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JOINT SIGNAL PARAMETER ESTIMATION IN NON–GAUSSIAN
NOISE BY THE METHOD OF POLYNOMIAL MAXIMIZATION
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This paper considers the adaptation of the method of polynomial maximization for synthesis of the polynomial algorithms
of joint signal parameter estimation in non-Gaussian noise. It is shown that the nonlinear processing of samples, the moment
and the cumulant description of random variables in the form of cumulant coefficients of the third and higher orders can
decrease the variance of joint parameters estimation as compared with the well-known results.
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1 INTRODUCTION

Traditionally, the design of the parameter estima-
tion systems is based on the classical signal processing
methods where the normal (Gaussian) probability den-
sity function (PDF) of the random processes is usually
used [1–3]. Gaussian PDF of the stochastic processes is
widely applied, but in many cases it does not describe the
real processes with the desired accuracy and turns out
to be a convenient mathematical idealization of the real
stochastic process [4–7]. The traditional approaches are
characterized by significant limitations of the parameter
estimation of the non-Gaussian stochastic processes. Such
problems are associated with the complexity of their al-
gorithmic implementation and the increasing of the com-
puter resources. In order to solve these problems, we
can use another approach which is based on higher-order
statistics (HOS). According to this approach, the random
processes can be described in the form of the moment
and cumulant (semivariants) functions. Such functions
describe the statistical properties of the non-Gaussian
processes with a reasonable accuracy [8–11]. Partial de-
scription of the random processes in the form of moments
and cumulants finite sequence allows us to apply more ef-
fective processing of the non-Gaussian processes [10–14].
Another approach, introduced on the basis of the moment
and cumulant description of the random variables, al-
lows us to apply the Method of Polynomial Maximization
(MPM) and to get the asymptotically-efficient parame-
ter estimation of non-Gaussian random variables [10, 11].
The effective polynomial algorithms for scalar parameter
estimation of the non-Gaussian random processes have
been synthesized on the basis of the MPM [12–14]. How-
ever, in many practical cases, the joint parameter estima-
tion is more important and widely used for the synthesis
of the signal processing systems [15, 16]. The adaptation

of the MPM for the joint parameter estimation for un-
equally distributed random values in non-Gaussian noise
is suggested.

The main objective of the paper is the synthesis and
the analysis of the method of the joint radiofrequency
signal parameter estimation in non-Gaussian noise. The
basis of this method is the moment and the cumulant de-
scription of the random variables and a stochastic power
polynomial for synthesis of the effective algorithms and
the computer tools for the function of data processing
systems.

2 ADAPTATION THE METHOD OF

POLYNOMIAL MAXIMIZATION FOR

JOINT PARAMETER ESTIMATION

Let the random signal ξ(t) be observed in the time
interval [0, T ] and consist of the useful radiofrequency
signal S(t) and noise η(t)

ξ(t) = S(t) + η(t) , (1)

where η(t) – non-Gaussian stationary stochastic process
that describes the sequence of moments αi and cumulants
χi with a zero meaning, variance χ2 and the cumulant co-

efficients γi (γi = χi/χ
i/2
2 ) are not equal to zero (γi �= 0,

i ≥ 3) [9–11], S(t) = Ae(t) cos(ωt+ ϕ) – radiofrequency
signal with the unknown parameters ϑ = {A,ω, ϕ} , such
as the amplitude A , frequency ω and phase ϕ .

If the sampling signal is ξ(t), we get their discrete
independent values X = {x1, x2, . . . , xn} in the time tv
and the input signal is defined as

xv = Sv(ϑ) + ηv , v = 1, . . . , n ,

where Sv(ϑ) = Aev cos(ω∆v + ϕ), ∆v – the step of sam-

pling.
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Then initial moments of ξ(t) are defined as mi(v)(ϑ) =

E(ξv)
i = E(Sv(ϑ) + η)i .

The problem is the vector ϑ = {A,ω, ϕ} parameter
estimation of the random non-Gaussian process (1). We
examine the adaptation of the MPM for synthesis of the
algorithms joint radiofrequency signal parameter estima-
tion in non-Gaussian noise.

According to the MPM, the joint radiofrequency pa-
rameter estimation ϑ = {A,ω, ϕ} can be found from so-
lution of the equations of the power polynomial maxi-
mization of the degree s for each component ϑk , where
the additional sum for each component of sample xv will
be used:

s
∑

i=1

n
∑

v=1

hi(k)v[s](ϑ)
(

xi
v −mi(v)(ϑ)

)∣

∣

Sv(ϑ)=Ŝv(ϑ)
= 0 ,

k = 1, 2, 3 , (2)

where hi(k)(v)[s]

(

ϑ
)

— unknown coefficients which are

found from the system of linear equations for each com-
ponent k :

s
∑

j=1

hj(k)v[s]

(

ϑ
)

Ki,j(v)(ϑ) =
d

dϑk
mi(v)(ϑ) ,

i = 1, . . . , s , v = 1, . . . , n , k = 1, 2, 3 , (3)

where Ki,j(v)(ϑ) = m(i+j)(v)

(

ϑ)−mi(v)

(

ϑ)mj(v)

(

ϑ).

The matrix of the derived information quantity [10]
from the samples of the volume n is used to obtain the
variances of vector parameters estimation by the adapted
MPM (AMPM):

Jsn
(

ϑ
)

=







J
(1,1)
sn (ϑ) J

(1,2)
sn (ϑ) J

(1,3)
sn (ϑ)

J
(2,1)
sn (ϑ) J

(2,2)
sn (ϑ) J

(2,3)
sn (ϑ)

J
(3,1)
sn (ϑ) J

(3,2)
sn (ϑ) J

(3,3)
sn (ϑ)






(4)

where

J
(1,1)
sn (ϑ) =

∑s
i=1

∑n
v=1 hi(1)v[i](ϑ)

dmi(v)(ϑ)

dA
,

J
(2,2)
sn (ϑ) =

∑s
i=1

∑n
v=1 hi(2)v[i](ϑ)

dmi(v)(ϑ)

dω ,

J
(1,2)
sn (ϑ) = J

(2,1)
sn (ϑ) =

∑s
i=1

∑n
v=1 hi(1)v[i](ϑ)

dmi(v)(ϑ)

dω

=
∑s

i=1

∑n
v=1 hi(2)v[i](ϑ)

dmi(v)(ϑ)

dA
,

J
(1,3)
sn (ϑ) = J

(3,1)
sn (ϑ) =

∑s
i=1

∑n
v=1 hi(1)v[i](ϑ)

dmi(v)(ϑ)

dϕ

=
∑s

i=1

∑n
v=1 hi(3)v[i](ϑ)

dmi(v)(ϑ)

dA
,

J
(2,3)
sn (ϑ) = J

(3,2)
sn (ϑ) =

∑s
i=1

∑n
v=1 hi(3)v[i](ϑ)

dmi(v)(ϑ)

dω
,

J
(3,3)
sn (ϑ) =

∑s
i=1

∑n
v=1 hi(3)v[i](ϑ)

dmi(v)(ϑ)

dϕ
.

The J
(r,r)
sn (ϑ), r = 1, 2, 3 is the derived information

quantity about r -th parameter for separate scalar param-

eter estimation, at that J
(k,z)
sn (ϑ) = J

(z,k)
sn (ϑ).

In this case the variances of joint ϑ =
{

Â, ω̂, ϕ̂
}

pa-
rameters estimation will be accordingly equal to the diag-
onal elements of the variation matrix and asymptotically

for n → ∞ is equal to the matrix of the information
quantity Jsn(ϑ):

σ2
(A)[s](ϑ) =

J
(2,2)
sn (ϑ)J

(3,3)
sn (ϑ) − (J

(2,3)
sn (ϑ))2

‖Jsn(ϑ)‖
,

σ2
(ω)[s](ϑ) =

J
(1,1)
sn (ϑ)J

(3,3)
sn (ϑ) − (J

(1,3)
sn (ϑ))2

‖Jsn(ϑ)‖
,

σ2
(ϕ)[s](ϑ) =

J
(1,1)
sn (ϑ)J

(2,2)
sn (ϑ) − (J

(1,2)
sn (ϑ))2

‖Jsn(ϑ)‖
.

(5)

The variance decreasing coefficient is used for assess of
the efficiency of the variance joint parameters estimation

of ϑ =
{

Â, ω̂, ϕ̂
}

:

g(k)sr(ϑ) =
σ2
(k)[s](ϑ)

σ2
(k)[r](ϑ)

, (6)

where σ2
(k)[s](ϑ) – the variance of the component ϑk es-

timation of the vectors parameter θ that was found by
AMPM for degree s , σ2

(k)[r](ϑ) – variance of the com-

ponent ϑk estimation of vectors parameter ϑ that was
found by AMPM for degree r .

Let us synthesize the polynomial algorithms of joint
parameter estimation and analyze their effectiveness by
the AMPM.

3 THE SYNTHESIS OF THE

POLYNOMIAL ALGORITHMS OF

JOINT PARAMETER ESTIMATION

Let us consider a non-Gaussian process that is de-
scribed by a sequence of moments and cumulants. As an
example, let η(t) – non-Gaussian stationary asymmet-
rical stochastic process (which is characterized by zero
mean, χ2 variance and γ3 asymmetry coefficient) be not
equal to zero (γ4 = 0, γi – not determined for i > 4).

Let us assume that χ2 and γ3 are known and can be
written down as χ20 , γ30 accordingly. Then the initial
moments αi(χ20 , γ30) of η(t) as the fourth degree are
defined

α1(·) = 0 , α2(·) = χ20 , α3(·) = χ1.5
20 γ30 , α4(·) = 3χ2

20

and the initial moments mi(v)(ϑ) of ξ(t) to four degree

look like

m1(v)(ϑ) = Sv(ϑ) , m2(v)(ϑ) = S2
v(ϑ) + χ20 ,

m3(v)(ϑ) = S3
v(ϑ) + 3Sv(ϑ)χ20 + γ30χ

1.5
20 ,

m4(v)(ϑ) = S4
v(ϑ) + 6S2

v(ϑ)χ20 + 4Sv(ϑ)γ30χ
1.5
20 + 3χ2

20 .

The unknown coefficient Ki,j(v)(ϑ) (3) is defined for

such asymmetric non-Gaussian model of random process
in the following way.

K1,1(v)(ϑ) = χ20 ,

K1,2(v)(ϑ) = K2,1(v)(ϑ) = χ20

[

2Sv(ϑ) + γ30χ
0.5
2

]

,

K2,2(v)(ϑ) = 2χ20

[

2S2
v(ϑ) + 2Sv(ϑ)γ30χ

0.5
20 + χ20

]

.
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Let us find the parameters ϑ for polynomial degree
s = 1 from (2) by the AMPM. Then the vector ϑ ele-
ments estimation are found from the system of the three
equations (2) for ϑk components:

n
∑

v=1

h1(k)v[1](ϑ)
(

xv −m1(v)(ϑ)
)∣

∣

ϑk=ϑ̂k

= 0 , k = 1, 2, 3 ,

(7)
where the optimal coefficients are found for each of com-
ponents from solution the system of equations (3):

h1(k)v[1](ϑ)K1,1(v)(ϑ)=
dm1(v)(ϑ)

dϑk
, v=1, . . . , n , k=1, 2, 3.

The system of equations is defined from (7) for find
the unknown parameters ϑ of the stochastic power poly-
nomial of degree s = 1

n
∑

v=1

(

xv−Aev cos(ω∆v + ϕ)
)

ev cos(ω∆v + ϕ)
∣

∣

A=Â
= 0 ,

n
∑

v=1

(

xv−Aev cos(ω∆v + ϕ)
)

∆vev sin(ω∆v + ϕ)
∣

∣

ω=ω̂
= 0 ,

n
∑

v=1

(

xv−Aev cos(ω∆v + ϕ)
)

ev sin(ω∆v + ϕ)
∣

∣

ϕ=ϕ̂
= 0

and is solved by the numerical methods.

Let us find the joint signal parameter estimation of
the power polynomial degree s = 2. The vector elements
estimation are found from the system of the three equa-
tions (2) for ϑk components and is defined as

n
∑

v=1

h1(k)v[2](ϑ)
(

xv −m1(v)(ϑ)
)

+

h2(k)v[2](ϑ)
(

x2
v −m2(v)(ϑ)

)∣

∣

ϑk=ϑ̂k

= 0 , k = 1, 2, 3 , (8)

where the optimal coefficients h1(k)(v)[2](ϑ) and

h2(k)(v)[2](ϑ) are defined for each components of ϑk from

solution the system of equations (3):

h1(k)v[2]{s11}(ϑ)K1,1(v){s11}(ϑ) +

h2(k)v[2]{s11}(ϑ)K1,2(v){s11}(ϑ) =
dm1(v){s11}(ϑ)

dϑk
,

h1(k)v[2]{s11}(ϑ)K1,2(v){s11}(ϑ) +

h2(k)v[2]{s11}(ϑ)K2,2(v){s11}(ϑ) =
dm2(v){s11}(ϑ)

dϑk
.

The system of equations is obtained from (8) to find
the unknown parameters ϑ of the stochastic power poly-
nomial of the degree s = 2:

n
∑

v=1

ev cos(ω∆v + ϕ)
[

A2e2v cos
2(ω∆v + ϕ)γ30+

2Aev cos(ω∆v + ϕ)(−xvγ30 + χ0.5
20 )+

x2
vγ30 − 2xvχ

0.5
20 − γ30χ20

]

∣

∣

∣

A=Â
= 0 ,

n
∑

v=1

[

0.5A3∆ve
3
vγ30 cos(ω∆v + ϕ) sin 2(ω∆v + ϕ)−

A2∆ve
2
v(xvγ30 − χ0.5

20 ) sin 2(ω∆v + ϕ)+

Aev∆v sin(ω∆v+ϕ)(x2
vγ30−2xvχ

0.5
20 −γ30χ20)

]

∣

∣

∣

ω=ω̂
= 0 ,

n
∑

v=1

[

0, 5A3e3vγ30 cos(ω∆v + ϕ) sin 2(ω∆v + ϕ)−

A2e2v(xvγ30 − χ0.5
20 ) sin 2(ω∆v + ϕ)+

A sin(ω∆v + ϕ)ev(x
2
vγ30 − 2xvχ

0.5
20 − γ30χ20)

]

∣

∣

∣

ϕ=ϕ̂
= 0 .

and is solved by the numerical methods.

The efficiency of the polynomial processing of the ran-
dom variable by AMPM was carried out to compare the
variances of the joint parameter estimation for the power
polynomial of the degree s = 1, 2. The variances of the

parameter estimation (Â , ω̂ and ϕ̂) for s = 1 are defined
from (4–5) and look like

σ2
(A)[1](ϑ) =

A4
[
∑n

v=1 ∆
2
va

2
v −

(
∑n

v=1 ∆vav
)2]

χ2
20‖J1n(ϑ)‖

,

σ2
(ω)[1](ϑ) =

A2
[
∑n

v=1 avbv − 1
4

(
∑n

v=1 av
)2]

χ2
20‖J1n(ϑ)‖

,

σ2
(φ)[1](ϑ) =

A2
[
∑n

v=1 ∆
2
vavbv − 1

4

(
∑n

v=1 ∆vcv
)2]

χ2
20‖J1n(ϑ)‖

,

where

‖J1n(ϑ)‖ =
−A4

4χ1.5
20

[

−2

n
∑

v=1

∆2
vd

2
vav +

n
∑

v=1

av

(

n
∑

v=1

∆vdv

)2

+

n
∑

v=1

∆2
vav

(

n
∑

v=1

dv

)2

+4
n
∑

v=1

bv

[(

n
∑

v=1

∆vav

)2

−
n
∑

v=1

∆2
va

2
v

]

]

,

av = e2v sin
2(ω∆V + ϕ) , bv = e2v cos

2(ω∆V + ϕ) ,

cv = e2v sin
2(2ω∆V + 2ϕ) , dv = e2v sin(2ω∆V + 2ϕ) .

It can be noticed that the variance values of the joint
parameter estimation for s = 1 are the same as when the
well-known method of maximum likelihood estimation
(MLE) for the Gaussian PDF is used. However, these
variance values differ from the mentioned above in the
power polynomial of the degree s = 2 and are defined as

σ2
(A)[2](ϑ) =

4A4
[
∑n

v=1 ∆
2
va

2
v −

(
∑n

v=1 ∆vav
)2]

χ2
20(2− γ2

30)
2‖J2n(ϑ)‖

,

σ2
(ω)[2](ϑ) =

4A2
[
∑n

v=1 avbv − 1
4

(
∑n

v=1 av
)2]

χ2
20(2− γ2

30)
2‖J2n(ϑ)‖

,

σ2
(ϕ)[2](ϑ) =

4A2
[
∑n

v=1 ∆
2
vavbv − 1

4

(
∑n

v=1 ∆vcv
)2]

χ2
20(2− γ2

30)
2‖J2n(ϑ)‖

,
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Fig. 1. The comparison of the theoretical (curve) and the experimental (dots) results of the VRC g21(ϑ) of the joint parameter estimation,
(a) — amplitude, (b) — frequency, for power the polynomial of the degree s = 1, 2 from the asymmetry coefficient γ3

where ‖J2n(ϑ)‖ =
8‖J1n(ϑ)‖
(2 − γ2

30)
3
.

The variance reduction coefficients (VRC) were calcu-
lated from (6):

g(A)21(ϑ) = g(ω)21(ϑ) = g(ϕ)21(ϑ) = g21(ϑ) = 1− γ2
30

2
,

(9)
where the tolerance range for asymmetry coefficient γ3 is
defined as γ2

30 ≤ γ40 + 2 [9, 10] and the asymmetry coef-

ficient looks like γ2
30 ≤

√
2 for asymmetric non-Gaussian

noise model (then γ40 = 0).

4 RESULTS AND DISCUSSION

This paper offers the joint parameter estimation of ra-
diofrequency signals in the non-Gaussian noise on the ba-
sis of the AMPM. The effectiveness of estimation depends
on the characteristics of the non-Gaussian random vari-
ables (9) (namely, from the asymmetry coefficient γ3 ). It
is shown that the variances of the joint signal parameter
estimation are equal to each other for the power polyno-
mial of the degree s = 1, 2 for γ3 = 0 (Fig. 1). The vari-
ances of the joint parameter non-liner estimation are less
for the power polynomial of the degree s = 2 (γ3 6= 0)
than the variances of the linear estimation for the poly-
nomial of the degree s = 1 (γ3 = 0). Besides, the lin-
ear estimation results for the polynomial of the degree
s = 1 are the same as the well-known results of the MLE
method for Gaussian PDF.

It can be seen that the experimental (are marked as
dots) and theoretical results (are marked as a curve) are
approximately moved closer to each other. Taking into
account the moments and the cumulants of the third and
the higher order, for example, the asymmetry distribu-
tion of random samples (when γ3 6= 0), this approach
enables us to reduce the variances of the joint parame-
ter estimation as compared with the well-known results.
For example, the variance of the amplitude estimation
is decreased approximately in 35% for γ3 = 1 as com-
pared with such parameter for the Gaussian model noise

(Fig. 1a). The variances of the joint parameter estimation
will be less when the stochastic power polynomial of the
degree s increases.

5 CONCLUSIONS

The complex description of the non-Gaussian pro-
cesses requires a new approach to solve the problems of
parameter estimation. This approach is based on the uti-
lizing of the new Method of Polynomial Maximization
(MPM, Kunchenko method). We scrutinized the adapta-
tion of the MPM for the joint parameter estimation for
non-equal distributed samples. The effective algorithms
of the joint radiofrequency signal parameter estimation
in non-Gaussian are obtained. Taking into account the
parameters of non-Gaussian distribution of random vari-
ables in form of the cumulant coefficients of the third and
higher orders, this new method enables us to reduce the
variances of the joint parameter estimation as compared
with the well-known results.
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