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DETECTION AND CLASSIFICATION OF POWER QUALITY
DISTURBANCE WAVEFORM USING MRA BASED MODIFIED

WAVELET TRANSFROM AND NEURAL NETWORKS

Perumal Chandrasekar — Vijayarajan Kamaraj
∗

In this paper, the modified wavelet based artificial neural network (ANN) is implemented and tested for power signal
disturbances. The power signal is decomposed by using modified wavelet transform and the classification is carried by using
ANN. Discrete modified wavelet transforms based signal decomposition technique is integrated with the back propagation
artificial neural network model is proposed. Varieties of power quality events including voltage sag, swell, momentary
interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the proposed
approach. The simulation is carried out by using MATLAB software. The simulation results show that the proposed scheme
offers superior detection and classification compared to the conventional approaches.
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1 INTRODUCTION

The quality of electric power has become an important
issue because, with the introduction and wide spread use
of sensitive electronic equipment, customers have become
much more aware and sensitive to transient and other
power anomalies. In order to improve the power quality,
the power disturbances should be monitored continuously
[3]. Power quality monitoring and analysis must be able
to detect and classify the disturbances on the electrical
system [2]. Nevertheless, whenever the disturbance lasts
for only for a few cycles, a simple observation of the
waveform in a bus bar may not be enough to allow one
to recognize that there is a problem or, more difficult
yet, to identify the sort of the problem. One of the most
important issues in power quality problems is how to
detect and classify disturbance waveforms automatically
in an efficient manner. Automatic disturbance recognition
can be carried out with the help of wavelet transform
[1]. On the other hand, the wavelet transform has been
adopted in different fields, such as telecommunications
and acoustics. In the last decade, the wavelet transform
(WT) has been studied to analyze voltages and currents
during short duration disturbances.

Wavelet analysis [1] is based on the decomposition of
a signal according to time- scale, rather than frequency,
using basis functions with adaptable scaling properties
which are known as multi-resolution analysis. A wavelet
transform expands a signal not in terms of a trigonomet-
ric polynomial but by wavelets, generated using transi-
tion (shift in time) and dilation (compression in time) of
a fixed wavelet function. The wavelet function is local-
ized in time and frequency yielding wavelet coefficients
at different scales. This gives the wavelet transform much
grater compact support for analysis of signals with local-
ized transient components arising in power quality dis-
turbances manifested in voltage, current, or frequency

deviations. Several types of wavelets have been consid-
ered [2][4] for detection, and localization of power qual-
ity problems as both time and frequency information are
available by multiresolution analysis. However, for classi-
fying low-frequency and high-frequency power quality dis-
turbances, a separate FFT routine and several neural net-
works are required along with the features extracted from
the wavelet multiresolution analysis [5] and this proce-
dure results in a high computational overhead. The mod-
ified wavelet transform (MWT), [6], is an extension to
the ideas of wavelet transform, and is based on a moving
and scalable localizing Gaussian window and has charac-
teristics superior to either of the transforms. The modi-
fied wavelet transform is fully convertible from the time
domain to two-dimensional (2-D) frequency translation
domain and to then familiar Fourier frequency domain.
The amplitude frequency-time spectrum and the phase-
frequency-time spectrum are both useful in defining lo-
cal spectral characteristics. The superior properties of the
modified wavelet transform are due to the fact that the
modulating sinusoids are fixed with respect to the time
axis while the localizing scalable Gaussian window dilates
and translates. As a result, the phase spectrum is abso-
lute in the sense that it is always referred to the origin of
the time axis, the fixed reference point.

The real and imaginary spectrum can be localized in-
dependently with a resolution in time, corresponding to
the basis function in question and the changes in the ab-
solute phase of a constituent frequency can be followed
along the time axis and useful information can be ex-
tracted. The phase correction of the wavelet transform
in the form of modified wavelet transform can provide
significant improvement in the detection and localiza-
tion of power quality disturbance transients. Using the
properties of MWT and the features of the decomposed
waveform, along with the AM algorithm, it is possible
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to extract important information from a disturbance sig-
nal and determine what type of disturbance has caused
a power quality problem to occur [7]. This methodology
permits on-line estimation of the system dynamic perfor-
mance and may also work as a power disturbance recorder
to detect, localize, and classify different disturbances by
type and to store only interesting disturbances.

In this paper MWT is employed to capture the time
of transient occurrence and extract frequency features of
power disturbances. These MWT coefficients when ap-
plied as inputs to the neural networks require large mem-
ory space and much learning time. Hence along with MRA
technique the statistical methods are used to extract the
disturbance features of the distorted signal at different
resolution levels. BAM is used to classify disturbance
type. The learning efficiency of BAM is very fast and
it is suitable for signal classification problems. Distorted
signals were generated by the power system block set in
MATLAB. The accuracy rate is improved using wavelets
along with statistical differentiation of the various power
signal disturbances.

2 MODIFIED WAVELET TRANSFORMATION

2.1 Mathematical formulation

The MWT is an extension to the ideas of WT, and
is based on a moving and scalable localizing Gaussian
window and has characteristics superior to either of the
transforms. The local spectral information of the WT,
with slight modification, can be used to perform local
cross spectral analysis with very good time resolution.
The phase correction absolutely references the phase of
the WT to the zero time point, thus assuring that the am-
plitude peaks are regions of stationary phase. The excel-
lent timefrequency resolution characteristic of the MWT
makes it an attractive candidate for analysis of power
system disturbance signals.

It is well known that information is contained in the
phase of the spectrum, as well as in the amplitude. In
order to utilize the information contained in the phase
of the Continuous Wavelet Transform (CWT), it is nec-
essary to modify the phase of the mother wavelet. The
CWT W (τ, d) of a function h(t) is defined as

W (τ, a) =

∫ ∞

−∞

h(t)ω(t− τ, a)dt (1)

where ω(t, a) is a scaled replica of the fundamental
mother wavelet; the dilation determines the width of the
wavelet and this controls the resolution. The MWT is
obtained by multiplying the CWT with a phase factor as

MW (τ, f) = exp(i2πfτ)W (τ, a) (2)

where the mother wavelet for this particular case is de-
fined as

ω(τ, f) =
|f |√
2π

exp
−t2f2

2
exp(−i2πft) . (3)

In equation (3) just shown, the dilation factor is the
inverse of the frequency. Thus, the final form of the con-
tinuous MWT is obtained as

MW (τ, f) =
∫ ∞

−∞

h(t)
|f |√
2π

exp
−(τ − t)2f2

2
exp(−i2πft)dt (4)

and the width of the Gaussian window σ(f) = T = 1
|f | .

Recently wavelet analysis was proposed in the litera-
ture as a new tool for monitoring power quality problems.
Wavelet transformation has ability to analysis different
power quality problems simultaneously in both time and
frequency domains.

The wavelet transform is useful in detecting and ex-
tracting disturbance features of various types of electric
power quality disturbances because it is sensitive to signal
irregularities but insensitive to the regular-like signal be-
havior. Wavelet analysis deals with expansion of functions
in terms of a set of basis functions, like Fourier analysis.
However, wavelet analysis expands functions not in terms
of trigonometric polynomials but in terms of wavelets,
which are generated in the form of translations and dila-
tions of a fixed function called the mother wavelet. Com-
pared with Fourier transform, wavelet can obtain both
time and frequency information of signal, while only fre-
quency information can be obtained by Fourier transform.

In Fourier analysis, a signal is the series of infinite
sine waves in which frequency is multiple of fundamental
one. While wavelet analysis, a signal is broken in to finite
approximations and details thorough wavelet function ϕ
and scaling function Φ will generate the approximated
version. The approximations contain low frequency, and
details contain high frequency. Analysis in forward direc-
tion with down sampling, we receive approximated pack-
ets, detailed packets, and wavelet coefficients. Then we
up sample and include with wavelet coefficients to recon-
struct the near original signal.

2.2 Discrete MWT

The power system disturbance signal h(t) can be ex-
pressed in a discrete form as h(kT ), k = 0, 1, 2, . . . , (N −
1) and T is the sampling interval.

The discrete Fourier transform of h(kT ) is obtained
as

H
[ n

NT

]

=
1

N

N−1
∑

k=0

h(kT ) exp
−i2πk

N
(5)

where n = 0, 1, . . . , N − 1.

Using equation (5), the MWT of discrete time series
h(kT ) is obtained by letting f → n/NT and τ → jT as

M(jT, 0) =
1

N

N−1
∑

m=0

h
( m

NT

)

(6)
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Fig. 1. BAM simplified diagram

Fig. 2. Sinusoidal signal without disturbance

and G(m,n) = exp 2π2m2α2

n2 , n 6= 0 where j,m =
0, 1, . . . , N − 1 and n = 1, 2, . . . , N − 1. For n = 0

M(jT, 0) =
1

N

N−1
∑

m=0

h
( m

NT

)

. (7)

Equation (7) gives the constant average of the time
series into zero frequency voice, so that the averaging of
the amplitude of the M -matrix over the time results in
Fourier spectrum. Amplitude and phase of the matrix are
obtained as
∣

∣M [jT, n/NT ]
∣

∣ and
{

IMAGE
(

M [jT, n/NT ]
)

/REAL
(

M [jT, n/NT ]
)

}

respectively.

It can be noted that the MWT improves the WT in
that it has a better resolution in phase space (i.e., a
more narrow time window for higher frequencies) giving a
fundamentally more sound time frequency representation.
The computation of the multiresolution MWT is very
efficient using convolution theorem and FFT. The total
number of operations for computing MWT is N (N +
N logN ). The frequency-time contours having the same
amplitude spectrum are obtained to detect, and classify
power disturbance events.

3 MEMORY ARCHITECTURE OF

BIDIRECTIONAL ASSOCIATIVE MEMORY

Associate Memory (AM) belongs to a class of neural
networks that train itself according to a certain recording
algorithm. They usually acquire prior information and
their connectivity (weight) matrices most often need to
be formed in advance. Bidirectional Associate Memory
(BAM) is a hetero associative, content addressable mem-
ory consisting of two layers. It uses the forward and back-
ward information flow to produce an associative search for
stored stimulus response association. The vector stored in
the memory associate with pairs {a, b} is given in equa-
tion (8)

{(

a(1), b(1)
)

,
(

a(2), b(2)
)

, . . . ,
(

a(p), b(p)
)}

. (8)

It is assumed that an initializing vector b is applied
at the input to the layer A of neurons then the neurons
are assumed to be bipolar binary. The input is processed
through the linear connection layer and then through the
bipolar threshold functions as follows.

a = ξ[Wb] (9)

where ξ[·] is a nonlinear operator. This pass consists of
matrix multiplication and a bipolar thresholding opera-
tion so that the ith output is

ai = sgn
(

m
∑

j=1

wijbj

)

, for i = 1, 2, . . . , n . (10)

Assume that the thresholding is synchronous and the
vector a now feeds the layer B of neurons. It is now pro-
cessed in layer B through similar matrix multiplication
and bipolar thresholding but the processing now uses the
transposed matrix W t of the layer B

b = ξ[W ta] (11)

or for the jth output

bj = sgn
(

n
∑

i=1

wijai

)

, for j = 1, 2, . . . ,m . (12)

From now on the sequence of retrieval repeated as in
equation (8) or (9) to compute a , then as in equation
(10) or (11) to compute b , etc. The process continues
until further updates of a and b stop. It can be seen
that in terms of recursive update mechanism, the retrieval
consists of the following steps.

First Forward Pass : a1 = ξ[Wb0]

First Backward Pass : a2 = ξ[W tat]

Second Forward Pass : a3 = ξ[Wb2]

k/2th Backward Pass : bk = ξ[W t, ak−1] .

Ideally, this back-and-forth flow of updated data
quickly equilibrates usually in one of the fixed pairs
(

a(i), b(i)
)

.
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Fig. 3. MWT contour graph for pure sine signal

Figure 1 shows the simplified diagram of the BAM
often encountered in the literature. Layers A and B op-
erate in an alternate fashion-first transferring the neurons
output signals toward the right by using matrix W , and
then toward the left by using matrix W t respectively.

4 SIMULATION & RESULTS

The multiresolution MWT output is a complex matrix,
the rows of which are the frequencies and the columns
are the time values. Each column thus represents the lo-
cal spectrum for that point in time. Also, frequency-time
contours having the same amplitude spectrum are ob-
tained to detect, and classify power disturbance events.
The various PQ disturbance signals considered for the
MWT analysis are voltage sag, swell, interruption and
oscillatory transients. To demonstrate the suitability of
the proposed method a classification experiment is con-
ducted IEEE 6 bus system. The disturbance is created
at different location and the disturbances are recorded.
The simulation is done in power system toolbox. To illus-
trate the use of multiresolution MWT for non-stationary
signal analysis, PQ disturbance is created in a pure sinu-
soidal voltage waveform with data window of eight cycles.
The time-frequency contours are shown in the following
section.

4.1 Sinusoidal signal without disturbances

The pure sine wave input signal is shown in Fig. 2 and
the corresponding contour of the MWT is shown in Fig. 3.
Since the input is pure sine wave there is no significant
change in the contour and also no disturbance has been
found.

4.2 Voltage swell

When the normal voltage signal increases by 10 to
90%, it is known as voltage swell which is shown in Fig. 4
for five cycle duration voltage swell in a pure sinusoidal
voltage waveform. Figure 5 shows the time-frequency plot
of the MWT contours. The pattern produces a swell in

the magnitude during the disturbance and this can be
directly used for classification. The time localization of

the disturbance can also be seen from these contours.

4.3 Voltage sag

The voltage sag waveform is shown in Fig. 6 in which

voltage drops about one cycle due to sudden load at
node 7. The MWT is employed to obtain the disturbance.

Figure 7 shows the time frequency plot of the MWT con-
tours for a 50% of sag in the voltage signal. From the
Fig. 7 it is found that the MWT contours show a magni-

tude reduction during the disturbance similar to voltage
sag clearly localizing and detecting the disturbance.

4.4 High frequency disturbance

This type of disturbance is also called oscillatory tran-
sients which are occurred due to arc fault. The time du-

ration for this type fault is less than sag or swell type
of disturbances. Figure 8 shows the disturbed signal due

to switching operation. The result of MWT is shown in
Fig. 9 which clearly indicates the occurrence of distur-
bance.

5 CLASSIFICATION OF

POWER QUALITY EVENTS

The energy coefficients are obtained at each level. The
relation between the number of decomposition level and

energy coefficients is shown in Fig. 10 for different test
signals. This energy curve magnifies the deviations of the

signal with disturbance from the corresponding pure si-
nusoidal one. By using energy curve the fault can be eas-
ily detected which is applicable for all type of faults in

power signals including high impedance transients. Fig-
ure 10 shows the energy coefficients of four signals on the

same coordinate axis orderly.

First, 45 examples (half of all training examples) and
then 90 training examples have been considered to train

the ANN model. The experimental results shows, with
45 training examples, the classified accuracy rate of the

distorted signals of the proposed approach is 83%. When
the training examples were 90, the classified accuracy rate
is 95%. These results show that as the number of training

example increase so does the accuracy rate. Because of the
BAM model requires little learning time, the proposed

approach is suitable for real time processing in a modern
digital recorder.

However, for classifying low and high frequency PQ

disturbances with noise, a separate FFT routine and sev-
eral neural networks are required along with the features

extracted from the wavelet analysis and this procedure
results in a high computational overhead. Hence, a mod-

ified approach is required to overcome these difficulties.



Journal of ELECTRICAL ENGINEERING 61, NO. 4, 2010 239

Fig. 4. Signal with swell Fig. 5. MWT contour graph for a swell

Fig. 6. Signal with sag Fig. 7. MWT contour graph for a sag signal

Fig. 8. Oscillatory disturbance signal Fig. 9. MWT contour graph for an oscillatory disturbance

In this section, an attempt has been made to classify
the three basic PQ signals (ie, voltage sag, swell, and mo-
mentary interruption). As the MWT provides us a Time-
Frequency Representation (TFR) of the signal with fre-
quency dependent resolution, the energy deviation of the
TFR curve is taken as a measure to classify the signals.
It is observed that during the test for different percent-
age of sag or swell, there is a proportionate decrease or
increase in the energy deviation. The percentage decrease
and increase energy deviation is given in Tables 1 and 2
respectively. It is observed that for a pure sinusoid, the
energy deviation curve is linear over the entire range (this
value is taken as a reference), where for the sags, the stan-
dard deviation falls below this reference value and rises

above the reference for the swells. The energy deviation
above this is a swell and the standard deviation below it
is sag. Further, it is to be noted that the FFT used in
the MWT calculation provides both the amplitude and
frequency components of the signal.

For classifying both steady-state and transient distur-
bances, energy deviation at two different Gaussian win-
dow widths (σ(f) = k/|f | , k = 1 and 3) are taken and
an amplitude factor is determined from the MWT ma-
trix. These features can be used in a rule base for BAM
to provide classification of the PQ events. The timefre-
quency plot of the MWT has a significant potential in
comparison to the multiresolution analysis and energy de-
viation techniques is used to classify the PQ disturbances.
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Fig. 10. Energy coefficients of different signals

Table 1. Percentage decrease in energy deviation for sag signal

§. No %of sag %decrease in energy deviation
1 10 12
2 20 22
3 30 37
4 40 48
5 50 60

Table 2. Percentage increase in energy deviation for swell signal

§. No %of swell % increase in energy deviation
1 10 15
2 20 26
3 30 40
4 40 55
5 50 67

Table 3. Classification test results of BAM using MWT method

Number of training examples 35 70
Number of testing examples 10 10
Learning time (sec) 0.01 0.02
Recall time 0.11 0.20
Accuracy rate 87% 95%

Several PQ problems have been analyzed and the MWT
provides an interesting and significant tool in detecting
and classifying the problem. These MWT coefficients are
used as input to the ANN which classify the disturbance.

6 CONCLUSION

This paper presents a new approach for detecting and
classifying the power system disturbance in transmission
lines using WP and MWT combined with BAM. In first
case WP is used to detect and classify the disturbances
which give better detection and classification for low fre-
quency disturbance.

Then, MWT is proposed for both low and high fre-
quency disturbances at different noise levels which pro-
vides better detection and classification than WP. The

proposed methods are powerful tool for detection and
classification of power PQ in all conditions and all types
of transmission lines. The proposed approach is relatively
simple, reliable and suitable for online applications.
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