Nanocrystalline properties of TiO$_2$ thin film deposited by ultrasonic spray pulverization as an anti-reflection coating for solar cells applications

Samira Sali*,**, Salim Kermadi*, Lyes Zougar*, Bouthina Benzaoui**, Nadia Saoula***, Khadija Mahdid*, Fatiha Aitameur*, Messaoud Boumaour*

Titanium oxide (TiO$_2$) films have been synthesized on quartz, silicon and textured silicon substrates by chemical ultrasonic spray deposition. The textured silicon substrate was carried out using Na$_2$CO$_3$ solution. The sample surface exhibits uniform pyramids with an average height of 5µm. In this paper, particular attention is given to the TiO$_2$ films prepared by spray ultrasonic system using Tetra iso-Proxopide Orthottitanate Titanium (TPOT) as a precursor. The solutions were sprayed onto substrates heated at various temperatures 350 - 550°C. The properties of films as a function of temperature parameter were investigated using structural and optical analysis. According to XRD, FTIR and Micro- Raman spectroscopies, the anatase phase was found and exhibits nanograins of 9 to 15 nm in size. The indirect and direct band gap were found to increase by increasing substrate temperature due to the decreasing of nanograins size and were estimated to be around 3.28 and 3.38 eV. A transmittance higher than 80% was found. This paper reports on anti-reflection coating application of TiO$_2$ layers due to its good transparency and appropriate refractive index varies between 2.19 - 2.40 at λ = 632.8 nm as a function of temperature determined by UVVisNIR spectrophotometer and Ellipsometry. To achieve optimum anti-reflection characteristics different anti-reflection designs were experimentally examined with polished and textured substrates. The average reflectance of the polished silicon used in this study is 39%, with TiO$_2$ it decreases to 9%. The textured surface reduces the average reflectance of silicon to be around 14% and it decreases dramatically to 5% after deposition of a single layer of TiO$_2$ as an anti-reflection coating. The gain in density of the short-circuit photocurrent assigned to the reduction of reflection losses up to 44% and 58% were predicted with TiO$_2$ single-coating in polished and textured silicon substrates respectively.

Key words: TiO$_2$, spray ultrasonic, textured silicon, anti-reflection coating

1 Introduction

Promising application such as anti-reflection coatings (ARC) for solar cells, which is an area where research is still very active to minimize reflectance surface and therefore directly improve the short-circuit current of the device (and final performance conversion) [1-3]. The performance of ARC for solar cells is distinguished by various aspects: The control of refractive index (n) of coatings is the key point to achieve excellent anti-reflection performance, the large transmittance for the broad solar spectrum (generally, in the range from 300 to 1200 nm) and the front surface structure in solar cells, which complicates the designs a lot. Various ARC single and double layers have been widely studied, such as ZnO [4], SiN [5], ITO [6], SiO$_2$/SiN [7], MgF$_2$/ZnS [8], SiO$_2$/Na$_2$CO$_3$[9], Na$_2$CO$_3$/ZnS [8], SiO$_2$/Na$_2$CO$_3$/Al$_2$O$_3$[10] and Al$_2$O$_3$/Na$_2$CO$_3$/TiO$_2$[11] coatings. Increasing the efficiency of photovoltaic devices by reducing the reflectance on their front surface has been a widely studied issue in the last few decades. Traditionally, bulk silicon solar cells have been optimized by combining anti-reflective coatings (such as Si$_2$N$_4$: H) and surface texturization [12].

In this paper an attention is given to TiO$_2$ thin layer for anti-reflection coating application. Due to its properties, it is non-toxic, stable with a large band gap of about 3.2 eV and 3 eV for anatase and rutile TiO$_2$ respectively, it is a material with good transparency and high refractive index (n ≈ 2.52) [13]. TiO$_2$ has a large variety of potential application as gas sensors, planar waveguide, photocatalyst, ceramic membrane anti-reflective coating in solar cells [14-17]. Various deposition techniques have been widely used to produce TiO$_2$ thin films. However, the most intensively studied techniques include RF magnetron sputtering [18], chemical vapor deposition (CVD) [19], the solgel method [20], thermal evaporation [21] and the spray pyrolysis [22, 23] among others. In this study, ultrasonic spray technique is used because of its easy deposition and low cost. In comparison with other chemical deposition techniques,
spray pyrolysis has several advantages such as high purity, excellent control of chemical uniformity and stoichiometry in multi-component systems. The other advantage of the spray pyrolysis method is the easy adaptation for the production of large-area films. With our deposition system, uniform TiO$_2$ layers can be deposited on an area of 100 cm2.

In this work, TiO$_2$ thin films were deposited on quartz; polished silicon and combining with textured surface silicon substrates. Optical studies were carried out to analyze the influence of the substrate temperature on the nanostructural features of the TiO$_2$ as an anti-reflective coating using several methods.

2 Experimental details

TiO$_2$ films were obtained by the spray ultrasonic method. The starting solution was prepared by dissolving Tetra iso-Propoxide Orthotitanate Titanium (TPOT) in 2-propanol (i-PrOH) and Acetylacetone (AcAc). The concentration of TPOT was fixed at 0.1 mole/l and the TPOT: AcAc molar ratio of 1:1.5. The experimental setup Na$_2$CO$_3$ thin film preparation is shown in Fig. 1. The layers are deposited onto textured c-Si (100), polished surface c-Si (100) and quartz substrates. In this process, nitrogen was used as the carrier gas. The spray rate and deposition time were fixed at 8 ml/min and 5 min, respectively. The solutions were sprayed onto heated substrates at various temperatures 350 to 550 °C, for the temperature less than 420 °C, a powder of Na$_2$CO$_3$ is obtained without a good adherence. Also, when a temperature is higher than geq 420 °C, a blue layer onto polished silicon substrate with very high adherence is elaborated and confirmed by different durability and stability tests. Concerning the textured Si substrate, the solution used is based on Na$_2$CO$_3$ and the image of textured surface covered with a multitude pyramids having an average height of 5 µm are shown in Fig. 2.

The structure of the TiO$_2$ thin films was analyzed by X-ray diffraction (XRD) measurement (Bruker D8 Advance from CDTA, Algiers) using Cu Kα radiation ($\lambda = 0.154$ nm) in the 2θ configuration and micro-Raman spectroscopy with a Jobin-Yvon ARAMIS micro-Raman spectrometer working in back-scattering configuration. The
excitation line at 633 nm was provided by Laser He/Ne, 17 mW. Fourier transforms infrared (FTIR) absorption measurements were carried out with a Thermo Nicolet NEXUS 670 spectrometer (from CRTSE, Algiers). Reflectance and transmittance measurements were carried out with double beam Cary 500 UVVisNIR spectrophotometer (from CRTSE, Algiers) equipped with an integrating sphere. The transmittance data were recorded on quartz substrate which its effect was subtracted using identical uncoated quartz as a blank in the double beam. The reflectance data was recorded on silicon using the integrating sphere at the near-normal incident angle of 8 deg. The refractive index of the films nm was determined with ELX-02C monochromatic ellipsometry at $\lambda = 632.8$ nm.

3 Results and discussion

3.1 Structural characterization: XRD and Raman spectroscopy

Figure 3(a) shows the XRD patterns of TiO$_2$ films elaborated at different substrate temperature on quartz substrates. The all spectrum exhibit peaks corresponding to the anatase phase of TiO$_2$ (JCPDS No.21-1272). The mean crystallite size of TiO$_2$ films was calculated using the Scherrer’s formula

$$D = \frac{0.9\lambda}{\beta \cos \theta},$$

where λ, θ and β are the X-ray wavelength (1.5418 Å), Bragg diffraction angle and full width at half maximum FWHM in radians of the (101) diffraction peak, respectively. The nanograins size decreases from 15 to 9 when substrate temperature increases.

The films were also analyzed by micro-Raman spectroscopy, Fig. 3(b). All spectra of TiO$_2$ films displays the main peak at 144 cm$^{-1}$ characteristic of the mode E_g of the anatase phase and a peak at 639 cm$^{-1}$ assigned to this phase of TiO$_2$ [24], other peaks than those due to the Si substrate at 520 cm$^{-1}$, 300 cm$^{-1}$ are observed. It can be observed in these spectra that the band enlargement of 144 cm$^{-1}$ peak varies as a function of substrate temperature, this is it can be attributed to the variation of nanocrystals sizes of TiO$_2$ [25-28], this result is in good accord with XRD measurements.

3.2 Structural characterization: FTIR analysis

The infrared spectra of TiO$_2$ films elaborated at different substrate temperature before annealing have been recorded to study the vibrational bands present in the system as projected in Fig.4. Generally, the infrared spectra give information about functional groups present in a system, the molecular geometry, and inter or intra-molecular interactions. A large broad absorption peak at 3150 cm$^{-1}$ is attributed to the OH (hydroxyl) group. All the spectra show a peak at 613 cm$^{-1}$ which is associated to SiSi vibrations of the silicon substrate [29]. The strong peak at 1100 cm$^{-1}$ and weak peaks at 812 and 463 cm$^{-1}$ are assigned to SiOSi vibrations in pure SiO$_2$ [30,31]. The peaks centered at 440 cm$^{-1}$, 660 cm$^{-1}$ and 730 cm$^{-1}$ observed it can be assigned to Ti-O-Ti vibrations, [32].
3.3 Optical characterization: Transmission and optical gap

Figure 5 shows the transmission spectra for TiO$_2$ layers deposited on quartz substrates. All the films studied were uniform and transparent to the naked eye. The transmittance spectra in the range of 400–1200 nm revealed that all films exhibit high transmittance of the order 85%. From the transmittance spectra, we can conclude that the samples elaborated at substrate temperature less than 510 °C are more transparent, this result could be attributed to the loss scattering due to the high crystalline size of the grain and the high roughness of the surface. According Tauc formula [33], the indirect band gap was determined from the transmittance spectra

$$\alpha(E) = A(E - E_g)^m,$$

where $E = h\nu$ is the photon energy and E_g is the band energy, A is a constant and m is an index that characterizes the optical absorption, is equal to 2 for indirect allowed transition and to 0.5 for direct allowed transition. At shorter wavelengths close to the optical band gap, may be deduced

$$\alpha = \frac{1}{d} \ln \frac{1}{T}.$$

From the plots $(\alpha E)^{1/2}$ versus E in Fig. 6, the indirect and direct band gap were found to increase by increasing substrate temperature, Fig. 7. This band gap blue shift value could be attributed to the decrease of the crystallite size [34].

3.4 Optical characterization: Ellipsometry and anti-reflection proprieties

Due to the high refractive index of silicon ($n = 3.9$), an important optical loss occurs on its surface and about 39% of the total incoming light is reflected (for silicon substrate used in this work the average reflectance is 39.24%, the textured Si reduced light reflection to 14.25% for wavelengths ranging from 400 to 1000 nm compared with the reflectivity of the c-Si sample Fig. 8(a). For solar cells, this behavior should be reduced as maximum as possible [34]. Therefore, its Surface should be coated by a dielectric material exhibiting high transparency and low absorption. All TiO$_2$ films exhibits comparable thicknesses of about 74 nm and the refractive index varies between 2.19 and 2.39 as a function of temperature. The reflectance spectra are shown in Figure 8(b).

In order to determine the effectiveness of an AR coating, the solar averaged reflectance was calculated by averaging the reflectance data over an AM1.5 solar photons spectral distribution. The average reflectivity was calculated and it decreases the reflectance of Si to 9–14% in [400–1000] nm as a function of substrate temperature. The textured surface was found to be around 14% and it decreases dramatically to 5.2% and after deposition of a single layer of TiO$_2$ as an anti-reflection coating Fig. 8(c).
where $R(\lambda)$ is the reflectivity as a function wavelength and $f(\lambda)$ is the incident AM1.5 photon flux as a function wavelength.

The limits of integration were set equal to the active range of silicon which extends from 320 to 1120 nm. The average reflectance values calculated in this way represent the fractional amount of solar photons within the active range for silicon that are reflected by the cell. Since silicon is opaque over this wavelength range, one minus the average reflectance gives the fraction of photons that are absorbed by the cell. The R_{ave} between 400 and 1000 nm is plotted as a function of substrate temperature in Figure 9(a),(b) for polished and textured silicon. The lowest values of 9.75% and 6.25% are obtained in the range of 450-480°C for polished and textured silicon, respectively.

The impact of the anti-reflection coating in solar cells can be expressed by the ratio $\Delta J_{\text{sc}}/J_{\text{sc}}$ in equation below, which describes the gain in the density of the short-circuit photocurrent J_{sc} assigned only to the reduction of reflection losses

$$\frac{\Delta J_{\text{sc}}}{J_{\text{sc}0}} = \frac{J_{\text{sc}} - J_{\text{sc}0}}{J_{\text{sc}0}}$$

where J_{sc} is with, while $J_{\text{sc}0}$ is without ARC, and where

$$J_{\text{sc}} = \int f(\lambda)IQE(\lambda)R(\lambda)d\lambda$$

with q being the electron charge, $f(\lambda)$ the AM1.5 solar photon spectral distribution [6], $R(\lambda)$ is the reflectance, and $IQE(\lambda)$ the internal quantum efficiency of the solar cell. Referring to an ideal cell with $IQE = 1$ and integrating from $\lambda_1 = 400$ to $\lambda_2 = 1000$ nm, J_{sc} increases from 21.64 mA/cm2 for uncoated solar cell ($R_{\text{ave}} = 39.24\%$) up to 31.13 mA/cm2 for a textured surface ($R_{\text{ave}} = 14.27\%$) leading to 43.85% gain, whereas by using a single layer of TiO_2 on a textured surface, which reveals an increases in J_{sc} value to 34.17 mA/cm2 leading to 58.02% gain. Table 1 summarizes the impact of the anti-reflection coating in solar cells.

Table 1. Peak position after deconvolution of absorption $950 - 1250$ cm$^{-1}$

<table>
<thead>
<tr>
<th>T_{sub}</th>
<th>ΔJ_{sc} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450°C</td>
<td>44.45</td>
</tr>
<tr>
<td>480°C</td>
<td>40.52</td>
</tr>
<tr>
<td>SiO_2/Si</td>
<td>43.85</td>
</tr>
<tr>
<td>Si texturized</td>
<td>56.65</td>
</tr>
<tr>
<td>SiO_2/Si texturized</td>
<td>58.02</td>
</tr>
</tbody>
</table>
In summary, TiO$_2$ thin films with good adherence chemical and mechanical stabilities were successfully synthesized on quartz, silicon, and textured silicon substrates by chemical ultrasonic spray deposition using Tetra iso-Propoxide Orthotitanate Titanium (TPOT) as a precursor. According to structural characterization the anatase phase was found and the TiO$_2$ films exhibit nanograins size which decreases from 15 to 9 nm with increasing temperature. The optical band gap was estimated to be around 3.28 - 3.38 eV. In addition, the films exhibit high transparency films (transmittance over 80%) with very low absorption in UV-visible spectral range. The paper reports on anti-reflection coating application of TiO$_2$ films due to its good transparency and appropriate refractive index (2.19 - 2.39) determined by UV-visible-NIR spectrophotometer and Ellipsometry. The average reflectance of the polished silicon is 39%, which decreases to 9.75% with TiO$_2$. The textured surface was found to be around 14.27% and decreases dramatically when using a single layer of TiO$_2$ to reach 5.2% advantages for an anti-reflection application, leading to 58% of gain in density of the short-circuit photocurrent assigned to the reduction of reflection. Finally, it has been found that ultrasonic process and combination of TiO$_2$ with textured substrate could be a viable option and an effective low-cost route, for producing coatings with controllable thicknesses and graded refractive index nanomaterial, exhibiting high purity and high optical qualities required for numerous optical applications such as the anti-reflective coating to improve the efficiency solar cells.

Acknowledgements
This work was supported by Funds National Research (DG-RSDT/MESRS, Algeria).

REFERENCES

Received 23 April 2017