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Evaluation of interaction dynamics of concurrent processes
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The purpose of this paper is to present the wavelet tools that enable the detection of temporal interactions of concurrent
processes. In particular, the determination of interaction coherence of time-varying signals is achieved using a complex
continuous wavelet transform. This paper has used electrocardiogram (ECG) and seismocardiogram (SCG) data set to show
multiple continuous wavelet analysis techniques based on Morlet wavelet transform. MATLAB Graphical User Interface
(GUI), developed in the reported research to assist in quick and simple data analysis, is presented. These software tools can
discover the interaction dynamics of time-varying signals, hence they can reveal their correlation in phase and amplitude,
as well as their non-linear interconnections. The user-friendly MATLAB GUI enables effective use of the developed software

what enables to load two processes under investigation, make choice of the required processing parameters, and then perform
the analysis. The software developed is a useful tool for researchers who have a need for investigation of interaction dynamics
of concurrent processes.
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1 Introduction

In this paper, we present results of a project, in which
we have developed wavelet-based analysis tools for ob-
taining meaningful information on interaction dynamics
of concurrent processes. These tools can detect the short-
lived temporal interactions. The investigated processes
are represented by concurrent recordings obtained from a
complex dynamic system, such as

• human body in which one would like to examine the re-
lation between electrocardiogram (ECG) and seismo-
cardiogram (SCG) measurements over the same period
(that are the real data used for illustrative purposes
in the present paper);

• wind turbine system, in which one is interested in the
relationship between the turbulent wind pressure and
the resulting bending moments developed in the blades
of wind turbine rotor.

This research dates to the use of the Morlet Wavelet
Transform (MWT) scalogram and coscalogram to exam-
ine the initial stiffness degradation of the turbine mo-
tor that was found to be primarily due to early pres-
ence of high frequency energy that causes excitation of
higher structural modes leading to response coupling and
energy exchange between modes, reported by Kelley et

al [2, 3]. Addison et al [1] used Morlet Wavelet Scalogram
to detect a previously unknown coordinated contractility
behavior of the atrium during ventricular fibrillation, a
phenomenon which is not captured in a normal electro-
cardiogram. Similar applications of the MWT can also be
found in Gonzlez et al [4] and Bialasiewicz et al [5]. Pre-
liminary results of the research discussed in this paper are
presented by Bialasiewicz [6]. Many researchers [7–14] in-
troduced and investigated applications of additional mea-

sures of interaction dynamics based on MWT scalogram
and coscalogram. These measures include wavelet local
correlation coefficient (WLCC), cross wavelet coherence
function (CWCF), wavelet coherence (WC), and wavelet
bicoherence (WB).
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Fig. 1. Graphical representation of the complex-valued continuous
Morlet wavelet

The Morlet wavelet, that is a Gaussian-windowed com-
plex sinusoid, gives (due to the Gaussian’s second order
exponential decay) good time localization. The MWT is
defined as

Wx(s, τ) =
1√
s

∫

x(t)ψ∗

( t− τ

s

)

dt

where ψ(t) = π−1/4ejω0te−1/2t2 , and x is the analyzed
signal, s is the scale.
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The graphical representation of the Morlet wavelet is
shown in Fig. 1. The complex-valued Morlet wavelet is
used to obtain both amplitude and phase details. Con-
sequently, MWT is able to investigate coherence/syn-
chronization between processes recorded from a dynamic
system, possibly at different/distant locations.

Using the data that represent investigated processes
our software calculates MWT scalogram and coscalogram
and generates graphical presentation of the results. These
results enable the qualitative evaluation of interaction
dynamics of investigated processes. In addition, we have
implemented some algorithms that provide evaluations
of mentioned above additional measures of interaction
dynamics.

For effective use of our software, we have developed
a user-friendly Graphical User Interface (GUI) that en-
ables the user to load two processes under investigation,
make choice of the required processing parameters and
then perform the analysis. All obtained results are repre-
sented in a graphical window. In addition, we validated
our software through processing the same data with our
software and with the software developed by Grinsted et

al [9]. As illustrated below, the obtained results are sim-
ilar but in our plots the essential information is visible
better. Examples of results presentations are given below
for a real data set of biomedical signals. This choice of
data reflects the authors’ hope that the software devel-
oped will find numerous medical applications as a diag-
nostic instrument. Our software tools are readily available
to the user through the internet link given below.

2 Scalograms and coscalograms

A local time-frequency energy density, which measures
the energy of a signal x , in the so-called Heisenberg box
of the scaled ψτ,s wavelet, is known as wavelet scalogram

PWx(τ, s) =
∣

∣Wx(s, τ)
∣

∣

2

.

A local time-frequency energy density, which measures
the cross-energy of two processes (that identifies their lo-
cal correlation), known as wavelet coscalogram, is defined
as

PWxy(s, τ) =Wx(s, τ)W
∗

y (s, τ) .

Figure 2a shows the time series of the ECG and SCG sig-
nals. Figures 2b–d show Events 1 through 4 in the boxed
areas. Notice Events 1 through 4 (numbered from left to
right) shown when irregular behavior occurs on the ECG
signal as reflected on its scalogram in Fig. 2b. Figure 2c
shows the scalogram of the SCG signal. The color inten-
sity represents the strength of a frequency within the SCG
signal at a specific time. Events 1 through 4 show vari-
ation of sequences of slow increase and sudden decrease
in hearth rate frequency. This is a display of respiratory
sinus arrhythmia (RSA), a variation in hearth rate, occur-
ring naturally during a breathing cycle. Figure 2d shows
coscalogram of the ECG and SCG time series. Event 1

appears to not be as strongly correlated between the ECG
and SCG as Events 3 and 4. This result is due to the SCG
scalogram having less power during Event 1 compared to
Events 3 and 4. We used data from database of phys-
iologic signals: http://www.physionet.org/physiobank/
[15, 7, 8].
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Fig. 2. (a) – ECG and SCG measured over 60 s period, scalograms
of: (b) – ECG and, (c) – SCG data sets, (d) – coscalogram combining
the ECG and SCG data; (b)-(d) show Events 1 through 4 in the

boxed areas.

3 Wavelet local correlation coefficient

and cross wavelet coherence function

Another technique to measure the correlation between
two signals is using wavelet local correlation coefficient
(WLCC) and cross wavelet coherence function (CWCF).
WLCC and CWCF are

WLCC(s, τ) =
Re[PWxy(s, τ)]

|Wx(s, τ)| |Wy(s, τ)|
,

CWCF(s, τ) =
2|PWxy(s, τ)|2

|Wx(s, τ)|4 + |Wy(s, τ)|4
.

The former is a measure of phase correlation of two series
in the time-scale (or time-frequency) domain, and the
latter is a measure of the amplitude correlation in the
time-scale (or time-frequency) domain.

The illustration of these two measures for our exam-
ple is given in Fig. 3. Figure 3a shows the WLCC, which
is the phase correlation. The color represents the ampli-
tude strength of the coherence between the ECG and
SCG signals. Notice the stripes in the lower frequency
bands (1.9 < f < 2.6 Hz) and (3.9 < f < 7.5 Hz), which
are within the same frequency region as that seen in the
coscalogram of Fig. 2d. These stripes indicate that the sig-
nals have a phase correlation throughout the entire time
series within these lower frequencies. Figure 3b gives the
CWCF, where the color intensity represents the ampli-
tude coherence. Again, notice that the most intense por-
tions are within the lower frequency band, and that the
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Fig. 3. The color represents the coherence of ECG and SCG signals:
(a) – WLCC phase, (b) – CWCF amplitude strength.

Frequency (Hz)

Frequency (Hz)
143.2 11 5.7 1.9 1.4 1.23.9 2.9 2.3 1.6

1.4

1.2

1.9

3.9

143.2

11

5.7

2.9

2.3

1.6

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Fig. 4. WB during Event 3: the horizontal and vertical axes rep-
resent the ECG signal and the SCG signal frequencies
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Fig. 5. Screenshot of the GUI running while plotting the coherence of ECG and SCG signals during Event 3

intense regions match the respective coscalogram portions
within Events 1 through 4, as represented in Fig. 2d.

4 Wavelet coherence

The WC gives a localized view of the coherence
strength of two time series signals, while reducing the
noise through a smoothing operation. The WC and phase
are defined as

WC =
|Sω

xy(s, τ)|2
Sω
xx(s, τ)S

ω
yy(s, τ)

,

ϕ(s, τ) = tan−1
Re[Sω

xy(s, τ)]

Im[Sω
xy(s, τ)]

where

Sω
xy(s, τ) =

1

s

∫

T

Wx(s, τ)W
∗

y (s, τ)dτ ,

Sω
xx(s, τ) =

1

s

∫

T

|Wx(s, τ)|2dτ ,

Sω
yy(s, τ) =

1

s

∫

T

|Wy(s, τ)|2dτ ,

T = [τ−∆τ, τ +∆τ ] .

and can be employed over the data set with a smooth-

ing parameter of ∆τ that reduces the variance of noise.
The coherence strength of the two time series signals is

shown as color, and the superimposed arrows are used to
indicate the coherence phase. Arrows that are pointing to

right represent in-phase, arrows pointing up represent a

positive phase shift of 90◦ and arrows pointing down rep-
resent a negative phase shift of 90◦ (as shown in Fig. 5).

However, it is observed that Event 3 shows strongest co-
herence visible in lower frequency band 1 < f < 1.4 Hz

which is most likely due to increased intensity seen in
the scalogram of the SCG after Event 2. It can also be

noted that most of the arrows are pointing relatively to

the right, indicating “in phase” or strong coherence of
the ECG and SCG signals that agrees with our find-

ings regarding the frequency band 1.9 < f < 2.6 Hz in
Fig. 3b, where the long stripes indicated that the signals

had strong phase coherence.

5 Wavelet bicoherence

Wavelet bicoherence (WB) allows the two time series

signals to be analyzed for phase coupling and non-linear

interactions.
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Fig. 6. ECG schalogram comparison (up Grinstead, et al )
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Fig. 7. SCG schalogram comparison (up Grinstead, et al )

The identity

cos(α) cos(β) =
1

2
[cos(α+ β) + cos(α− β)]

shows that two frequencies, f1 and f2 , can create a new
frequency f = f1 ± f2 , through non-linear effects. This
can then be transferred into scaling of the coefficients
from the continuous wavelet transform, where 1

s = 1

s1
±

1

s2
.

The WB is defined as

WB =
|BW

xxy(s1, s2)|
∫

T
|Wx(s1, τ)Wx(s2, τ)|2dτ

∫

T
|Wy(s, τ)|2dτ

where

BW
xxy(s1, s2) =

∫

T

Wx(s1, τ)Wx(s2, τ)W
∗

y (s, τ)dτ

and can be evaluated over any short or long time inter-
vals. For the graphical illustration, we used our simultane-
ously recorded ECG and SCG signals. Figure 4 shows the
wavelet bicoherence determined over a short time period
of Event 3. Using bicoherence we are looking for phase
coupling and non-linear interactions that take place be-
tween the investigasted signals during any event short
time interval. In Fig. 4, the horizontal axes represent the
ECG signal frequencies and the vertical axis represent the
SCG signal frequency.

6 Wavelet analysis tools - GUI

Running the program when analyzing twotime series
signals and wanting to change only one parameter can be-
come a monotonous task. To combat this tedious process,
a MATLAB Graphical User Interface (GUI) was created.
Fig ure 5 shows the window for the GUI, where the sig-
nals that are analyzed are identical as those in Fig. 2 ex-
cept that the time interval of interest has been changed
to 30 < t < 43 seconds. Adjusting the time interval or
any other parameter is very simple. The users can change
any parameter they choose, then press the button for
the plot they would like to have created. Sources of the
developed program used in this article are available at
https://github.com/piotrsobecki/TIDCPE.

7 Discussion

In this paper, we have used an ECG data set and
a SCG data set to illustrate various continuous wavelet
analysis techniques with the results that can be obtained
using our programs that can be executed at the MAT-
LAB’s command line and/or using MATLAB’s GUI that
we have developed.

The same tools have been used by other researchers
and similar results have been shown. Using some of the
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tools, discussed in this paper, we have processed the same
data using our software and the software developed by
Grinsted et al [9]. The comparison of results is illustrated
in Fig. 6 and Fig. 7.

8 Conclusion

This paper has used an ECG data set and a SCG data
set to show multiple continuous wavelet analysis tech-
niques that can be used at MATLAB’s command line or
using MATLAB’s GUI. When signals are dynamic over
time, it is advantageous to use wavelet analysis instead
of Fourier analysis. Wavelet analysis can maintain tempo-
ral characteristics whereas Fourier analysis removes the
temporal characteristics.

It has been shown that these multiple techniques re-
veal interaction dynamics of time-varying signals (such
as ECG and SCG time series signals) and how they can
be correlated both in amplitude and phase along with
phase coupling and non-linear interactions. Results for
Events 1 through 4 were shown to have strong coherence
between the ECG and SCG signals both in amplitude
and phase. However, phase coupling and non-linear inter-
actions were considered to be weak during these events.
Finally, a MATLAB GUI was presented to assist in quick
and simple data analysis.
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[7] M. A. Garćıa-González, A. Argelagós-Palau, M. Fernndez-Chime-
no and J. Ramos-Castro, ”A comparison of heartbeat detectors

for the seismocardiogram”, ” Computing Cardiology Conference
(CinC), 2013.
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