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ROBUST GAIN–SCHEDULED PID CONTROLLER
DESIGN FOR UNCERTAIN LPV SYSTEMS

Vojtech Veselý — Adrian Ilka
∗

A novel methodology is proposed for robust gain-scheduled PID controller design for uncertain LPV systems. The
proposed design procedure is based on the parameter-dependent quadratic stability approach. A new uncertain LPV system
model has been introduced in this paper. To access the performance quality the approach of a parameter varying guaranteed
cost is used which allowed to reach for different working points desired performance. Numerical examples show the benefit
of the proposed method.
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1 INTRODUCTION

In real applications a controller must accommodate
a plant with changing dynamics. Therefore, controllers
based on these models have to be robust in the presence
of plant model uncertainty. A practical approach involves
scheduling in a family of local controllers in response to
the changing plant dynamics [1]. A proposed family of
local controllers is implemented using the gain-scheduling
approach. The above mentioned gain-scheduled designs
are guided by two heuristic rules [2]:

– the scheduling variable should vary slowly, and

– the scheduling variable should capture the plants non-
linearities.

In such cases, the designed gain-scheduled controller
should be able to stabilize and guarantee a reasonable
performance for all operating conditions. The question
remains what happens with a closed-loop system if the de-
veloped physical nonlinear model or the model obtained
through practical identification is not enough precise? In
such a case, frequent in applications, there is a need for
robust controller to cope with plant model uncertainty.

Various robust controller design methods for gain-
scheduled uncertain plant are available in literature. Ro-
bust gain-scheduled controllers design to LPV system can
be found in [1], where the authors addressed the problem
of interpolating in a set of LTI controllers in order to
form a gain-scheduled controller with optimal H∞ per-
formance. The set of admissible interpolated controllers
are framed in terms of the robust controller interpolation
criteria. For a special uncertain dynamical system, the
robust state feedback stabilization problem in the gain-
scheduling can be found in [3]. In this paper it is shown
that a possible advantage of the online measurement of
the scheduling parameters is that this always allows linear
compensators, whose implementation can be easier than
that of nonlinear ones. Design of robust gain-scheduled
PI controllers for nonlinear SISO process can be found in

[2]. The model uncertainty is assumed to be the difference
between the nonlinear model and the linear one. In the
paper [4] an input-output approach to the gain-scheduled
design of nonlinear controllers is presented. A controller
formulation inspired by the Youla-Kucera parametriza-
tion to propose a controller structure and design approach
that allow the gain-scheduling of linear control designs
such that a robustly stable nonlinear closed-loop control
system is achieved. A robust PID controller is designed
in [5].The main feature of the proposed method is that
the stability, robustness margin and some performance
specification are guaranteed by linear constraints in the
Nyquist diagram. The condensing boiler is described by
the first order model with a time delay in [6], the problem
of attenuation of sinusoidal disturbances with uncertain
and arbitrarily time-varying frequencies is solved by syn-
thesis of LPV controller using the L2 gain method. In
[7] the quadratic stability approach is used to design the
gain-scheduled controller for each vertex of a plant uncer-
tainty box and the closed-loop system stability is verified
by LMI. Other alternative approaches to gain-scheduled
controller design can be found in [8–17]. A survey of the
gain-scheduled controller design is given in excellent pa-
pers [18, 19].

The above short survey implies that in the references
there is no systematic procedure for designing a robust
PID gain-scheduled controller. This observation moti-
vated us to solve the following research problem: design a
PID robust gain-scheduled controller which should guar-
antee

– stability and robustness properties of a closed-loop
system for all scheduled parameters θ ∈ Ωs and their

rate θ̇i ∈ Ωt , when the uncertain plant parameters π
lie in the given polytopic uncertainty box Ω, that is

π ∈ Ω, θ ∈ Ωs , θ̇ ∈ Ωt ,

– for the closed-loop system ensure for all π ∈ Ω, θ ∈ Ωs

and θ̇ ∈ Ωt guaranteed gain-scheduled performance
and parameter dependent quadratic stability.
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In this paper the new PID robust gain-scheduled con-
troller design procedure is given.

The paper is organized as follows. Section 2 includes
problem formulation of robust PID gain-scheduled con-
trollers design for the original plant uncertainty model
and new performance criterion. In Section 3, sufficient
robust stability LMI conditions for the structured gain-
scheduled controller are given. Respective conditions for
robust controller synthesis are in BMI form. In Section 4,
the results are illustrated on examples to design a PID ro-
bust gain-scheduled controller. The final Section 5 brings
a conclusion on the obtained results and possible direc-
tions in the gain-scheduled controller design field.

Hereafter, the following notational convention will be
adopted. Given a symmetric matrix P = PT ∈ R

n×n , the
inequality P > 0 (P ≥ 0) denotes the positive definite-
ness (semidefiniteness) matrix. Symbol ∗ denotes a block
that is transposed and complex conjugated to the respec-
tive symmetrically placed one. Matrices, if not explicitly
stated, are assumed to have compatible dimensions. I de-
notes the identity matrix of corresponding dimensions.

2 PROBLEM FORMULATION

AND PRELIMINARIES

Consider a continuous-time linear parameter varying
(LPV) uncertain system in the form

ẋ = A(ξ, θ)x +B(ξ, θ)u

y = Cx, ẏd = Cdẋ
(1)

where linear parameter varying matrices

A(ξ, θ) = A0(ξ) +

s
∑

i=1

Ai(ξ)θi ∈ R
n×n

B(ξ, θ) = B0(ξ) +

s
∑

i=1

Bi(ξ)θi ∈ R
n×m

(2)

x ∈ R
n , u ∈ R

m , y ∈ R
l denote the state, control in-

put and controlled output, respectively. Matrices Ai(ξ),
Bi(ξ), i = 0, 1, 2, . . . s belong to the convex set: a poly-
tope with N vertices that can be formally defined as

Ω =
{

Ai(ξ), Bi(ξ) =

N
∑

j=1

(Aij , Bij)ξj

}

,

i = 0, 1, 2, . . . s ,

N
∑

j=1

ξj = 1 , ξj ≥ 0

(3)

where s is the number of scheduled parameters; ξj ,
j = 1, 2, . . .N are constant or possibly time varying but
unknown parameters; matrices Aij , Bij , C , Cd are con-
stant matrices of corresponding dimensions, where Cd is
the output matrix for D part of the controller. θ ∈ R

s is a
vector of known (measurable) constant or possibly time-
varying scheduled parameters. Assume that both lower
and upper bounds are available. Specifically

1. Each parameter θi , i = 1, 2, . . . s ranges between
known extremal values

θ ∈ Ωs =
{

θ ∈ R
s : θi ∈ 〈θi, θi

〉

, i = 1, 2, . . . s
}

. (4)

2. The rate of variation θ̇i is well defined at all times and
satisfies

θ̇ ∈ Ωt =
{

θ̇i ∈ R
s : θ̇i ∈ 〈θ̇i, θ̇i〉 , i = 1, 2, . . . s

}

. (5)

Note that system (1), (2), (3) consists of two type of ver-
tices. The first one is due to the gain-scheduled parame-
ters θ with T = 2s vertices – θ vertices, and the second
set of vertices are due to uncertainties of the system – N ,
ξ vertices. For robust gain-scheduled “I” part controller
design the states of system (1) need to be extended in
such a way that a static output feedback control algo-
rithm can provide proportional (P) and integral (I) parts
of the designed controller. For more details see [20]. As-
sume that system (1) allows PI controller design with a
static output feedback.

To access the system performance, we consider an orig-
inal scheduling quadratic cost function

J =

∫

∞

0

J(t)dt =

∫

∞

0

(

xTQ(θ)x+ uTRu+ ẋTS(θ)ẋ
)

dt

Q(θ) = Q0 +

s
∑

i=1

Qiθi, S(θ) = S0 +

s
∑

i=1

Siθi .

(6)
The feedback control law is considered in the form

u = F (θ)y + Fd(θ)ẏd

F (θ) = F0 +

s
∑

i=1

Fiθi, Fd(θ) = Fd0
+

s
∑

i=1

Fdi
θi

(7)

Matrices Fi , Fdi
, i = 0, 1, 2, . . . s are the static output PI

part and the output derivative feedback gain-scheduled
controller. The structure of the above matrices can be
prescribed.

The respective closed-loop system is then

Md(ξ, θ)ẋ = Ac(ξ, θ)x

Md(ξ, θ) = I −B(ξ, θ)Fd(θ)Cd

Ac(ξ, θ) = A(ξ, θ) +B(ξ, θ)F (θ)C

(8)

Let as recall some results about an optimal control of
time varying systems [21].

Lemma 1. Let V (x, t) be a scalar positive definite func-
tion such that limt→∞ V (x, t) = 0 which satisfies

min
u∈Ωu

{δV

δx
Ac(θ) +

δV

δt
+ J(t)

}

= 0 . (9)

From (9) obtained control algorithm u = u∗(x, t) ensure
the closed-loop stability and on the solution of (1) optimal
value of cost function as J∗ = J(x0, t0) = V (x(0), t0) .

Eq. (9) is known as Bellman-Lyapunov equation and
function V (x, t) which satisfies to (9) is Lyapunov func-
tion. For a given concrete structure of Lyapunov function
the optimal control algorithm may reduce from “if and
only if” to “if” and for switched systems, robust control,
gain-scheduled control and so on to guaranteed cost.
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Definition 1. Consider a stable closed-loop system (8).
If there exists a control law u (7) which satisfies (11) and
a positive scalar J∗ such that the value of closed-loop
cost function (6) J satisfies J < J∗ for all θ ∈ Ωs and
ξj , j = 1, 2 . . .N satisfying (3), then J∗ is said to be
a guaranteed cost and u is said to be a guaranteed cost
control law for system (8).

Let us recall some parameter dependent stability re-
sults which provide basic further developments.

Definition 2. Closed-loop system (8) is parameter de-
pendent quadratically stable in the convex domain Ω

given by (3) for all θ ∈ Ωs and θ̇ ∈ Ωt if and only if
there exists a positive definite parameter dependent Lya-
punov function V (ξ, θ) such that the time derivative of
Lyapunov function with respect to (8) is

dV (ξ, θ, t)

dt
< 0 . (10)

Lemmma 2. Consider the closed-loop system (8). Con-
trol algorithm (7) is the guaranteed cost control law if
and only if there exists a parameter dependent Lyapunov
function V (ξ, θ) such that the following condition holds
[21]

Be(ξ, θ) = min
u

(dV (ξ, θ, t)

dt
+ J(t)

)

≤ 0 . (11)

Uncertain closed-loop system (8) conforming to Lemma 2
is called robust parameter dependent quadratically stable
with guaranteed cost.

We proceed with the notion of multi-convexity of a
scalar quadratic function [22].

Lemma 3. Consider a scalar quadratic function of θ ∈
R

s

f(θ) = α0 +

s
∑

i=1

αiθi +

s
∑

i=1

s
∑

j>i

βijθiθj +

s
∑

i=1

γiθ
2

i (12)

and assume that if f(θ) is multiconvex that is

∂2f

∂θ2i
= 2γi ≥ 0 , i = 1, 2, . . . , s .

Then f(θ) is negative in the hyper rectangle (4) if and
only if it takes negative values at the vertices of (4), that
is if and only if f(θ) < 0 for all vertices of the set given
by (4). For decrease the conservatism of Lemma 3 the
approach proposed in [22] can be used.

In this paragraph for uncertain gain-scheduling system
(1) we have proposed to use a model uncertainty in the
form of a convex set with N vertices defined by (3).
Furthermore, we consider the new type of performance
(6) to obtain the closed-loop system guaranteed cost.

3 MAIN RESULTS

This section formulates the theoretical approach to ro-
bust PID gain-scheduled controller design for polytopic
system (1), (2), (3) which ensures closed-loop system
parameter dependent quadratic stability and a guaran-
teed cost for all gain-scheduling parameters θ ∈ Ωs , and

θ̇ ∈ Ωt . The main result on robust stability for the gain-
scheduled control system is given in the next theorem.

Theorem 1. The closed-loop system (8) is robust pa-
rameter dependent quadratically stable with a guaran-
teed cost if there exist positive definite matrix P (ξ, θ) ∈
R

n×n , matrices N1 , N2 ∈ R
n×n positive definite (semi-

definite) matrices Q(θ) , R , S(θ) and gain-scheduled con-
troller (7) such that

L(ξ, θ) = W0(ξ) +

s
∑

i=1

Wi(ξ)θi+

s
∑

i=1

s
∑

j>i

Wij(ξ)θiθj +
s

∑

i=1

Wiiθ
2

i < 0 ,

(13)

Wii(ξ) ≥ 0 , θ ∈ Ωs, i = 1, 2, . . . , s (14)

where we consider parameter dependent Lyapunov ma-
trix

P (ξ, θ) = P0(ξ) +

s
∑

i=1

Pi(ξ)θi > 0 . (15)

The above matrices (13) and (14) are given as

W0(ξ) =

[

W110(ξ) W120(ξ)
∗ W220(ξ)

]

,

W110(ξ) = S0 + CT
d F

T
d0
RFd0

Cd+

NT
1 (I −B0(ξ)Fd0

Cd) + (I −B0(ξ)Fd0
Cd)

TN1,

W120(ξ) = −NT
1 (A0(ξ) +B0(ξ)F0C)+

(I −B0(ξ)Fd0
Cd)

TN2 + P0(ξ) + CT
d F

T
d0
RF0C,

W220(ξ) = −NT
2 (A0(ξ) +B0(ξ)F0C)

− (A0(ξ) +B0(ξ)F0C)TN2

+Q0 + CTFT
0 RF0C +

s
∑

j=1

Pj(ξ)θ̇i,

Wi(ξ) =

[

W11i(ξ) W12i(ξ)
∗ W22i(ξ)

]

,

W11i(ξ) = Si + CT
d (F

T
d0
RFdi

+ FT
di
RFd0

)Cd

−NT
1 (B0(ξ)Fdi

+Bi(ξ)Fd0
)Cd

−
[

(B0(ξ)Fdi
+Bi(ξ)Fd0

)Cd

]T
N1,

W12i(ξ) = −NT
1 (Ai(ξ) +B0(ξ)Fi +Bi(ξ)F0)C

− (Bi(ξ)Fd0
Cd)

TN2 + Pi(ξ)

+ CT
d (F

T
di
RF0 + FT

d0
RFi)C,

W22i(ξ) = −NT
2

(

Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C
)
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−
[

Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C
]T

N2

+Qi + CT (FT
0 RFi + FT

i RF0)C,

Wij(ξ) =

[

W11ij(ξ) W12ij(ξ)

∗ W22ij(ξ)

]

W11ij (ξ) = CT
d (F

T
di
RFdj

+ FT
dj
RFdi

)Cd

−NT
1 (Bi(ξ)Fdj

+Bj(ξ)Fdi
)Cd

− CT
d (Bi(ξ)Fdj

+Bj(ξ)Fdi
)TN1,

W12ij (ξ) = −NT
1 (Bi(ξ)Fj +Bj(ξ)Fi)C

− CT
d (Bi(ξ)Fdj

+Bj(ξ)Fdi
)TN2

+ CT
d (F

T
di
RFj + FT

dj
RFi)C,

W22ij (ξ) = −NT
2 (Bi(ξ)Fj +Bj(ξ)Fi)C

− CT (Bi(ξ)Fj +Bj(ξ)Fi)
TN2

+ CT (FT
i RFj + FT

j RFi)C,

Wii(ξ) =

[

W11ii(ξ) W12ii(ξ)
∗ W22ii(ξ)

]

,

W11ii(ξ) = CT
d F

T
di
RFdi

Cd −NT
1 Bi(ξ)Fdi

Cd

− CT
d F

T
di
Bi(ξ)

TN1,

W12ii(ξ) = −NT
1 Bi(ξ)FiC − CT

d F
T
di
BT

i (ξ)N2

+ CT
d F

T
di
RFiC,

W22ii(ξ) = −NT
2 Bi(ξ)FiC − CTFT

i BT
i (ξ)N2

+ CTFT
i RFiC .

Due to space we provide only the outline of the proof.
The proof is based on Lemma2 and 3. The time derivative
of the Lyapunov function V (ξ, θ) = xTP (ξ, θ)x is

dV (ξ, θ)

dt
=

[ ẋT xT ]

[

0 P (ξ, θ)

P (ξ, θ) P (ξ, θ̇)

] [

ẋ
x

]

P (ξ, θ̇) =

s
∑

i=1

Pi(ξ)θ̇ .

(16)

To isolate two matrices (system and Lyapunov) introduc-
ing matrices N1 , N2 in the following way

[2N1ẋ+ 2N2x]
T [Md(ξθ)ẋ −Ac(ξ, θ)] = 0 (17)

and substituting (17), (16), J(t) (6) and control law (7)
to (11), after some manipulation one obtains

Be(ξ, θ) = [ ẋT xT ]

[

W11(ξ) W12(ξ)

WT
12(ξ) W22(ξ)

] [

ẋ
x

]

(18)

where
W11 = S(θ) + CT

d F
T
d (θ)RFd(θ)Cd

+NT
1 Md(ξ, θ) +MT

d (ξ, θ)N1,

W12 = −NT
1 Ac(ξ, θ) +MT

d (ξ, θ)N2 + P (ξ, θ)

+ CT
d F

T
d (θ)RF (θ)C,

W22 = −NT
2 Ac(ξ, θ)−AT

c (ξ, θ)N2 +Q(θ)

+ CTFT (θ)RF (θ)C + P (ξ, θ̇)

Equation (18) immediately implies (13), which proves the
sufficient conditions of Theorem 1.

Equations (13) and (14) are linear with respect to
uncertain parameter ξj , j = 1, 2, . . . , N , therefore (13)
and (14) have to hold for all j = 1, 2, . . .N . For the
known gain-scheduled controller parameters, inequalities
(13) and (14) reduce to LMI, for gain-scheduled controller
synthesis problem (13) (14) are BMI.

R e m a r k 1 . Theorem 1 can be used for a quadratic
stability test, where Lyapuunov function matrices (ma-
trix) are either independent of parameter ξj , j = 1, 2, . . . ,
N or parameter θi, i = 1, 2, . . . , s or both as listed below.

1. Quadratic stability with respect to model parameter
variation. For this case one has P (θ) = P0+

∑s

i=1
Piθi .

This Lyapunov function should withstand arbitrarily
fast model parameter variation in the convex set (3)

2. Quadratic stability with respect to gain-scheduled pa-
rameters θ . For this case Pi → 0, i = 1, 2 . . . , s and
Lyapunov matrix is P (ξ, θ) = P0(ξ). This Lyapunov
function should withstand arbitrarily fast θ parameter
variations.

3. Quadratic stability with respect to both ξ and θ pa-
rameters. Lyapunov matrix is P (ξ, θ) = P0 and it
should withstands arbitrarily fast model and gain-
scheduled parameter variation.

4 EXAMPLES

Each example is calculated for three quadratic stabil-
ity approaches (Remark 1) and for parameter dependent
quadratic stability, that is

QS1: Quadratic stability with respect to uncertain model
parameter variation. For this case the Lyapunov matrix
is in the form

P (ξ, θ) = P0 +

s
∑

i=1

Piθi, (19)

QS2: Parameter dependent quadratic stability. The Lya-
punov matrix is given as

P (ξ, θ) = P0(ξ) +

s
∑

i=1

Pi(ξ)θi

Pj(ξ) =
N
∑

v=1

Pjvξv, j = 0, 1, 2, . . . s,
N
∑

i=1

ξi = 1,

(20)
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Fig. 1. Simulation results at QS3, γ = 1, α ∈ 〈0, 100〉

QS3: Quadratic stability with respect to gain-scheduled
parameters. The Lyapunov matrix is in the form

P (ξ, θ) =

N
∑

i=1

Piξi, (21)

QS4: Quadratic stability with respect to both gain-
scheduled and model uncertain parameters. The Lya-
punov matrix is

P (ξ, θ) = P0 . (22)

Example 1. The first numerical example has been bor-
rowed from [4] with a small modification. Consider a sim-
ple linear plant with parameter varying coefficients

ẋ(t) = γa(α)x(t) + γb(α)u(t),

y(t) = x(t), where:

a(α) = −6−
2

π
arctan

α

20
,

b(α) =
1

2
+

5

π
arctan

α

20
,

(23)

γ ∈ 〈0.9, 1.1〉 being an unknown but constant coefficient
and α ∈ 〈0, 100〉 a measurable parameter. Let us take
3 working points α = 0, 30, 100 where one obtains two
models for γ = 0.9 and γ = 1.1 (for each working point).
The above models have been recalculated to the form
(1), (2), (3). Due to I part controller the extended plant
models are

A0 =

[

−6.4370γ 0
1 0

]

, A1 =

[

−0.3130γ 0
0 0

]

,

A2 =

[

−0.1240γ 0
0 0

]

, B0 =

[

1.5930γ
0

]

,

B1 =

[

1.275γ
0

]

, B2 =

[

0.3110γ
0

]

,

C =

[

1 0
0 1

]

, D = 0 .

For parameters R = rI , r = 1, Q(θ) = q0I + q1I + q2I ,
q0 = 0.1, q1 = q2 = 0.02, S(θ) = s0I + s1I + s2I ,

s0 = s1 = s2 = 0, r0 = 2000 (0 < P (ξ, θ) < r0I ),
θi ∈ 〈−1, 1〉 , i = 1, 2; we have obtained the following
PID robust gain-scheduled controller

R(s) = R0(s) +R1(s)θ1 +R2(s)θ2 .

QS1: PENBMI failed
QS2: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.2498

R0(s)=−1.3667− 1.2936/s− 0.07s,
R1(s)= 1.8456 + 0.6652/s+ 0.0289s,
R2(s)= 1.431 + 0.5161/s+ 0.028s.

QS3: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.0407

R0(s) =−9.6682− 0.5575/s+ 0.0375s,
R1(s) = 0.5187 + 0.0235/s+ 0.0019s,
R2(s) = 1.3277 + 0.0602/s+ 0.0049s.

QS4: PENBMI failed

The closed-loop dynamic behaviours for QS3 are given
in Fig. 1, where the black line is the setpoint w(t) and
the coloured lines are the measured outputs y(t) at α =
0, 2, 4, . . .100. Another closed-loop dynamic behaviours
for QS2, γ = 1 are given in Fig. 2, where w(t) is the
setpoint, y(t) is the system output, u(t) is the controller
output, θ1 and θ2 are calculated scheduled parameters
and α is the exogenous signal.

Example 2. Second example has been borrowed from
[3]. Uncertain model (1) is given as follows

A(θ) =

[

0.1γ θ1 + 4θ2
−1 0

]

, B(θ) =

[

0
γθ1 + 1.5θ2

]

where θ1 + θ2 = 1, θi ≥ 0, i = 1, 2 and uncertain
parameter γ ∈ 〈0.9, 1.1〉 . Substituting for θ2 = 1 − θ1
and for γ = 0.9 or γ = 1.1 one obtains

A01 =

[

0.09 4
−1 0

]

, A02 =

[

0.11 4
−1 0

]

,

A11 = A12 =

[

0 −3
0 0

]

, B01 = B02 =

[

0
1.5

]

,

B11 =

[

0
−0.6

]

, B12 =

[

0
−0.4

]

,

C = [ 1 1 ] , D = 0

For parameters r = 1, θ1 ∈ 〈0, 1〉 , q0 = 0.001, s0 = 0,
q1 = 0.0002, s1 = 0, r0 = 20000 the following PID
controller is obtained

QS1: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.1483

R0(s) = −4.2735− 0.7288/s− 0.521s,
R1(s) = −29.0575− 8.6869/s− 15.9056s.
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Fig. 2. Simulation results at QS2, γ = 1, α ∈ 〈0, 100〉

QS2: PENBMI failed
QS3: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.1129

R0(s) = 0.0805− 0.0466/s− 1.9234s,
R1(s) = −0.0649− 0.4289/s− 15.0506s.

QS4: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.0752

R0(s) = 0.0304− 0.0405/s− 1.7515s,
R1(s) = −0.0763− 0.5508/s− 19.9456.

The closed-loop dynamic behaviours are given in Fig. 3.

Example 3. Consider the uncertain system (1) [9]

A0 =

[

0.2γ −0.8
0.3 −1.3

]

, A1 =

[

0.0 −0.3γ
0.5γ 0

]

,

B0 =

[

0.4
0.8γ

]

, B1 =

[

0.3
0.1

]

γ, C = [ 1 0 ] .

where γ ∈ 〈0.9, 1.1〉 constant but uncertain parameter
θ1 ∈ 〈0, 1〉 . Despite the simplicity the system with state
feedback is not quadratically stabilizable with a fixed gain
matrix for γ = 1. Substituting γ = 0.9 and γ = 1.1
we obtain the uncertain plant model (1). For parameters
r = 1, q0 = 0.0001, s0 = 0, q1 = 0.0001, s1 = 0
and r0 = 20000 the following robust PID controllers are
obtained

QS1: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.0222.

R0(s) = 1.0149 + 0.0172/s− 1.94333s,

R1(s) = [−0.4446 + 0.6918/s+ 11.845s]× 10−14 .
= 0.

QS2, QS3 and QS4: PENBMI failed

When one changes s0 = 0.1, s1 = 0.001 the new PID
controller parameters are obtained for QS1:

R0(s) = 1.0435 + 0.017/s− 1.7061s,

R1(s) = [−0.224 + 0.643/s+ 10.258]× 10−14 .
= 0 .

Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is
λmax = −0.0209. The closed-loop dynamic behaviours
are given in Fig. 4.

5 CONCLUSION

A novel design procedure has been proposed for ro-
bust gain-scheduled controller design. Several forms of
parameter dependent quadratic stability are presented
which withstand arbitrarily fast model parameter vari-
ation or/and arbitrarily fast gain-scheduled parameter
variation. Because of BMI approach the future research
should transform BMI to LMI and the obtained design
procedure for a polytopic continuous system should be
transformed to discrete ones. The proposed approach con-
tributes to the design tools of a robust gain-scheduled
controller for uncertain polytopic systems.
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