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IM BASED SPEED SERVODRIVE
WITH LUENBERGER OBSERVER

Juraj Gacho — Milan Žalman
∗

The article concerns observing states of the Induction Motor (IM) using a Luenberger observer in the speed servo drive.

The movement of the motor and observer roots is analyzed for a variable speed. Following the analysis, a new method for
gain evaluation of the IM magnetic flux observer is presented. This structure is extended by including an adaptive speed
observer. The functionality of the presented method is proved in simulations using MATLAB Simulink.
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1 INTRODUCTION

Dynamic control of the IM belongs to the dominant
applications in the movement control area. In the field
of IM control there are two noticeable two trends. The
first one is the control with limited measurability of the
state variables (without measuring mechanical quantities
- Sensorless Control) mainly in speed drives, where the
main accent is put to the quality of the state variables
observing. The term sensorless means in this context that
sensors of mechanical quantities (position, speed, acceler-
ation, torque) are not used. But if a given control struc-
ture needs to have information about these quantities,
they are obtained from observers. Electrical quantities
like currents and voltages are measured in these systems.
The reason for using sensorless control is that it is not
necessary to mount further sensors of mechanical quan-
tities that would lead to higher costs. Furthermore the
mechanical sensor can be a next source of faults (mainly
in hostile environment). Using observers it is possible to
replace the older IM control types (scalar control) by su-
perior control types (for example vector control) only by
changing the control algorithm.

The second trend is the closed loop dynamic control
with focus on the speed and quality of the transient states
with a feedback also from mechanical quantities of the
IM (like position, speed). This approach is used mainly
in position systems.

In both approaches it can happen that for high-quality
control also state values are needed which are not easily
measurable in the particular structure and hence such
values have to be observed.

There are many methods to observe the angular speed
and also further quantities needed for IM control (for
example the magnetic flux) and also many methods to
observe system parameters.

These methods can be divided into a few groups. There
are estimators (open loop), which use the model of the
systems and also known parameters for the estimation.

Hence changes of the parameters have a strong influence

on the estimation precision. That is the reason why such

estimators are used only rarely. A few of such estimators

are mentioned in [1], [2].

Probably the largest group of the observers are based

on MRAS systems which use reference and adaptive mod-

els. Description and applications of the MRAS observers

can be found in [1], [2], [3], [4], [5], and many other works.

Applications using the extended Kalman filter (EKF)

are also often used for IM states observing. The extended

Kalman filter for observing angular speed and magnetic

flux can be found in [6], [7], [2]. The use of an extended

Luenberger observer for observing quantities of the AM

can be found in [8], [9], [10], [2]. This article concerns

the extended Luenberger observer for observing the IM

rotor magnetic flux in a speed servodrive structure with

an adaptive speed observer. In the article the calculation

is derived of the observer gains for an arbitrary position

of the observer poles and also a new method for observer

pole placement is introduced for observing the IM rotor

magnetic flux.

2 SPEED SENSORLESS DRIVE STRUCTURE

The base of the servodrive will be a squirrel cage IM.

The IM model in the stator coordinate system with state

variables îs, ψ̂r will be used. This model can be de-

scribed as

dx

dt
= Ax +Bu

y = Cx

(1)

where respective matrices are
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Fig. 1. Speed servodrive structure with state variable observing: SU - Starting unit (for smooth required angular speed slope, CC1, CC2

- PS current controllers, MFC - PS magnetic flux controller, SC - speed controller
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where

R1 = Rs +Rr
L2
m

L2
r

, T1 =
L′
s

R1
, Tr =

Lr
Rr

, kr =
Lm
Lr
(3)

σ = 1− L2
m

LsLr
, L′

s = σLs (4,5)

In Tab.1 the symbols used in the IM model are de-
scribed.

Table 1. Symbols used in the IM model

us — Stator voltage
is — Stator current
Ψs — Stator magnetic flux
Rs — Stator resistance
Ls — Stator inductance
ur — Rotor voltage
ir — Rotor current
Ψr — Rotor magnetic flux
Rr — Rotor resistance
Lr — Rotor inductance
Lm — Magnetizing inductance
ω — lectrical angular speed
ωs — Synchronous electrical angular speed
ωm — Mechanical angular speed
ϑ — Electrical rotor angle
p′ — Number of the pole pairs

σ — Leakage factor

Used control structure for the speed servodrive with
IM is presented in Fig. 1.

This article concerns mainly the IM observer block.

3 LUENBERGER OBSERVER

The Luenberger observer (LO) belongs to the group of
closed loop observers. It is a deterministic type of observer
because it is based on a deterministic model of the system.
The basic LO is suitable only for linear time invariant
system. This can be expressed as

dx̃

dt
= Ax̃ +Bu+K (y −Cx̃) (6)

where x̃ is the vector of the observed state quantities and
K is the observer gain matrix.

If the IM model is expressed in the stator coordinate
system and if the elements of the stator current and rotor
magnetic flux are chosen as state variables (equations (1),
(2)), then we can talk about a time variant model because
the parameters of the model can vary in time (due to
changes of the angular speed). Since the basic LO is not
suitable for the described type of system it is inevitable
to use extended Luenberger observer (ELO). The ELO
(unlike the basic LO) can be used also for nonlinear and
time variant systems.

The ELO design consists of two steps - appropriate
selection of the observer poles and then calculation of the
observer gain matrix K .

For observing the elements of the rotor magnetic flux
vector via ELO algorithm an IM model will be used ex-
pressed by equations (1).

Then the observer matrix can be written as

A0 = A−KC =


(
− 1
T1

− k1

) (
kr
TrL′

s
− j krωL′

s

)
(
Lm

Tr
− k2

) (
− 1
Tr

+ jω
)

 (7)
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Fig. 2. Motor and observer pole placement

A special case of this type of the observer is the case when

coefficients k1 and k2 will be chosen to be zero and then

the observer matrix will be equal to the system matrix.

This approach was used in [11]. But the quality of such

an observer is not very good because there is no feedback

from the model and system outputs difference ((6), (25)).

Hence it is necessary to pay attention to the mentioned

coefficients design.

For calculation of the k1 and k2 coefficients the ob-
server matrix can be written as

A0 = A−KC =

[
(a1 − k1) a2
(a3 − k2) a4

]
(8)

Observer poles placement as pLO = αejφpIM with
constant turn angle

One of the often used possibilities how to place the
observer poles is that the poles will be (in comparison
with the motor poles) multiplied by factor and moreover
turned by a fixed angle closer to the negative part of the
real axis. The observer poles can be then expressed as

pLO = αejφpIM (9)

Experiments with such chosen observer poles can be
found in [8].

For calculating the gain matrix coefficients k1 and k2
next equations can be used

g = |g| ejφ = |g| (cosφ+ j sinφ) = gr + jgi (10)

Fig. 3. Motor and observer poles for motor speed from interval
-300 to 300 rad/s in continuous-time space

Fig. 4. Motor and observer poles angle for motor speed from in-
terval -300 to 300 rad/s

Fig. 5. Detail of the motor and observer poles angle for motor
speed from interval -30 to 30 rad/s with step 1 rad/s

Fig. 6. Motor and observer poles position for motor speed from
interval -300 to 300 rad/s in discrete-time space
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If the original motor poles would be

pIM = |pIM | ejξ (11)

the observer poles can be written as

pLO = gpIM = |g| ejφ |pIM | ejξ = |g| |pIM | ej(ξ+φ) (12)

That means it is possible to move the observer poles more
to the left side and turn them by a requested angle which
can improve the system behavior. In this case coefficients
k1 and k2 can be written as

k1 = (g − 1)

(
1

T1
+

1

Tr
− jω

)
k2 = (g2 − 1)

(
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s

krT1
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)
− L′

s
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(13)

or in components form
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Tr

)
+ giω
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Tr
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Tr

− L′
s
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k11

k22 = 2grgi

(
L′
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krT1
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Tr

)
− L′

s

kr
k12

(14)

It is necessary to mention that the changing sign of
the turn angle is needed when the sign (direction) of the
angular speed changes. (It will be expressed in the change
of the gi parameter sign in equations (14)).

In Figs. 3 to 6 one can see that the observer poles,
in comparison with motor poles, become quicker and the
imaginary part of the dominant pole is relatively lower in
comparison with the dominant motor pole, hence it be-
comes more stable. One can also see that in the very low
speed areas, when the imaginary part of the motor poles
is very small, the imaginary part of the observer becomes
higher (in comparison with the motor poles) and further-
more when the speed crosses the zero line, the imaginary
part of the observer poles changes discontinuously. This
can have a negative influence at very low speeds mainly
in the case of lower parameters precisions or higher noise
in the measurements. In the figures one can see also a
strange position of the quicker observer pole (in compar-
ison with the equivalent motor pole). This is because the
angle of the quicker motor pole is lower than the angle by
which the observer poles are turned.

Observer poles placement as pLO = αejφpIM with
flexible turn angle

In the figures in the previous part it can be seen that if
the observer poles are turned by a fixed angle with respect
to the motor poles, undesired effects appear in the zero
speed areas which can have a negative influence upon the

observing. So the question is how to design the observer
poles to ensure that a small change of the angular speed
will not evocate a discontinuous change of the observer
poles angle. Furthermore, the observer poles should be
quicker than the motor poles and also should be relatively
closer to the negative real axis also in the states with a
very low speed.

If po1 and po2 are observer poles then the observer
characteristic equation will be

(s− po1) (s− po2) =

= s2 − (po1 + po2) s+ po1po2 = 0
(15)

If characteristic equation expressed form the observer
matrix (8) is compared with the characteristic equation
(15) then the equations for calculating k1 and k2 param-
eters can be derived

k1 = a1 + a4 − (po1 + po2)

k2 =
po1po2 + a2a3 − a4 (a1 − k1)

a2

(16)

and after substitution

k1 = −
(

1

T1
+

1

Tr
+ po1 + po2 − jω

)

k2 =
po1po2

kr
TrL′

s
− j krωL′

s

+
Lm
Tr

− L′
s

kr

(
1

T1
+ k1

)
(17)

Using equations (17) the observer gains can be calculated
for freely-chosen two observer poles, the next two observer
poles will be complex conjugats to them.

If the observer poles are designed as -multiplication of
the motor poles, we can get observer poles which are quick
enough. If the observer poles are turned then by a defined
angle, we can get also a better dumping of the system.
But this angle can not be fixed, it should depend on the
angular speed - or in other words - should depend on the
motor poles. The aim will be to turn the observer poles
closer to the negative part of the real axis but the poles
should not get behind the axis even at a very small speed.
So the observer poles should stay in the same quadrant
as the motor poles. When the motor poles are

pIM = |pIM | ejξ (18)

then for the observer poles ne can write

pLO = pIMαe
jφ (19)

where angle φ will be calculated as

φ = λ ∗ nrm(π − ξ) (20)
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Fig. 7. Motor and observer poles for motor speed from interval
-300 to 300 rad/s in continuous-time space

Fig. 8. Motor and observer poles angle for motor speed from in-
terval -300 to 300 rad/s

Fig. 9. Detail of the motor and observer poles angle for motor
speed from interval -30 to 30 rad/s with step 1 rad/s

Fig. 10. Motor and observer poles position for motor speed from
interval -300 to 300 rad/s in discrete-time space

Function nrm() recalculates the angle to be from the

range (−π , π⟩ and λ is a real number from the range

⟨0, 1⟩ which defines how much will be the observer poles

turned to the negative part of the real axis. For λ = 0 the

observer poles will not be turned anyhow (in comparison

to the motor poles), for λ = 1 the observer poles will

be turned by an angle which ensures that the observer

poles will be on the real axis. This approach could be

described using figure Fig. 2 but the angle φ will depend

on the equivalent motor pole.

Figures 7 to 10 show the motor and the observer poles

position during a change of the angular speed when the

described method was applied.

The angular speed changes from te range -300 to 300

rad/s (step 10 rad/s is marked by dots in the figures). In

the figures only two poles are shown, the other two poles

are complex conjugats to them. Angle γ in figure Fig. 8

is expressed as the angle from the negative part of the

real axis.

The observer was designed for α = 2, λ = 0.75

In Fig. 7 to Fig. 10 can be seen that observer poles

position is as expected. The position poles are moving

continuously also in states with very low speed.

Adaptive speed observer

There are more possibilities how to observe the angular
speed in a servodrive with a Luenberger observer (used for
observing the rotor magnetic flux). The first possibility is
to extend the observer state variable vector by including
the angular speed. But with this modification the ELO
would become more complex and hence also calculation of
the observer gain matrix K becomes more complex and
also more time consuming. It is the reason why other
methods are used for observing the angular speed in such
cases. One of the most used structure is a structure based
on a MRAS system shown in Fig. 11.

This structure was used as a speed observer in [13].
In [14], a part for observing the stator resistance Rs was
integrated into this structure and used in combination
with a Kalman filter (which was used as a magnetic flux
observer).

In [9], [10], [12] this structure was used with a motor
model in the rotor coordinate system which led to the
needs of converting the measured values into this coordi-
nate system.

In [12] the mentioned adaptive system was expanded
for observing the stator resistance Rs . The mentioned
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Fig. 11. Block diagram of the MRAS-based speed observer

articles use an adaptation algorithm derived using the
Ljapunov stability theory.

As a candidate to the Ljapunov function the following
fomula was chosen

V = eT e+ (ω̃r − ωr)
2/λ (21)

where e = x− x̃ and λ is positive constant.

After differentiation and a few steps this equation was
obtained for angular speed observing

ω̃r = KIω

∫ (
eisαψ̃rβ − eisβψ̃rα

)
dt (22)

To have better dynamic characteristics it is advisable to
add also a proportional part to the equation

ω̃r =KPω

(
eisαψ̃rβ − eisβψ̃rα

)
+

+KIω

∫ (
eisαψ̃rβ − eisβψ̃rα

)
dt

(23)

The equation is represented in the stator coordinate sys-
tem (as it was used in [13] and [14]). In those articles
where the same equation was used in combination with
a model in the rotor coordinate system, the quantities
have to be converted to the rotor coordinate system. It
is needed to mention that after differentiation of the V
function there appeared also items eψrα, eψrβ which were
neglected.

On the other hand for the motor model in the rotor
coordinate system it is needed to convert the measured
quantities to the rotor coordinate system and hence it is
needed to know the angle of the rotor turn. There are
coefficients KPω, KIω in the presented equations. These
coefficients are positive numbers. With a proper selection
of these coefficients speed and quality of angular speed
observing can be tuned.

For parameters these values were chosen

KPω = 0.3
KIω = 3×104 s−1

(24)

4 SIMULATION EXPERIMENTS

Since the IM control and also observing is realized in
a discrete-time area it is needed to convert the observer
to the discrete shape. For the Luenberger observer in
discrete-time it can be written

x̃(k + 1) = Ãdx̃(k) +Bdu(k)+

+Kd(y(k)−Cdx̃(k)) =

= AOdx̃(k) +Bdu(k) +Kdy(k)

ỹ(k) = Cdx̃(k)

(25)

For the motor model matrixes (defined by (2)) in discrete-
time domain it can be written (first order approximation
was used)

Ad =

 1− T
T1

T
(

kr
TrL′

s
− j krωL′

s

)
TLm

Tr
1 + T

(
− 1
Tr

+ jω
)


Bd =

[
T
L′

s

0

]
; Cd = [ 1 0 ]

(26)

and
Kd = KT (27)

where T is the sample time period.
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Fig. 12. Observed and real (from IM-model) magnetic flux magni-
tude

Fig. 13. Detail of the observed and real (from IM-model) magnetic
flux magnitude

Fig. 14. Observed and real (from IM-model) speed

0.0

0.8

-0.8

-0.4

0.4

Im

-0.8 -0.4 0.0 0.4 0.8

Re

Fig. 15. Rotor magnetic flux vector

IM model parameters

Pn = 1.1 kW
n = 2840 min−1

p′ = 1
cosφ = 0.86
η = 0.71
Un = 380/220 V
In = 2.6/4.5 A
Mn = 3.7 Nm
J = 0.002 kgm
Rs = 7.6 Ω
Rr = 3.7 Ω
Ls = 0.6015 H
Lr = 0.6015 H
Lm = 0.5796 H

The requested value of the magnetic flux modulus was
set to 0.7 Wb (which is the nominal value). The steps of
the load torque were ±3.7 Nm which is a value equal to
the nominal torque of the used motor.

White noise with an amplitude of about 5% of the
nominal current was added to the components of the

stator current. The sample time period was T = 0.1 ms.
Simulations were performed for the system controlled in
the Direct Vector Control structure.

The following simulations were made with the de-
scribed observer with α = 2, λ = 0.75.

t (s)
0 4 62 8

0.00

0.08

-0.08

-0.02

0.04

DJY (rad)

Fig. 16. Difference of the observed and real (from IM-model) rotor
magnetic flux angle
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5 DISCUSSION AND CONCLUSIONS

The article concerns with the application of the ex-
tended Luenberger observer for observing the rotor mag-
netic flux of the induction motor. This observer was ap-
plied to an IM model in a complex form. For the observer
with parameters α = 2, φ = 30◦ (modulus of the ob-
server poles was twice greaterthan the modulus of the
motor poles, and the observer poles were turned by 30
degrees from the motor poles) the position of poles was
analyzed during the speed change. There was seen some
strange behaviour of the observer poles in the states,
when the angular speed is very low (increasing imagi-
nary part of the observer poles and discontinuous change
of the observer poles, when the speed changed its direc-
tion). Then a new method was proposed for designing the
observer poles position which suppressed the mentioned
strange behaviour. For simulation purposes the parame-
ters of the new method were chosen as α = 2, λ = 0.75
where α is a parameter (similar to the previous case)
ratio of the observer and motor poles modulus and λ
expresses the relative change of the observer and motor
poles phase (for the phase of the observer poles will be
the same as the phase of the motor poles, for the observer
poles will be turned by an angle which ensures that the
observer poles will be on the real axis). This method en-
sures that the phases of the observer poles will be always
between the motor poles phases and the negative part
of the real axis. Furthermore, the observer poles position
will be changed continuously also when the angular speed
changes its direction.

Simulation experiments were made in a structure of
direct vector control with the described magnetic flux
observer and adaptive speed observer. The simulation
experiments show that the proposed observer can be used
in speed servodrives with IM also in low speed areas.
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