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NOTE ON MODULAR REDUCTION IN EXTENDED FINITE
FIELDS AND POLYNOMIAL RINGS FOR SIMPLE HARDWARE

Marek Repka
∗

Modular reduction in extended finite fields and polynomial rings is presented, which once implemented works for any
random reduction polynomial without changes of the hardware. It is possible to reduce polynomials of whatever degree. Based
on the principal defined, two example RTL architectures are designed, and some useful features are noted furthermore. The
first architecture is sequential and reduce whatever degree polynomials, taking 2 cycles per term. The second one is Parallel
and designed for reduction of polynomials of 2( t -1) degree at most, taking 1 cycle for the whole reduction.

K e y w o r d s: modular reduction, extended finite fields, extended polynomial rings, algebraic codes, McEliece PKC,
Niederreiter PKC

1 INTRODUCTION

Many methods are optimized, designed, and imple-
mented for special cases of finite fields, or special cases
of reduction polynomial that must be of a certain con-
stant value, and, in better cases, of a certain form. This
general reduction works for any reduction polynomial, for
instance [1–6], and thus we can say that it works for ran-
dom reduction polynomials which can be even secret [7–
11]. No special methods are used, and thus no processor
is required, just a simple hardware can be used. The main
contributions of this paper are the generalized mathemat-
ical description, and the RTL schemes.

2 PROBLEM DEFINITION & NOTATION

Let GF(pm) = GF(p)[X ]/m(X) be the finite field,
where m(X) is irreducible of degm(X) = m > 0, and
p is a prime ≥ 2. The polynomial m(X) is chosen by a
designer, and it is a constant parameter. Thus also the
operations ⊗ and ⊕ can be optimized and hardwired
(binary case example [12]), as we consider it is done here-
after. Let an element in GF(pm) is represented using h
wires or bits.

h = �log2 (p
m − 1)�+ 1.

Our aim is to compute remainder r(Z) in the GF(pm)[Z]
modulo a reduction polynomial g(Z) that is not hard-
wired and can be changed without any changes of the
hardware.

r(Z) ≡ n(Z) mod g(Z) , (1)

where n(Z) is a polynomial which remainder of is going
to be determined, deg n(Z) > t− 1.

For the reason g(Z) is a variable parameter, opera-
tions modg(Z) cannot be hardwired as it is in case of ⊗

and ⊕ . For the computation of inversions (−gt)
−1 con-

sult [13]. If the reduction polynomial g(Z) is monic, the
inversion is not important to compute as the inversion of
1 is still 1, and if the application uses only monic polyno-
mials, such as McEliece PKC, the inversion do not have
to be implemented.

3 THE PRINCIPAL

The general modular reduction is based on the follow-
ing fact

g(Z) = gtZ
t ⊕ gt−1Z

t−1 ⊕ . . . ⊕ g0 = 0 , (2)

Zt = (−gt)
−1

(

gt−1Z
t−1 ⊕ . . . ⊕ g0

)

. (3)

The inversion (−gt)
−1 and the multiplications by the in-

version are in the GF(pm), thus after adjustments, poly-
nomial ct(Z) is obtained:

ct(Z) = g
(0)
t−1Z

t−1 ⊕ . . . ⊕ g
(0)
0 , (4)

Zt ≡ ct(Z) mod g(Z) . (5)

For i ≥ 1, we can shift to left:

Zt+i = ct+i−1(Z)Z , (6)

Zt+i = g
(i−1)
t−1 Zt ⊕ . . . ⊕ g

(i−1)
0 Z , (7)

and by substituting Zt for ct(Z), we get

ct+i(Z) = g
(i)
t−1Z

t−1 ⊕ . . . ⊕ g
(i)
0 , (8)

Zt+i ≡ ct+i(Z) mod g(Z) . (9)
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We call carry terms the Zt+i terms, and we call the
ct+i(Z) as their carry polynomials.

4 THE PRINCIPAL IN GENERAL

MODULAR REDUCTION

A polynomial n(Z) the remainder of which is going to
be determined can be written as

n(Z) = nL(Z)⊕nR(Z) =
n−t
⊕

i=0

nt+iZ
t+i⊕

t−1
⊕

i=0

niZ
i. (10)

The terms the polynomial nL(Z) consists of must be re-
duced and added to the nR(Z). First, coefficient nt is
taken and multiplied by the carry polynomial ct(Z) of its
carry term Zt , see (5), which results to an intermediate

polynomial r
(t)
I (Z) of deg at most t− 1. These interme-

diate polynomials are essentially the reduced terms into
polynomials which are added to the nR(Z). Polynomial

r
(t)
I (Z) is then added to the r(0)(Z) resulting to r(1)(Z).
Accordingly, next coefficient nt+1 is multiplied by carry

polynomial ct+1(Z) of its carry term Zt+1 resulting to

r
(t+1)
I (Z). The polynomial r

(t+1)
I (Z) is added to r(1)(Z)

resulting to r(2)(Z). In general, for i ≥ 0 holds

r
(t+i)
I (Z) = nt+ict+i(Z) ≡ nt+iZ

t+i mod g(Z) , (11)

r(0)(Z) = nR(Z) , (12)

r(i+1)(Z) = r
(t+i)
I (Z)⊕ r(i)(Z) . (13)

The result r(Z) of the modular reduction can be obtained
as:

r(Z) =

n−t
⊕

i=0

r
(t+i)
I (Z)⊕ nR(Z) (14)

or also
r(Z) = r(n−t+1)(Z) . (15)

If we can upper bound the maximal degree of poly-
nomials n(Z), for an instance as max degn(Z) = n ≤

(pmt − 1)(t− 1), then the principal can be written as the
following matrix vector product:













n0 g
(0)
0 · · · g

(n−t)
0

n1 g
(0)
1 · · · g

(n−t)
1

...
...

. . .
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nt−1 g
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t−1
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...

rt−1
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









. (16)

The matrix has t rows and n − t + 1 columns. The re-
sultant vector has t elements which in polynomial repre-
sentation stands for the remainder.

Regarding the (5)–(15), serial reduction architecture
(SRA) is designed in the Section SRA RTL Architecture.
According to the SRA and considering (16), also Parallel
Reduction Architecture (PRA) can be designed, what
means that the carry polynomials are precomputed and
memorized, such as example in the Section PRA RTL
Architecture.

5 SOME OTHER FEATURES

While we are going to left (it is a special -but simple-

shift-and-substitute operation) in revealing ct+i(Z), (6)–

(9); we must go to right when revealing carry polynomials

of 1 and Z−i .

Shift coefficients of a g(Z) right until the first nonzero

coefficient is shifted out. Let this coefficient has index j ,
ie gjZ

j . Let the following nonzero coefficient has index

l , ie glZ
l . Note, l > j ≥ 0.

Z−1 ≡ c
−1(Z) mod g(Z) , (17)

c
−1(Z) = −

t
⊕

k=l

gk
gj

Zk−j−1. (18)

Z−i ≡ c
−i(Z) mod g(Z) , (19)

c
−i(Z) = c

−i+1(Z)Z−1. (20)

In the (17), only positive exponents are present. In the

(20), the multiplication is the right shift, and if a negative

exponent appears after the shift, it is Z−1 , and this term

is substituted for c
−1(Z), similarly as in (6)–(9). Further

interesting features:

1 = Z0 ≡ c0(Z) mod g(Z) , (21)

c0(Z) = −
t

⊕

k=l

gk
gj

Zk−j . (22)

n(Z) | c0(Z) ⇐⇒
(

n−1(Z) mod g(Z)
)

=
c0(Z)

n(Z)
.
(23)

6 SRA RTL ARCHITECTURE

The architecture for SRA is depicted in Fig. 1. Since it

is iterative architecture, polynomials of whatever degree

can be reduced. This architecture can be enhanced to

implement the special shift-and-substitute operation to

right in order to perform some of the other features.

6.1 Initialization

In the 1st cycle, the r(i+1)(Z) memory block regis-
ters value of nR(Z) polynomial coefficients, and the Zt

memory block registers the first t coefficients of g(Z).
The carry polynomial of Zt term is computed in the way

that the actual value of the Zt memory block is multi-
plied by (−gt)

−1 . This results to the carry polynomial of

the Zt carry term.
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Fig. 1. RTL Architecture for SRA

6.2 Reduction

The carry polynomial is registered by the Zt and the
Zt+i memory blocks in the 1st cycle. We have i = 0

in this cycle. Thus, in this cycle, nt+0 is multiplied by

the value of the Zt+i memory block. This results to the

intermediate (reduced) polynomial r
(0)
I (Z) that is added

to the r(0)(Z) resulting into the r(1)(Z) that is registered

by the r(i+1)(Z) memory block in the 2nd cycle.

In the 2nd cycle, g
(0)
t−1 is taken of the Zt+i memory

block, and it is multiplied by the value of the Zt mem-

ory block. This product is added to the [g
(0)
t−2, . . . , g

(0)
0 , e]

vector that is also taken of the Zt+i memory block with

e added to the right (m LSBs). This results into the next

carry polynomial that is registered by the Zt+i in the 3rd

cycle.

In the 3rd cycle, i = 1. Therefore, in this cycle, nt+1 is

multiplied by the value of the Zt+i memory block result-

ing to the r
(1)
I (Z) that is added to the r(1)(Z) resulting

into the r(2)(Z) that is registered by the r(i+1)(Z) mem-

ory block in the 4th cycle.

Consequently, in the 4th cycle, g
(1)
t−1 is taken of the

Zt+i memory block, and it is multiplied by the value

of the Zt memory block. This product is added to the

[g
(1)
t−2, . . . , g

(1)
0 , e] value. The result is the next carry poly-

nomial that is registered by the Zt+i in the 5th cycle,

which in turn makes SRA ready for reduction of the next

term.

Since the carry polynomial of the Zt carry term is
stored in the Zt memory block, when the reduction of
next polynomial takes place, it is only important to reg-
ister this carry polynomial by the Zt+1 memory block
such as it was made in the 1st cycle, and continue from
that point to finish the next reduction. Of course, if the
next reduction is modulo another polynomial, the SRA
must be reinitialized by the new values.

7 PRA RTL ARCHITECTURE

The top level architecture for PRA is depicted in
Fig. 2, and its functional description follows. This archi-
tecture is rolled out for reduction of multiplication results,
eg maximal degree 2(t − 1), but it can be enhanced for
both reduction of higher terms in parallel or sequential
reduction of blocks of terms (a trade of between memory
and number of cycles).

7.1 Initialization

In the 1st cycle, the Zt memory block registers the
first t coefficients of g(Z). The carry polynomial of Zt

term is computed as the actual value of the Zt memory
block multiplied by (−gt)

−1 . This results to the carry
polynomial of the Zt carry term.

In the 2nd cycle, this value is registered by both the

Zt and the Z2(t−1) memory blocks. The next carry poly-
nomial of the next carry term is computed by taking

g
(0)
t−1 of the Z2(t−1) memory block, and multiplying it
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Fig. 2. RTL Architecture for PRA

by the value of the Zt memory block. Result is added to

[g
(0)
t−2 . . . g

(0)
0 e] , which is taken of Z2(t−1) memory block,

resulting to the next carry polynomial.

The carry polynomial is registered by both the Zt+1

and the Z2(t−1) memory blocks in the 3rd cycle. Conse-

quently, g
(1)
t−1 is taken of the Z2(t−1) memory block, and

it is multiplied by the value of the Zt memory block.

This product is added to the [g
(1)
t−2 . . . g

(1)
0 e] value, which

results to the next carry polynomial that can be regis-

tered by the corresponding memory block, and Z2(t−1)

memory block, in the following cycle.

In this manner, all the carry polynomials are computed

and registered finishing by the value of the Z2(t−1) mem-

ory block. At the cycle these values have been registered,
the reduction can begin. It is tth cycle.

7.2 Reduction

This REM operation of Polynomials takes one cycle.

All the nt+i are taken and multiplied by their correspond-

ing carry polynomials resulting to the reduced interme-

diate polynomials which are finally added together with

the nR(Z) resulting to the final result r(Z).

In the following cycle, the next reduction can be per-
formed. However, if the reduction polynomial for the next
reduction is different, PRA must be reinitialized.

8 BASIC EVALUATION OF

COSTS AND PERFORMANCE

This really depends on the technology and platform
used, and the representation of the ⊕ and ⊗ operations.
For instance, the memory blocks can be implemented as
registers, or as a part of embedded or external (SD Card)
memory. Another example are the operations ⊕ and ⊗ .
These can be hardwired, or implemented based on log-
and-anti-log and Zech’s log techniques.

PRA can be designed to reduce parallel blocks of carry
terms regarding the memory possibilities. The PRA RTL
architecture depicted in Fig. 2 is an example where the
degree of the polynomial to reduce is bounded by 2(t−1)
which is the maximal degree of a product.

SRA needs 3ht bits in memory, 1 cycle to initialize,
and 2 cycles per term reduction; while PRA needs 1 cycle
per the whole polynomial reduction but (t− 1)th bits of
memory. Further, an efficient trade-off can be considered,
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and some improvements in performance can be achieved,
for example utilizing [14].

Table 1. Basic evaluation of costs

Memory
MUX MUX

RTL Architecture
[bits]

3 : 1 2 : 1 ⊗ ⊕

[qty] [qty]

SRA 3th 2 5 t t

PRA - bounded by
(t− 1)th 1 3 (t− 1)t (t− 1)t

max deg 2(t− 1)

Table 2. The basic evaluation of performance

RTL Architecture Initialization [cycles] reduction [cycles]

SRA 1 2 per term

PRA - bounded by
t 1

max deg 2(t− 1)

9 CONCLUSION

We have described general reduction in random exten-
sions of polynomial rings and finite fields. Based on this,
we proposed RTL architectures for sequential (SRA) as
well as for parallel (PRA) modular reductions designed
for simple hardware. SRA can be used to reduce poly-
nomials of whatever degree, and PRA can reduce whole
polynomials in one cycle. This reduction works for any
random, even secret, polynomial g(Z) ∈ GF(pm)[Z] ,
deg g(Z) = t . The polynomial g(Z) is a variable pa-
rameter and can be changed whenever and without any
changes of the hardware. Moreover, if the operations in
the base field are implemented based on log-and-anti-log
and Zech’s log techniques, also p , m , and m(X) can by
variable parameters. Based on this work, one can design
further extensions of rings of polynomials and finite fields
in hardware, embedded, as well as in software platforms,
where all reduction polynomials can be variable parame-
ters.
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