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HYBRID FEATURE SELECTION FOR MYOELECTRIC
SIGNAL CLASSIFICATION USING MICA

Ganesh R. Naik — Dinesh K. Kumar
∗

This paper presents a novel method to enhance the performance of Independent Component Analysis (ICA) of myoelectric
signal by decomposing the signal into components originating from different muscles. First, we use Multi run ICA (MICA)
algorithm to separate the muscle activities. Pattern classification of the separated signal is performed in the second step
with a back propagation neural network. The focus of this work is to establish a simple, yet robust system that can be used
to identify subtle complex hand actions and gestures for control of prosthesis and other computer assisted devices. Testing
was conducted using several single shot experiments conducted with five subjects. The results indicate that the system is
able to classify four different wrist actions with near 100% accuracy.

K e y w o r d s: blind source separation (BSS), independent component analysis (ICA), surface electromyogram (sEMG),
myoelectric signal (MES), source separation, human computer interface (HCI)

1 INTRODUCTION

Hand actions and maintained gestures are a result of
complex combination of contraction of multiple muscles
in the forearm. Myoelectric signal (MES) is the electri-
cal recording of the muscle activity from the surface. It
is closely related to the strength of muscle contraction
and an obvious choice for control of the prosthesis and
similar applications. MES is the electrical manifestation
of muscular contraction. MES classification is one of the
most difficult pattern recognition problems because there
usually exist large variations in surface Electromyogram
(sEMG) features. The sEMG signal has been used as a
tool to provide advanced man-machine interfaces [1], re-
habilitation of the handicapped people, functional electri-
cal stimulation devices (FES) [2] and control commands
for limb prostheses [3]. The classification problem may be
divided into three steps:

(i) signal presentation,

(ii) feature extraction and

(iii) pattern recognition.

It is shown in this paper that classification perfor-
mance of wrist movements depends upon method of clas-
sification and the choice of ICA algorithm. Many re-
searches proposed several method of classification that
showed good performance [4, 5, 6].

Many attempts have been made to use sEMG signal
as the command to control the prosthesis [7, 8], but none
of them takes explicit advantage of its subtlety, the fact
that commands can be issued without the generation of
strong contraction and observable movements. Since all
these muscles present in the forearm are close to each
other, myo-electric activity observed from any muscle site
comprises the activity from the neighbouring muscle as
well, referred to as cross-talk. The cross-talk problem is
more significant when the muscle activation is relatively

weak (subtle) because the comparable signal strength is
very low. Extraction of the useful information from such
kind of sEMG becomes difficult mainly due to the low
signal to noise ratio. At low level of contraction, EMG
activity is hardly discernible from the background activ-
ity. To identify the small movements and gesture of the
hand, there is need for identifying components of sEMG
originating from the different muscles. There is little or no
prior information of the muscle activity, and the signals
have temporal and spectral overlap, making the problem
suitable for blind source separation (BSS).

There are number of BSS techniques such as Inde-
pendent component analysis (ICA) has found numer-
ous applications in audio and biosignal processing dis-
ciplines. Research that isolates motor unit action poten-
tial (MUAP) originating from different muscles and mo-
tor units has been reported in 2004 [9]. Recently surface
EMG with ICA has been proposed for the hand gesture
identification [10]. Muscle activity originating from dif-
ferent muscles can be considered to be independent, and
this gives an argument to use BSS methods for separation
of muscle activity originating from the different muscles.
The spatial location of the active muscle activity is the
determining factor of the hand action and gesture. One
technique that has been reported is the use of prior knowl-
edge of the anatomy. The advantage of this approach is
that the model based BSS removes ambiguity of the order
and magnitude.

In the previous research ICA had been used for hand
gesture identification using constant mixing matrix where
the overall accuracy was reported 100% [10], but the
number of hand gesture identification was restricted to
three. This paper reports improving the identification of
various hand gesture using multi run ICA (MICA) of
sEMG. ICA algorithm was performed several times; at
each instance mixing matrix was computed. Best mixing
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matrix was chosen based on the highest Signal to inter-
ference Ratio (SIR) of global matrix. The processing in
this new input system consists of three major stages: At
first, hand gestures are sensed from non-invasive surface
electromyograms, and in the second step the activities of
the involved individual muscles are decomposed by semi-
blind ICA. In the last step, the particular hand action is
identified with an artificial neural network (ANN)

2 HAND GESTURE

IDENTIFICATION FOR HCI

Human hand gestures are means of non-verbal inter-
action among people. They range from simple actions of
pointing at objects to the more complex ones that express
our feelings and communicate with others. The main ap-
plications of gesture recognition are communicative and
manipulative. Some of the examples of applications in-
clude:

• Control of consumer electronics

• Interaction with visualization systems

• Control of mechanical systems

• Computer games

• Prosthetic control

• Rehabilitation for elderly and disabled

Numerous approaches have been applied to the prob-
lem of visual interpretation of gestures for Human Com-
puter Interface (HCI). These include the use of visual [11],
mechanical sensor [12] and sEMG based. Many of those
approaches have been chosen and implemented to focus
on a particular aspect of gestures: Hand tracking, pose
classification, or hand posture interpretations [13, 14].

The use of mechanical sensors is the simplest to im-
plement and devices such as sensor glove has been widely
used [15]. However such a system is not suitable to pro-
vide the user a natural interaction. Vision based tech-
niques have the limitation that these require restricted
backgrounds and camera positions and are only suitable
for a small set of gestures performed with only one hand
[15]. Surface EMG based system is very attractive be-
cause it is non-invasive, economical, and provides the nat-
ural seamless connectivity to the user. The shortcomings
in sEMG based systems have been the lack of reliability
for small and subtle actions. This paper reports research
conducted to identify maintained hand gesture based on
the muscle activity by the decomposition of sEMG. It
is a combining model based approach with blind source
separation technique.

3 SURFACE ELECTROMYOGRAPHY AND ICA

Surface EMG is the electrical recording of the spatial
and temporal integration of the MUAP originating from
different motor units. The main purpose for the interest
electromyography (EMG) signal is clinical application. It
is usually used clinically for the diagnosis of neurological
and neuromuscular problems. EMG is also used in many

types of research laboratories, including those involved in
biomechanics, motor control, neuromuscular physiology,
movement disorders, postural control, and physical ther-
apy. EMG is controlled by nervous system and depends
on anatomical and psychological properties of muscles.
It is an electrical signal acquired from different organs.
EMG is usually a function of time, described in terms of
amplitude, frequency and phase [16].

Electromyography (EMG) signals classification and
processing can be used for varieties of clinical/biomedical
applications, spectral pattern classification of intensity-
based analysis, and modern human computer interaction.
EMG signals acquired from muscles require advanced
methods for detection, decomposition, processing, and
classification. One property of sEMG is that the electrical
activity of one muscle can generally be considered to be
independent of other bioelectric signals such as electro-
cardiogram (ECG), electro-oculargram (EOG), and sig-
nals from neighbouring muscles. This opens an opportu-
nity for using BSS methods for this application

Fig. 1. MICA block diagram

3.1 ICA model

ICA is one of the widely used BSS technique, con-
sists in recovering unobserved signals or ‘sources’ from
several observed mixtures. Typically the observations are
obtained at the output of a set of sensors, each sensor
receiving the different combination of source signals. The
simplest BSS technique aims at transforming an input
vector into a signal space in which the signals are statis-
tically independent [17].

The simplest ICA model assumes that the mixing pro-
cess as linear, so it can be expressed as

x(t) = As(t) (1)

where x(t) = [x1(t), . . . , xn(t)]
⊤ are the recordings,

s(t) = [s1(t), . . . , sn(t)] the original signals, and A is
the n×n mixing matrix. This mixing matrix and each of
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the original signals are unknown. To separate the record-
ings to the original signals (estimated original signals)
the task is to estimate an un-mixing matrix W so that

s = Wx(t) = WAs(t) . (2)

BSS is a difficult task because we do not have any infor-
mation about the sources and the mixing process. BSS
is a method to tackle this problem and is based on the
assumption that the sources are independent from each
other [17, 18]. BSS iteratively determines the un-mixing
matrix W and thus estimates the corresponding indepen-
dent signals u from the observations x . There are num-
ber of possible cost-functions that may be considered for
making the separated signals as independent as possible.
The fundamental of these is based on the statistical in-
dependence of the sources s .

3.1.1 Multi run ICA

One of the most effective ways of modeling vector data
for unsupervised pattern classification or coding is to as-
sume that the observations are the result of picking ran-
domly out of a fixed set of different distributions. ICA is
an iterative BSS technique. At each instance original sig-
nals are estimated from the mixed data. The estimation
quality depends mainly on the mixing matrix A .

Multi run ICA (MICA) is the process where the ICA
algorithm will be computed many times; at each instance
different mixing matrices will be obtained.A1, A2, . . . , An.

Since it is an iterative technique repeat analysis yields
similarity matrices at some stage. Hence mixing matrices
A1 , A2 will repeat after certain iterations. The MICA
process is shown in the Fig. 1.

MICA results in several matrices. To estimate the
sources from the mixed data ICA requires just one mixing
matrix, hence the best matrix has to be selected among
the set of these mixing matrices, in order to yield better
results. There are several methods to compute the qual-
ity of the mixing matrices. But signal to interference ratio
(SIR) is a popular tool to perform this task [19].

This paper uses this unique technique to compute the
mixing matrix from the sEMG signals. The paper also
reports the improvement of hand gesture recognition per-
formance.

4 METHODOLOGY

Experiments were conducted to evaluate the perfor-
mance of the proposed hand gesture recognition system
from hand muscle surface EMG.We have proposed a tech-
nique to classify small level of muscle activity to iden-
tify hand gesture using a combination of multi run Blind
source separation (BSS), known muscle anatomy and neu-
ral network configured for the individual.

4.1 Data Acquisition

Four types of wrist movements to be classified are
selected (Refer Fig. 2):

• Wrist flexion (G1)

• Wrist flexion towards little finger (G2)

• Wrist flexion towards thumb (G3) and

• Wrist and finger flexion together (G4).

The placement of EMG surface electrodes on mus-
cle groups is important to have more information about
each wrist movement. Four EMG surface electrodes are
placed on four muscle groups, Brachioradialis (chan-
nel 1), Flexor Carpi radialis (channel 2), Flexor Carpi
Ulnaris (channel 3) and extensor digitorum (channel 4),
the locations of electrodes on one of the subject’s arm is
given in Fig. 3, from the input feature space, the classifier
must be able to classify the four output classes exploiting
the EMG signals measurements.

Fig. 2. Four wrist actions performed during the experiment

Each channel has a pair of electrodes mounted together
with a fixed inter-electrode distance of 10mm and a gain
of 1000. For each channel the signal was acquired using
pair of electrodes with a fixed inter-electrode distance of
10mm and a gain of 1000. The signal was sampled at
a rate of 1024 samples/sec using Delsys eight channel
sEMG acquisition system (Boston, MA, USA).

The subjects were asked to produce 4 different wrist
actions. The experiments were repeated on two different
days. The forearm was resting on the table with elbow at
an angle of approximately 90 degree and in a comfortable
position. Four wrist and finger flexions were performed
and each was repeated for a total of 24 times for each
action over the two sessions. These wrist actions were
selected for the experiment because these required four
multiple muscles to be contracting at the same time and
thus could test the ability of the system and this ensured
that the estimated unmixing matrix was square for ICA
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Fig. 3. Wrist action experimental set up with four electrodes

Table 1. SIR values for multi run ICA

Multi run ICA trials SIR values

1 18.7348
2 12.8453
3 10.3121
4 22.7227
5 25.4145
6 28.3418
7 43.2347
8 24.4565
9 31.9706
10 29.8656

analysis. Markers were used to obtain the isometric con-
traction signals during recording. A suitable resting time
was given between each experiment. There was no exter-
nal load. These hand actions and gestures represented low
level of muscle activity.

4.2 Data analysis

The aim of these experiments was to test the use of
BSS algorithm [9] along with known properties of the
muscles for separating muscle activity from sEMG record-
ings for the purpose of identifying subtle hand gestures.
BSS methods are suitable when the numbers of recordings
are same as or greater than the number of sources. Each
experiment lasted approximately 2.5 seconds and was re-
peated 12 times. The sampling rate was 1024 samples per
second. There were four channel (recordings) electrodes
and four active muscles associated with the hand gesture,
forming a square 4×4 mixing matrix. Mixing matrix was
computed for the first set of data only and kept constant
throughout the experiment. The mixing matrix A was
computed based on the multi run ICA. ICA algorithm
was computed many times, at each instance SIR of mix-
ing matrices were computed. Among them the best mix-

ing matrix was chosen. The SIR computation process is
explained next.

4.2.1 SIR computation

SIR for the mixing matrix A , performance index could
be used for full-rank or non-full rank analysis. In view of
the problem of one component estimation, we have

yi = w⊤

i X =
(

w⊤

i A
)

S = giS = gijsj (3)

where yi and sj are the estimated component and

the j -th source, respectively; w⊤

i is a row vector of
un-mixing matrix W , gi is a normalized row vector
[ 0 0 gij 0 0 ]. Because yi is the estimation of sj ,
the ideal normalized vector gi is the unit vector uj =
[ 0 0 . . . 1 . . . 0 ] . Therefore, one analysis is successful
if and only if its vector gi is similar to one unit vector
uj .

Actually, vector gI is one row of matrix G . So, the
quality of each estimated component just depends on one
row of matrix G . The more different each row of G is to
each corresponding unit vector of RNxN , the less quality
of output we have. The SIR of each mixing matrix was
computed using the following expression which evaluates
the success of one component separation [19].

SIR g = −10 log 10
(

‖gi − uj‖
2

2

)

. (4)

The SIR values for the MICA algorithm for hand gesture
experiments are shown in Table 1.

4.3 RMS feature extraction

The best mixing matrix was selected based on the
highest SIR of mixing matrix. The selected mixing ma-
trix was kept constant throughout the experiment. The
independent sources of motor unit action potentials that
mix to make the EMG recordings were estimated using
the following equation.

s = Wx (5)

where, W is the inverse of the mixing matrix A. This
process was repeated for each of the four hand gesture
experiments. Four sources were estimated for each exper-
iment. After separating the four sources sa, sb , sc and
sd , each of these was segmented to 2500 samples length.
Root Mean Squares (RMS) was computed for each of the
separated sources using the following relation.

Srms =

√

√

√

√

1

N

n
∑

i=1

s2i (6)

where s are the estimated sources and N is the num-
ber of samples (N = 2500). This results in one number
representing the muscle activity for each channel for each
hand action. RMS value of muscle activity of each source
represents the muscle activity of that muscle and is in-
dicative of the strength of contraction. The above process
was repeated for all four different hand actions 12 times
and for each of the participants. These 12 sets of examples
were used to train a back-propagation neural network.
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Fig. 4. Grouped plot of four channels MICA separated RMS features

Table 2. MANOVA table for 4 Channel data for four different wrist
movements

Criterion Test Statistic F P

Subject 1 Wilk’s 0.00454 148.464 0.000
Lawley Hotelling 37.99736 304.200 0.000

Pillai’s 1.688913 50.177 0.000

Subject 2 Wilks’ 0.00571 138.798 0.000
Lawley-Hotelling 28.95460 266.278 0.000

Pillai’s 1.93257 47.978 0.000

Subject 3 Wilk’s 0.01665 89.866 0.000
Lawley Hotelling 19.99307 167.937 0.000

Pillai’s 1.71030 37.131 0.000

Subject 4 Wilks’ 0.00102 289.273 0.000
Lawley-Hotelling 53.03187 464.273 0.000

Pillai’s 2.46329 98.650 0.000

Subject 5 Wilks’ 0.00324 169.427 0.000
Lawley-Hotelling 43.7216 324.342 0.000

Pillai’s 2.02437 56.754 0.000

4.4 Preliminary Data Analysis using MANOVA

Prior to the data classification the preliminary analy-
sis was conducted to identify the separation of the data
using grouped plot of for various combination and Multi-
variate Analysis of Variance (MANOVA). Figure 4 shows
the grouped plot for MICA RMS features. From the fig-
ure it is evident that there is clear class separation among
the four different gestures. Further, results verified statis-
tically using MANOVA.

MANOVA is an extension of One-Way Analysis of
Variance (ANOVA) and is suitable for analyzing more

than one dependent variable. MANOVA measures the
differences for two or more metric dependent variables
based on a set of categorical variables acting as indepen-
dent variables [20]. This was used to determine the signifi-
cance of separation of the different classes of the data. The
MANOVA analysis showed the statistical significance of
the relationship of MICA with muscle contraction for dif-
ferent wrist actions. The overall statistical results for the
different participants have been tabulated in Tab. 2. From
Tab. 2 it can be observed that the p-value (p < 0.0001),
are identifiable using MICA RMS features.

4.5 Pattern recognition

Hudgins’ identification of nonrandom structure in the
myoelectric signal at the onset of a muscle contraction
suggests that pattern-recognition techniques may be use-
fully applied to the myoelectric control problem. If the
myoelectric signal patterns caused by a variety of volun-
tary muscle motions can be reliably identified, they can
be used to control prosthetic devices. Inherent to the pro-
cess of pattern recognition is some form of classification
decision in which input data are assigned to a limited
number of distinct classes. Data samples within the same
class are assumed to have one or more specific features
in common which would cause them to be placed in the
same class. This basic classification-process model is used
in several approaches which have been developed to ana-
lyze the structure of the myoelectric signal. Of relevance
to the current work are approaches which take advantage
of the unique computational abilities of artificial neural
networks (ANN) to perform the classification task. ANN-
based classifiers are able to classify input data into dis-
tinct classes by “learning” the optimum set of boundary
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Table 3. Experimental results for Hand Gesture Identification for
four different methods

Number of participants G1 G2 G3 G4

Method 1 57% 57% 57% 57%
Method 2 65% 65% 65% 65%
Method 3 60% 60% 60% 60%
Method 4 99% 99% 99% 99%

definitions given the desired class membership of each
input case. This adaptive behavior makes the neural net-
work a powerful paradigm for classification applications
where the relationship between the inputs and the re-
spective desired output classes is complex or difficult to
resolve.

In this paper, pattern recognition of myoelectric sig-
nals is accomplished ANN through a state-driven method.
In the first part of the experiment, RMS values of 4
recordings (sa , sb , sc and sd) for each subject were
utilised to train the ANN classifier with back-propagation
learning algorithm. The second part of the experiment
(testing) was to verify the performance of the network.
For that purpose a subset of all the input vectors dif-
ferent from the learning set (an independent data set)
was selected. Performance was also monitored during the
training phase in order to prevent overtraining of the
network. The ANN consisted of two hidden layers with
a total of 20 nodes. Back propagation gradient descent
ANN training algorithm with sigmoid threshold was used
for training and testing. During testing, the ANN with
weight matrix generated during training was used to clas-
sify RMS of the muscle activity. The ability of the net-
work to correctly classify the inputs against known subtle
hand actions were used to determine the efficacy of the
technique.

5 RESULTS AND OBSERVATIONS

The results of the experiment demonstrate the per-
formance of the above described system. The results are
tabulated in Tab. 3 and plotted in Fig. 5. To compare
the performance of the system analysis on RAW sEMG
and traditional ICA were performed. In traditional ICA
method, mixing matrix was computed for each instance.
The results demonstrate the ability of the semi-blind ICA
in source separation and identification. The following four
wrist actions and methods are labeled as below for dis-
playing the results.

• Wrist flexion (G1)

• Wrist flexion towards little finger (G2)

• Wrist flexion towards thumb (G3) and

• Wrist and finger flexion together (G4).

• Method 1: Hand gesture Identification results on Raw
EMG

• Method 2: Hand gesture Identification results using
traditional ICA

• Method 3: Hand gesture Identification results using
multi run ICA for worst mixing matrix (Lowest SIR)

• Method 4: Hand gesture Identification results using
multi run ICA for best mixing matrix (Highest SIR)

Fig. 5. The overall results showing hand gesture identification
performance of MICA vs other methods

6 DISCUSSIONS

The proposed technique is capable of classifying small
levels of muscle activity to identify four different wrist
actions. Its base is using a combination of MICA, known
anatomy and neural network configured for the individ-
ual. The technique has been tested with five volunteer
participants and with experiments conducted on differ-
ent days. The results indicate the ability of the system
to perfectly recognise the hand gesture even though the
muscle activity is very low and there are number of active
muscles for each of the gestures.

The authors believe that the reason why this technique
has succeeded where number of other similar techniques
have failed is because the basis of this technique is to esti-
mate the un-mixing matrix during training and maintain-
ing this over the experiment ensuing the order and am-
plitude ambiguity is overcome. Further, other ICA based
techniques are not suitable for near Gaussian signals and
when signal-to-noise ratio is low and there is large cross-
talk between different simultaneously active muscles. Use
of BSS alone is not suitable for sEMG due to the nature
of sEMG distribution and order ambiguity. Prior knowl-
edge of the muscle anatomy combined with suitable BSS
has overcome the above mentioned shortcomings.

7 CONCLUSIONS AND FUTURE WORK

This investigation has shown that a combination of the
mixing matrix and network weights to classify the sEMG
recordings in almost real-time. The results do indicate
the ability of the system to work with the set of four dif-
ferent wrist movements selected. We are working on ex-
panding the EMG gesture for increased levels of control.
While, further work on the signal processing may make
it possible to recognize multiple subtle gestures from a
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single muscle, it appears more practical to define a more
extended interface using different controllers on various
muscles (eg on both arms). Future work also shall in-
clude conducting experiments on inter-day and intra-day
variations to verify the stability of the system and also
developing a portable model for hand gesture recognition
using semi blind ICA technique.

Overall, the purpose of this project is to develop new per-
ceptual interfaces for human-computer-interaction based
on hand gesture identification, and to investigate how
such interfaces can complement or replace traditional in-
terfaces based on keyboards, mice, remote controls, data
gloves or speech. Applications fields for hand gestures
analysis include control of consumer electronics, inter-
action with visualization systems, control of mechanical
systems, and computer games.

One important benefit of such an HCI approach is that
visual information makes it possible to communicate with
computerized equipment at a distance, without a need for
physical contact to the controlled target. Compared to
speech commands, hand gestures are especially advanta-
geous in noisy environments — particularly in situations
where speech commands would be disturbed — as well as
for communicating quantitative information and spatial
relationships. Furthermore, the human user shall be en-
abled to control electronic systems in a quite natural man-
ner, without requiring specialized external equipment.
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