The experimental results show that our
method has a better detection rate than those mentioned
solutions.

The application of data matrix codes and their opti-
cal recognition has a wide use in the identification, trac-
ing or monitoring of items in production, storing and
distribution processes. It could be possible to use data
matrix codes for enhancing the reliability of robot con-
trol processes [22, 23], or consider the use the water flow
algorithm [24] or an algorithm based on the oriented
anisotropic gaussian kernel [25].
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project KEGA MŠ SR 003TU Z-4/2016: Research and
education laboratory for robotics.

References
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