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BLOCH IMPEDANCE ANALYSIS FOR A
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In this study, the dispersion relation and the frequency dependence of Bloch impedance in a left handed transmission line
(LH-TL) is carried out using the F-matrix formulation and Bloch-Floquet theorem. The artificial LH-TL formed by periodic
lumped elements is described and the F-matrix, dispersion relation and the Bloch impedance are formulated according to
this description. Numerical results for lossless and lossy LH-TL are presented and discussed.
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1 INTRODUCTION

A medium in which both the permittivity ε and the

permeability µ are simultaneously negative is called the
left handed (LH) medium and it was first investigated

by Veselago in 1968 [1]. The first experiment using LH
materials at microwave frequencies goes back to 2000 [2].
Since then, due to the progresses of the fabrication tech-

nologies, LH materials are used also in integrated compo-
nents, such as antennas, microwave filters and radomes,

etc. The topic continues to be of great interest and practi-
cal importance due to a variety of potential applications.

In this paper, the dispersion relation of LH-TL is re-
viewed by using the F-matrix (ABCD-matrix) formu-

lation. Then, the frequency dependence of the Bloch
impedance in a LH-TL is presented. In addition, numer-

ical investigation is considered for the application of the
theoretical formulation. Although LH materials have been

extensively analyzed in literature [3]-[5], in the author
knowledge there is no work which directly relates to the

Bloch impedance of LH-TL except [6] and [7]. These stud-
ies ([6] and [7]) investigate the frequency dependence and
high pass filter characteristic of Bloch impedance in a

LH-TL only for lossless cases.

The analysis is structured in two main steps; firstly the

concept of artificial LH-TL formed from composite peri-
odic structure is presented. Then, F-matrix parameters

for the unit cell of artificial LH-TL are derived. A gen-
eral dispersion relation is found by using F-matrix and

applying the Bloch-Floquet theorem; the dispersion re-
lation of LH-TL is also considered for both lossless and

lossy cases. Furthermore, the formulation of the frequency
dependence of the Bloch impedance is carried out. Nu-

merical results for both the lossless and lossy cases are
presented and discussed.

2 THEORETICAL ANALYSIS

It is well known that the properties of a periodic struc-
ture can be deduced from the properties of its unit cell.
The characteristic impedance of the periodic artificial line
is identical to the characteristic impedance of its unit cell,
while the dispersion relation of a periodic artificial line is
equivalent to the dispersion relation of its unit cell com-
pounded by the number of unit cells in the line [8]. Design
and implementation processes can be developed by find-
ing the general properties of TL and then apply them to
a LH-TL.

The artificial LH-TL considered here is a cascade
of a basic unit cell (UC) circuit formed by lumped-
elements that can be obtained by exchanging the in-
ductance/capacitance and inverting the series/parallel
arrangements in the equivalent circuit of the conven-
tional right-handed transmission line (RH-TL). The cor-
responding lumped equivalent circuit is shown in Fig. 1.

2.1 F-Matrix formulation and dispersion rela-

tion

When a unit cell circuit has a ladder-network topology,
the most convenient method of analysis is by F-matrix
(ABCD matrix). If we consider the infinite TL as being
composed of a cascade of identical two-port networks, we
can relate the voltages and currents on either side of n-th
unit cell using the F-matrix

[

Vn

In

]

=

[

A B
C D

] [

Vn+1

In+1

]

(1)

where A, B, C , and D are the matrix parameters for
cascade of a TL section of length du . The F-matrix of
the unit cell shown in Fig. 1 can be expressed as follows

[

Vn

In

]

=

[

A B
C D

] [

Vn+1

In+1

]

(2)
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Fig. 1. Equivalent circuit model of LH-TL: (a) – unit cell of LH-
TL, (b) – lumped elements of unit cell, (c) – a periodic artificial

LH-TL composed of cascading the identical unit cells

where Z = (Gu + jωCu)
−1 and Y = (Ru + jωLu)

−1 .
According to Floquet theorem, the current and voltage
waves that are propagating along the periodic structure
are modified after one period by a complex constant γdu

[F ] =

[

A B
C D

]

=

[

Y Z + 1 Z
Y 1

]

. (3)

That is, the voltage and current at the (n + 1)-th
terminals differ from the voltage and current at the n-
th terminal by a multiplicative factor. Substituting this
result back into (1) yields the following

[

Vn

In

]

=

[

A B
C D

] [

Vn+1

In+1

]

=

[

Vn+1 exp(γ du)
In+1 exp(γ du)

]

. (4)

After manipulating (4) a homogeneous matrix equa-
tion is obtained; for a non-trivial solution, the following
condition must hold

AD + exp(2γ du)− (A+D) exp(γ du)−BC = 0 . (5)

Since the network is reciprocal AD − BC = 1, and
the expression can be simplified leading to the dispersion
relation given by

1

2
[ZY ] =

1 +
1

2

[

(GuRu − ω2LuCu)− jω(LuGu +RuCu)

(GuRu − ω2LuCu)2 + ω2(LuGu +RuCu)2

]

. (6)

Since γ = α+jβ where α and β represent the attenu-
ation and propagation constants (both real) along LH-TL
we have

cosh(γ du) =

cosh(α du) cos(β du) + j sinh(α du) sin(β du) . (7)

For the case of α = 0 which corresponds to a lossless case
(Ru = Gu = 0) the dispersion relation yields

cos(βdu) = 1−
1

2

1

ω2LuCu

. (8)

The dispersion relation is the keystone of LH-TL in-
vestigated here. The physical properties of LH-TL such
as characteristic impedance, group and phase velocities,
group delay, etc can be straightforwardly derived from
the dispersion relation.

2.2 Bloch impedance

In this section, the frequency response of Bloch imped-
ance is determined by the model discussed above. It is im-
portant to point out that the voltage and current waves
defined in (3) are meaningful only when measured at the
terminals of the unit cells. These waves are sometimes
referred to as Bloch waves because of their similarity to
the elastic waves that propagate through periodic crystal
lattices [9]. The Bloch impedance defined as the charac-
teristic impedance of waves on the structure and so it is
given by

ZB = Z0

Vn+1

In+1

. (9)

From (4) we have

(A− exp(γ du))Vn+1 +B · In+1 = 0 . (10)

Therefore

Z̄B =
ZB

Z0

= −
B

A− eγd
= −

D − eγd

C
. (11)

After some algebraic manipulations the expression for
the Bloch impedance in terms of the transmission matrix
elements of the unit cell yields

Z̄±

B =
2B

(D −A)±

√

(A+D)
2
− 4

. (12)

The ± solutions correspond to the characteristic imped-
ance for positive and negative traveling waves, respec-
tively. For symmetrical networks these impedances are
the same except for the sign; the characteristic impedance
for a negatively traveling wave turns out to be negative
because we have defined current at the n-th unit cell as
always being in the positive direction. In general, for a
lossless structure [10],

Z̄−

B = −(Z̄+

B )∗. (13)

in the passband, since |A+D| < 2.
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Fig. 2. Frequency response of propagation constant for lossless case; (a) Propagation constant versus frequency; (b) Zoom of Figure 2(a)

Table 1. Design parameters for the artificial lossless LH-TL

N Cu(pF) Lu(nH) fC(GHz)

1 2.56 6.4 0.6217
4 10.24 25.6 0.1554
15 38.4 96 0.0414

Table 2. Design parameters for the artificial lossy LH-TL

N Ru(Ω) GuS) Cu(pF) Lu(nH)

1 0.1 0.01 2.56 6.4
4 0.4 0.04 10.24 25.6
15 1.5 0.15 38.4 96

It is well known that the Bloch impedance ZB rep-
resents the ratio of the voltage and current in the eigen-
modes, ZB = VB/IB . Hence, given that the power of the
eigenmodes can be defined as

PB =
1

2
Re {VBI

∗

B} =
1

2
Re {ZB} |IB|

2
. (14)

The sign of Re {ZB} is related to the direction of the
energy flow for the eigen-modes. On the other hand, the
real part of the propagation constant represents the phase
propagation; therefore, the LH frequency band can be
identified by the sign of Re {γ}Re {ZB} . In the frequency
band where Re {γ}Re {ZB} < 0 the direction of energy
flow and wave propagation are anti-parallel. That is the
eigenmodes are backward waves and the frequency bands
are LH bands [11].

3 NUMERICAL RESULTS

In this section, the theoretical formulation is applied
to numerically calculate the frequency responses of the
dispersion relation and the Bloch impedance for a loss-
less and lossy LH-TL. For the artificial lossless LH-TL
R = G = 0, L = 64 nHm, C = 25.6 pFm and d = 10 m

are used and unit cell component values are directly cal-
culated from

Ku =
K

du
= K

(

N

d

)

(15)

where K is the generic variable for {R, G, L, C} , N
is the number of unit cells and d is the length of ficti-
tious LH-TL [5]. Table 1 shows the design parameters for
artificial lossless LH-TL for different values of unit cells.

The artificial lossy LH-TL is considered with the same
parameters as the lossless structure except for R = 1Ωm,
G = 0.1 Sm. The design parameters for artificial lossy
LH-TL for different values of unit cells are shown in Ta-
ble 2.

Figure 2 shows the relationship between the propaga-
tion factor and frequency for the different values of N
for lossless case. The propagation factor decreases when
the frequency increases for all N . With increasing the
number of unit cells (N ), the cut-off frequency decreases,
which means that stop band region becomes narrower.
Furthermore, the variation in the group velocity decreases
when the number of the unit cells increases. For example
around the 0.8 GHz, the slope of the dispersion diagram
increase when N decreases; that is the group velocity and
the number of the unit cells N are inversely proportional.

Figure 3 shows the normalized Bloch impedance ver-
sus frequency for lossless case. The stop band region from
Fig. 3(a) is wider when the number of unit cells is smaller.

The real parts of the normalized Z
+

B and Z
−

B approach
the value of −50Ω and 50Ω, respectively, when the fre-
quency increases. Figure 3(c) shows that after the cut-off

frequency the imaginary part of the normalized Z
+

B and

Z
−

B assume the same value. Also they go to zero if N
increases. Furthermore (19) is satisfied in the passband
region for all N .

The propagation and attenuation constants as a func-
tion of frequency for lossy case are shown in Fig. 4. It is
seen that propagation constant is negative in this case.
The propagation and attenuation constants close to zero
when the number of unit cells and frequency increase.
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Fig. 4. Propagation and attenuation constants as a function of frequency for lossy case: (a) – propagation constant versus frequency, (b)
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The normalized Bloch impedance versus frequency for
the lossy case is illustrated in Fig. 5. Here the real part of

Z
+

B (Z
−

B ) is positive (negative) resulting in an opposite
behavior with respect to the lossless case. Finally, the

imaginary part of Z
+

B (Z
−

B ) is positive (negative) for
increasing values of N except for N = 1.

4 DISCUSSION AND CONCLUSION

The dispersion relation of LH-TL is carried out and
the frequency dependence of the Bloch impedance for a
LH-TL is analyzed by using the F-matrix (ABCD ma-
trix) formulation and Bloch-Floquet theorem. The dis-
persion relation and the frequency dependence of Bloch
impedance in a LH-TL is also calculated numerically to
show their behaviors for the LH-TL. Numerical results
for lossless and lossy cases are shown and compared. As
it is seen that from the numerical results, the propaga-
tion constant is positive for the lossless case whereas it is
negative for the lossy case for the given examples. Also

Z
+

B is negative and Z
−

B is positive for the lossless case
and vice versa for the lossy case. The physical properties,
the cut-off frequency and the stop band region of a LH-
TL can be achieved by using the results obtained in this
study. It can be easily observed that if the number of unit
cells decreases (increases), the cut-off frequency becomes

higher (lower) and the stop band region becomes wider

(narrower). It is known that the unit cell components

(Ru , Gu , Lu , and Cu ) are directly proportional with

the number of unit cells N . Also, the cut-off frequency

and the stop band region are inversely proportional with

the unit cell components. Thus, the cut-off frequency and

the stop band region are also inversely proportional with

the number of unit cells N . If it is desired to obtain lower

cut-off frequency and narrower stop band region, larger

values of the unit cell components are required due to the

larger number of unit cells to keep the characteristics of

the TL unchanged. In addition, the LH-TL and RH-TL

structures have high-pass and low-pass filter properties,

respectively. The Bloch impedance for the LH-TL shows

the high-pass characteristics which are meaningful in its

pass-band, as in the lossless case. On the other hand,

the RH-TL exhibits the low-pass characteristics whose

numerical results are skipped here. So that, these prop-

erties can be used in the periodic structures to obtain

more efficient LH structures and devices. Furthermore,

the results obtained here can be helpful to design new

type of filters using the LH-TL. These results also open a

way to think how the lossless and lossy LH materials will

change the functionality of a device with LH-TL. More-

over, this study provides some insight into the potential

applications of LH materials and LH-TL.
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