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ROBUST CONTROL METHODS A SYSTEMATIC SURVEY

Vojtech Veselý
∗

The paper addresses the problem how to recognize a level of robust controller design and is aimed show the difficulties
of implementation for practical use. In the first part of paper we introduce the survey of robust controller design for SISO
systems with generalization design procedure for structured and unstructured uncertainties. The second part of paper is
devoted to MIMO systems. In the frequency domain robust controller design procedure we reduce to independent design of
SISO subsystems and in time domain the LMI or BMI approaches with polytopic system description are favorable.
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1 INTRODUCTION

During the last decades, robustness has been recog-
nized as a key issue in the analysis and design of con-
trol systems. The history of robust control design method
based on small-gain-like robustness condition started by
developing with the pioneering work of Zames. Only at
the end of the 1980’s was a practical solution to this prob-
lem was found. It is worth to mention some algebraic ap-
proaches which followed the seminal works of [4] ;[2] and
[1]. Theory of robust control system design belongs to
those theories which work with a real plant described by
a nominal model and model uncertainty. It is a model
approval of real plant then there is no gap within the re-
sults obtained by control theory and real measurements.
Therefore, robust control theory is very fruitful theory to
study for practical purposes.

In this paper, we focus our attention in two robust de-
sign problems. At first, a problem of robust stabilization
of an uncertain system with structured uncertainty when
plant is described by the transfer function with linear or
multilinear interval for SISO systems and for MIMO sys-
tems the polytopic description of systems are considered.
In the second, a problem of generalization of robust sta-
bilization of an uncertain system with unstructured un-
certainty for SISO and MIMO system is considered for
robust decentralized controller design. The last part of
paper is devoted to results of three laboratory practice.
In this course described basic theory of robust controller
design can be consulted also in [4]; [2]; [7]; [5]; [8]; [6]; [3].

2 ROBUST CONTROLLER DESIGN

2.1 Frequency domain. Structured uncertainty

Consider a closed-loop system comprising the trans-
fer function matrix of the plant G(s) ∈ Rm×m and the

controller R(s) ∈ Rm×m in the standard feedback config-
uration, Fig. 1. where w, u, y, e are respectively vectors

w e yu
R(s) G(s)

-

Fig. 1. Standard feedback configuration

of reference, control input, output and control error of
compatible dimensions. The problem to addressed in this
paper is the design of a robust decentralized controller

R(s) = diag{Rii(s)}m×m (1)

that guarantees closed-loop stability and performance
over the entire operating range of the controlled plant
G(s).

Consider the SISO plant (m = 1) with the follow-
ing type of uncertainties: linear interval, multilinear and
nonlinear cases. Let the plant and controller transfer func-
tions is

G(s) =
P1(s)

P2(s)
R(s) =

R1(s)

R2(s)
(2)

where Pi(s), i = 1, 2 are a linear interval polynomials

Pi(s) = poi + p1is+ ...+ pnis
ni (3)

with

pji ∈ 〈pji, pji〉 ∈ Qi; i = 1, 2; j = 1, 2, . . . , ni . (3)

The following assumptions about the linear interval poly-
nomials are considered:

– Elements of pi ∈ Qi, i = 1, 2 are perturbed indepen-
dently of each other.

– Characteristic polynomials of the plant and the con-
troller are of the same degree.

According to [2] the closed-loop stability problem can
be solved using the Generalized Kharitonov Theorem
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Theorem 2.1. For a given R(s) = [R1(s)R2(s)] of real
polynomials

– R(s) stabilizes the linear interval polynomials P (s) =
[P1(s)P2(s)] for all p ∈ Q if and only if the controller
stabilizes the extremal transfer function

GE(s) = {
K1(s)

S2(s)

⋃ S1(s)

K2(s)
} . (4)

– Moreover, if the controller polynomials are of the form

Ri(s) = sti(ais+ bi)(Ui(s)Zi(s), i = 1, 2 (5)

then it is sufficient if the controller R(s) stabilizes the
Kharitonov transfer function

GK(s) =
K1(s)

K2(s)
(6)

where Ki(s) = {Ki(s)
1 , Ki(s)

2 , Ki(s)
3 , Ki(s)

4}
stand for Kharitonov polynomials corresponding to
each Pi(s) and

Si(s) = {[Ki(s)
1,Ki(s)

2], [Ki(s)
1,Ki(s)

3], . . . }

. . . [Ki(s)
2,Ki(s)

4], [Ki(s)
3,Ki(s)

4] (7)

stand forKharitonov segments for corresponding Pi(s);
Ui(s) is anti-Hurwitz polynomial; Zi(s) is even or odd
polynomial; ai, bi are positive numbers and ti ≥ 0 is
an integer.

Note that

Si(s)
1 = λKi(s)

1 + (1− λ)Ki(s)
2; λ ∈ 〈0, 1〉 .

Let the plant transfer function of G(s) be written in the
following affine form

G(s) =
P1(s)

P2(s)
=

P0,1(s) +
∑p

i=1
Pi,1(s)qi

P0,2(s) +
∑p

i=1
Pi,2(s)qi

(8)

where Pj,1(s), Pj,2(s), j = 0, 1, ..., p are real polynomials
with constant parameters and the uncertainty parameter
qi is from the interval

qi ∈< qi, qi > i = 1, 2, ..., p

The description (8) represents a polytope of linear sys-
tems, which vertices are

Gvj(s) =
Pv1,j(s)

Pv2,j(s)
j = 1, 2, ..., N ;N = 2p (9)

computed for different variable qi, i = 1, 2, ..., p alterna-
tively taken their maximum qi and minimum qi . Based

on the Edge theorem the following results can be ob-
tained.

Theorem 2.2. The controller R(s) = [R1(s)R2(s)] with
real polynomials stabilizes the affine system (8) for all
q ∈ Q if and only if the controller stabilizes the following
extremal transfer function

GP (s) =
λPv1,i + (1− λ)Pv1,j

λPv2,i + (1− λ)Pv2,j

. (10)

i 6= j, i, j = 1, 2, ..., p2p−1;λ ∈< 0, 1 > Both i and j
have to be taken as the vertices number of correspond-
ing edges. In general the sets of extremal transfer func-
tions (4) and (10) are quite different. While the number
of GE(s) equals to 32, the number of GP (s) depends
exponentially on the number of uncertain parameters qi .

For the case of multilinear uncertainty let the uncer-
tain plant transfer function be

G(s) =
P11(s)P12(s)...P1n(s)

P21(s)P22(s)...P2d(s)
(11)

where Pij(s), i = 1, 2; j = 1, 2, ..., n(d) belong to the lin-
ear interval polynomial. Let Kij(s) and Sij(s) denote the
respective Kharitonov polynomials and Kharitonov seg-
ments of corresponding Pij(s),respectively. The following
theorem holds [2].

Theorem 2.3. The controller R(s) = [R1(s)R2(s)] sta-
bilizes the multilinear system (11) for the uncertainty box
if and only if the polynomials R(s) stabilizes the follow-
ing Extremal Transfer Function (ETF)

ME(s) =
{

S11(s) . . . S1n(s)

K21(s) . . . K2d(s)

⋃ K11(s) . . .K1n(s)

S21(s) . . . S2d(s)

}

. (12)

For different type of uncertainty one obtains different
number of ETFs. In the laboratory exercises, students can
realize robust controller design procedure by two way:

– Using Nejmark D-partition method and calculate the
controller parameters for all ETF.

– Design robust controller for the stability worst case
of ETF. Check satisfy the stability and performance
conditions for all ETFs. If no determine the new worst
case for the ETF+ Controller and design new con-
troller For such iterative procedure, we mainly use the
BODE diagram approach and phase margin notion.

2.2 Frequency domain. Unstructured uncer-

tainty

This section deals with the robust controller design for
both MIMO and SISO systems using different uncertainty
types. Standard feedback configuration for the uncertain
system described by additive uncertainty is depicted in
Fig. 2. The block diagram in Fig. 2 can easily be trans-

w e y
u

R(s) GN(s)

-

la D(s)
u

D

Fig. 2. Standard feedback configuration with additive uncertainty
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formed in the M −∆ structure [7], where for two (addi-
tive and inverse additive) uncertainty types the following
results have been obtained

Ma(s) = −[I +R(s)GN (s)]−1R(s) ,

Mai(s) = [I +GN (s)R(s)]−1GN (s) .
(13)

Robust closed-loop stability conditions are given by fol-
lowing theorem, [7].

Theorem 2.4. Assume that the nominal closed-loop sys-
tem Mk(s) , k = a, ai is stable and the uncertainties sat-
isfy the following inequality

0 < lk(s) ≤ lkm(s) k = a, ai . (14)

Then the closed-loop system is stable for all uncertainty
models lk(s) , k = a, ai satisfying (14) if and only if

σM (Mk(s)) <
1

lk(s)
(15)

where

la(s) = max
p

σM (GN (s)−Gp(s)); p = 1, 2, . . .

lai(s) = max
p

σM

(

GN (s)−1 −Gp(s)
−1

)

.

Using (13) and (15) after some modifications one obtains

σM (MTN ) < σM (
GN

la
);σM (SN ) < σM (

GN

lai
) (16)

where SN (s),MTN (s) are sensitive or complement sen-
sitive functions of closed-loop nominal system, respec-
tively. On the base of Equivalent Subsystem Method
(ESM) [5, 8] the transfer function of closed-loop nominal
system (or sensitivity transfer function) with decentral-
ized controller (1) can transform from stability and per-
formance view to diagonal form with help of equivalent
transfer function of nominal model Ge(s), ie

MTN(GN ) ≃ MTN(Ge) = diag
{ RiGei

1 +RiGei

}

m×m
. (17)

Due to (17) robust stability conditions (16) reduce to m
independent stability conditions:
for additive type uncertainty

∣

∣

∣

RiGej

1 +RjGej

∣

∣

∣
<

∣

∣

∣

GN

la

∣

∣

∣
= Ua (18)

and for inverse additive type uncertainty

∣

∣

∣

1

1 +RjGej

∣

∣

∣
<

∣

∣

∣

G−1

N

lai

∣

∣

∣
= Uai, j = 1, 2, . . . ,m . (19)

Robust decentralized controller design procedure consist
of the following steps:

– from (18), (19) one can determine the Allowed Fre-
quency Band (AFB) and the maximal value of MT =
maxsUa; (MS = maxsUai),

– from the following inequalities

PM > 2 arcsin(
1

2MT

), PM > 2 arcsin(
1

2MS

)

one can determine the phase margin PM and from
AFB settling time to design of robust controller,

– for designed controllers the verification of robust sta-
bility condition (18), (19) and performance for all sub-
systems is checked,

– if the stability and performance conditions are meet
the design procedure is finished, if no phase margin is
increased (settling time is changing),

– for stable plant we use the additive type uncertainty,
for unstable inverse additive type one.

2.3 Robust controller design in time domain:

Polytopic system approach

Consider a linear affine uncertain system

δx(t) = A(α)x(t) +B(α)u(t)

y(t) = Cx(t)
(20)

where

δx(t) = ẋ(t) for continuous-time system,

δx(t) = x(t+ 1) for discrete-time system.

x(t) ∈ Rn , u(t) ∈ Rm , y(t) ∈ Rl are state, control
and output vectors respectively; A(α), B(α) belong to
the convex set S with N vertices

{A(α), B(α)} =

N
∑

i=1

{Ai, Bi}αi;

N
∑

i=1

αi = 1 , αi ≥ 0 .

(21)
Ai, Bi, C are known constant matrices of appropriate di-
mensions of i -th vertex. Such the uncertain system (20),
(21) can be equivalently described by a polytopic model
given by its vertices

{(A1, B1, C), ..., (AN , BN , C)}, N = 2p . (22)

The feedback control law is considered in the form

u(t) = FCx(t) (23)

where F is a output feedback gain matrix. The uncertain
closed-loop polytopic system is then

δx(t) = AC(α)x(t) (24)

where

AC(α) ∈

{

N
∑

i=1

αiACi,

N
∑

i=1

αi = 1, αi ≥ 0

}

,

ACi = Ai +BiFC .

(25)
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To assess the performance quality, a quadratic cost func-
tion known from LQ theory is often used. However, in
practice the response rate or overshoot are often limited.
Therefore we include into the cost function the additional
derivative term of state variable to open the possibility
to damp the oscillations and limit the response rate. The
proposed performance for a continuous-time and for a
discrete-time system are given as follows

Jc =

∞
∫

0

J(t)dt; Jd =

∞
∑

t=0

J(t) , (26)

J(t) = x(t)⊤Qx(t) + u(t)⊤Ru(t) + δx(t)⊤Sδx(t)

where Q,S ∈ Rn×n, R ∈ Rm×m are symmetric positive
definite (semidefinite) and definite matrices. The concept
of guaranteed cost control is used in a standard way:

Definition 2.1. Let there exist a feedback gain matrix
F and a constant J0(x0) such that

J ≤ J0(x0) (27)

holds for the closed loop system (24). Then the respective
control (23) is called the guaranteed cost control and the
value of J0(x0) is the guaranteed cost for the closed-loop
system with initial state x0 .

Let V (α) is Lyapunov function for uncertain closed-
loop system (24). From LQ theory, see [6] the following
lemma for robust stability of system (24) with guaranteed
cost holds.

Lemma 2.1. Control algorithm (23) is the guaranteed
cost control law for the closed loop system (24) if and
only if there exist V (α) > 0 and constant matrix F such
that the following inequality holds

B(α) = δV (α) + J(t) < 0 . (28)

Moreover, summarizing (integrating) (28) from initial
time t0 to t → ∞ , the following inequality is obtained

−V (t0, α) + J0 < 0 . (29)

Definition 2.1 with inequality (29) provides guaranteed
cost

J0 = V (t0, α)

for closed loop system (24) with control law (23).

The main aim of this part of paper is to show the pro-
cedure which we use to design robust PID-PSD controller
for laboratory works which stabilizes uncertain polytopic
system (20) with guaranteed cost and parameter depen-
dent Lyapunov function defined as

P (α) =
N
∑

i=1

aiPi where Pi = P⊤

i > 0 . (30)

Control algorithm for PID is considered as

u(t) = KP y(t) +KI

t
∫

0

y(t)dt+ Fdẏd(t) . (31)

The proportional and integral term can be included into
the state vector in the common way defining the aux-

iliary state z =
∫ t

0
y(t) , ie ż(t) = y(t) = Cx(t) and

ẏd = Cdẋ(t). The main result on robust PID control sta-
bilization is summarized in the next theorem.

Theorem 2.5. Consider a continuous uncertain linear
system (20), (21) with PID controller (31) and cost func-
tion (26). The following statements are equivalent:

– Closed loop system (24) is robustly -stable with PDLF
(30) and guaranteed cost with respect to cost function
(26):

J ≤ J0 = x⊤(0)P (α)x(0).

– There exist matrices P (α) > 0 defined by (30), and
H , G , F and Fd of the respective dimensions such
that
[

A⊤

CiH
⊤ +HACi +Q+ C⊤F⊤RFC

Pi −M⊤

diH +G⊤ACi −M⊤

diG−G⊤Mdi + S

]

< 0 .

(32)
ACi = (Ai + BiFC) denotes the i -th closed loop
system vertex, Mdi includes the derivative part of the
PID controller: Mdi = I −BiFdCd .

Note, that robust stability condition (32) is in LMI
form for stability analysis. For robust PID controller
design, where unknown controller parameter matrices
Kp,Ki, Fd are to be found, inequality (32) turns to bilin-
ear matrix inequality (BMI).

3 CASE STUDIES

In this part of paper, three laboratory works to de-
sign of robust controller are described. In the first case,
the Magnetic levitation model has been considered. The
problem is to design a robust PID controller which will
guarantee stability and a desired performance in terms
of phase margin over the whole operation range of the
plant. The magnetic levitation linearized model is given
as follows

G(s) =
y(s)

u(s)
=

km
as2 + bs− 1

.

The linear interval model of the magnetic levitation is
given as follows km ∈ 〈2.4, 6.8〉 , a ∈ 〈1.34, 4.025〉× 10−4 ,

b ∈ 〈1.7975, 5.3895〉×10−6 . Let the requirement of closed-
loop performance be given in terms of MT = 1.6, MS = 2
and a phase margin more than PFM = 72 degree. Using
the ETF (4) and the BODE approach the robust PID
controller transfer function has been obtained

R(s) =
.02748s2 + 1.278s+ 8.162

s
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Fig. 3. Bode diagram of open-loop system
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Fig. 6. Robust stability conditions

The Bode diagram of open-loop system for the worst
stability case of extremal transfer function is in Fig. 3.

Nyquist diagram with the circle defining the prohib-
ited area for the Nyquist plot is in Fig. 4. Closed loop step
response for the worst stability case is given in Fig. 5

The design procedure to design of robust PI controller
for Two Tank Proces (TTP) with artificial interaction is
illustrated as the second and third group of laboratory
exercises for 2 × 2 MIMO systems. The TTP has been
identified in 3 different working points (position of the
valves to flow of water reservoir, level of water). For the
first working point the following transfer function is ob-
tained

G1(s) =

[

0.0424s+.854
26.93s2+8.922s+1

0.25
10s+1

0.2
9s+1

0.0443s+0.9014
24.82s2+7.834s+1

]

Using in this paper described robust controller design
procedure for ESM, for settling time ts = 50s , phase
margin Ph = 70degree and additive type uncertainty the
following controllers for the first and second subsystems
are obtained:

1. subsystem P = 0.876, I = 0.1405, D = 0,

2. subsystem P = 0.8363, I = 0.1278, D = 0.

Eigenvalues of closed-loop system for the first working
point are Eig = {−0.1144± i0.1949; −0.1106± i0.1662;

−0.1096± i0.0198; −0.0698} Robust stability conditions
for additive type uncertainty (18) is given in the Fig. 6.

Consider above TTP system as a polytopic system
in time domain. Robust PI controller can be designed
using results of (32). Under the parameters Q = qI ,
q = 0.000001; R = rI , r = 1; S = sI , s = 0; ̺ =
8 (Pmax), two uncertainties and four vertices one obtain
the following PI controller

1. subsystem P = 1.6094; I = 0.1685,

2. subsystem P = 0.6661; I = 0.0723. Step responses
obtained from the real plant for the first and second
subsystem is shown in Figs. 7 and 8.

4 CONCLUSION

In this paper, a survey of robust control design pro-
cedure is given. As presented it is suitable also for the
courses given to students in the field of Cybernetics. For
SISO system, the course based on design of robust con-
troller for both of interval systems and unstructured un-
certainty using small gain theorem. For MIMO systems,
our attention to focuses on two directions using polytopic
systems with Edge theorem and Ljapunov function and
unstructured uncertainty with small gain theorem and
mainly recently developed equivalent subsystem method.
In the laboratory, every student obtains controller and
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Fig. 7. Real plant step response of subsystem 1
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Fig. 8. Real plant step response of subsystem 2

one real plant and a main goal of his exercises is to identify
the real plant, create two model uncertainty(polytopic
system and additive (multiplicative. . .) or inverse additive
(multiplicative . . .) uncertainty), design the robust decen-
tralized controller with defined performance and check
the obtained results at real plant.
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