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Abstract: The lack of portfolio granularity in terms of exposure has 
been shown to have important implications for the amount of a fi-
nancial institution’s economic capital. Based on a numerical simu-
lation model, we provide concrete examples of how granularity af-
fects capital levels. We achieve this by following two simulation ap-
proaches, including a dynamic setup as a more realistic version of 
the analysis. We show that granularity has an indirect effect on the 
expected loss component. This could lead to significant changes in 
the competitive environment should banks consider adding a granu-
larity adjustment to the estimated amount of capital and account for 
it in their pricing. 
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Introduction

The topic of this paper revolves around capital requirements of Financial Insti-
tutions (FIs). Throughout the paper we make use of the granularity adjustment 
introduced by Gordy (2003) and Gordy and Lütkebohmert (2013). Its purpose 
was to augment the output of the asymptotic single risk factor (ASRF) model by 
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adjusting for portfolio granularity when computing the level of capital a FI would 
need. We apply the granularity adjustment model in order to analyze the devia-
tions from the asymptotic model across different portfolio sizes and structures 
and judge the magnitude of necessary adjustments to the calculated capital levels 
under the Basel framework. We further examine the effects that such capital ad-
justments could have on the FI’s stability and pricing policy.

The Role of Capital Requirement

The amount of capital that an institution holds is a key factor in credit risk man-
agement. Its main function is to serve as a cushion against unexpected adverse 
scenarios and thus prevent an FI from going bankrupt. On the other hand, FIs 
treat expected losses (EL) as operating costs by estimating the average amount 
losses over an extended period of time and accounting for it in their loan prices. 
Should an institution experience higher than the expected amount of loss in any 
given year, it would need to be absorbed by a sufficient amount of own capital or 
otherwise the FI will be forced into economic insolvency, i.e. higher liabilities 
than available assets.

In order to estimate the unexpected loss, a standard best-practice approach is to 
make use of the value-at-risk measure (VaR). VaR is a measure of the maximum 
variation of the losses from their expected value at a certain confidence level. In 
essence, by calculating the VaR FIs estimate the possible deviation of losses from 
the expected level in an adverse scenario (e.g. one that occurs on average once 
in a thousand years). The close relation between VaR and capital need stands in 
the fact that based on the value at risk an institution can decide on the amount 
of capital it would need in order to survive a particular bad state of the world. 
A bank can thus be considered as safer in the sense that it has the ability to ab-
sorb losses higher than the expected amount. Given its important risk-absorbing 
properties, the amount of capital has been the main focus of discussion in the 
Basel Committee of Banking Supervision.

VaR Models: CreditRisk+ Vs. CreditMetrics

Many credit risk models make use of the VaR framework. Two of the most well-
known are CreditRisk+ by Credit Suisse and J.P.Morgan’s  CreditMetrics. While 
both use VaR in estimating capital requirements, the two models differ in the 
particular approaches they follow. In the case of CreditRisk+, the model takes 
into consideration only two states of the world: the good state (survival of the 
obligor) and the bad one (default). It does not make any assumptions about the 
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causes of default (Credit Suisse First Boston, 1997). On the other hand, Cred-
itMetrics does not only allow for these two states, but also takes into account 
scenarios between the two extremes in the form of credit rating changes. In ad-
dition, CreditMetrics is based on the assumption that the systematic risk factor is 
normally distributed (Gupton, Finger and Bhatia, 1997). Gordy (2000) points out 
that differences in the distribution assumptions lead eventually to inconsistencies 
in the probabilities of default. However, the author argues that there exists a map-
ping between the models, such that under appropriate assumptions both models 
arrive at the same conclusions.

Initiation of the Basel Protocol

The first international attempt towards achieving a higher level of preparedness 
of the global financial system against severe adverse developments was the initia-
tion of the Basel Protocol, starting with Basel I in 1988. Since then, the imple-
mentation of the Basel Protocol has had a sweeping impact across the global fi-
nancial system. Its purpose was to make sure that the financial system was prop-
erly capitalized in order to survive a major shock. In order to achieve that, Basel 
I imposed a minimum requirement of 8% capital to risk-weighted-assets ratio 
(Basel Committee on Banking Supervision, 2014). It soon became clear, however, 
that the first protocol must eventually be redesigned, so that it allows for a more 
risk-sensitive approach to the calculation of minimum capital requirements.

The second Basel Protocol, namely Basel II, provided the system with new cri-
teria, but it also introduced new approaches for the purpose of risk estimation. 
Its most important innovation was in the implementation of the three-pillar ap-
proach to banking regulation (Basel Committee on Banking Supervision, 2014). 
Pillar one introduced the internal ratings-based (IRB) approach, besides the ex-
isting standardized approach for calculating the minimum capital requirements. 
Pillar two consisted of the continuous supervision of the FIs by the regulators 
in order to ensure their capital adequacy. The third Pillar emphasized the im-
portance of market discipline and consisted of requirements regarding the FI’s 
disclosure of information.

The most important innovation of Basel II by far was the introduction of the IRB 
approach. By giving FIs the option to use their own estimates of risk measure 
parameters (PD-probability of default; LGD-loss given default; EAD-exposure 
given default, etc.), the Basel committee intended for banks to utilize their inter-
nal expertise and data in order to come up with a better approximation for their 
portfolios’ riskiness.
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Risk Sources

When analysing loan portfolios it is important to distinguish between two sources 
of risk: the systemic d-dimensional risk factor X=(x1,x2,…,xd), and the idiosyncratic 
one (dependent on the obligor). The theoretical and mathematical basis of Basel 
II originated from a model developed by Oldrich Vasicek. In his model, known 
as the Vasicek Single Risk Factor model, the systematic risk factors are grouped 
into a one-dimensional vector, thus X=x. In addition, the systematic risk factor is 
assumed to be normally distributed. Originally developed for modeling the behav-
iour of interest rates, Vasicek extended the single factor model in order to derive a 
loss rate distribution function across portfolios of loans (Vasicek, 1991).

The slightly modified version of the Vasicek model, upon which Basel II was built, 
was developed by Gordy (2003). In order to achieve portfolio-invariant capital 
requirements, Gordy makes the important assumption that the loan portfolio is 
fine-grained. Denoting the set of exposures by A={Ai:i∈N} where Ai stands for 
EAD to a given obligor, si for the share of the latter, and n for the number of cus-
tomers, this implies:

=
∑ =1

→
→ ∞

0
							     

(1)

Hence, no exposure is assumed to have a significant size relative to the rest of the 
portfolio, which effectively eliminates the idiosyncratic (concentration) risk factor 
and makes the loss function portfolio-invariant. The drawback of this assumption, 
on the other hand, is the tendency of the model to underestimate the regulatory (or 
economic) capital, which is clearly dependent on concentration risk.

Concentration Risk

According to the Basel Committee on Banking Supervision (Basel Committee 
on Banking Supervision, 2006) concentration risk originates from one of the fol-
lowing:

•	 small size of the portfolio,
•	 relatively large exposure with respect to a single obligor,
•	 contagion effect (inter-related firms).
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In this paper we examine the concentration risk resulting from the first two fac-
tors, which is not explicitly dealt with in the ASRF model. We later analyse how 
this ‘abuse’ occurs and the effects it has on capital requirements. In the Bank for 
International Settlements’ (BIS) document, the Basel Committee, by undertaking 
surveys, recognizes the regulatory challenge in terms of not only measuring, but 
also accounting for concentration risk (Basel Committee on Banking Supervi-
sion, 2006).

One way to account for concentration risk originating from large exposures 
is with the use of a granularity adjustment (GA). The GA is a measure of the 
deviation between the capital requirement calculated as in Basel under the as-
sumptions of the ASRF and the true one accounting for concentration risk. In-
tuitively, the adjustment accounts for the error a FI would make by assuming a 
fine-grained portfolio. Once the GA is specified, the FI can analyze the difference 
from the ASRF capital amount and hence, create a concentration risk measure 
based on capital as an indicator.

Basel III recently introduced the Liquidity Coverage Ratio (LCR) in order to pro-
mote short term readiness on the side of the FI in term of its liquidity risk profile 
(Basel Committee on Banking Supervision, 2013). By aiming at reducing conta-
gion (spillover) effect, the LCR is hence related to concentration risk via the third 
factor listed above. However, in a recent study on LCR, Brůna and Blahová (2016) 
show that while the LCR leads to significant changes in a FI’s liquidity allocation, 
it may also underestimate its liquidity positions and thus lead to liquidity alloca-
tion inefficiencies.

Effects of Accounting for Granularity

The inclusion of more risk measures is shown to have a significant effect on the 
profitability of a FI (Stein, 2005). By deriving the cost functions for models of 
different predictive power (in terms of PDs) Stein concludes that the inclusion of 
more risk measures in the predictive model results in lower default costs relative 
to the weaker models. By scanning the risk of the borrower in a more accurate 
way, the FI gains competitiveness in risk pricing, thus being able to cherry-pick 
its portfolio at the expense of less advanced institutions. Subsequently, it is im-
portant to examine whether the inclusion of concentration risk in risk pricing 
has a comparable effect in cost reduction, revenue generation, and profitability 
of a FI.
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The Model

Granularity Adjustment 

Preserving its main assumptions, and building upon Vasicek’s SFM, Gordy (2003) 
extends the model into the Asymptotic Single Risk Factor (ASRF) model. The 
author considers the loss function due to defaulting obligors of a FI and proves, 
under the Law of Large Numbers (LLN), that the percentile of the risk factor 
matches that of the amount of loss. Denoting Ui for loss rate (a stochastic term), 
and si for the individual exposures one finds Ln :

Additionally, Gordy assumes that μ(x)=E[Ln |X=x] is an increasing function of X. 
Letting αq (Y) stand for quantile function of a random variable we get that:

Intuitively this means that αq (Ln) converges to μ(αq (X)). The difference |αq (Ln)-
μ(αq (X))| is the granularity adjustment attributed to the “chunky” portfolio. For 
a rigorous treatment of the above see Gordy (2003).

Using this result, the capital requirement for an individual loan is measured in 
terms of the probability of the risk factor’s level. Hence, the ASRF model rep-
resents an important and simplistic credit risk model that performs well under 
the assumption that the exposures of a portfolio are evenly spread amongst the 
individual obligors (Gordy, 2003). As long as there is a big number of customers 
(n sufficiently large) the size of the individual exposures Ai will not matter and 
the probability of default (PD) distribution will approach asymptotically that of 
the ASRF (see equation (1)).

On the other hand, this intuition only performs well (limit as n→∞ when consid-
ering portfolios with many exposures i.e. n=10,000. In cases where n is a smaller 
number, one cannot assume a fine-grained portfolio, so the relative weights of 
some exposures are different from zero, thus creating exposure to concentration 
risk.

This major shortcoming of the ASRF model could potentially give rise to sig-
nificant idiosyncratic (obligor-specific) risk in certain FIs. In such instances, the 
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assumption that the real loss function converges in distribution to the asymptotic 
case does not hold, which compromises the capital adequacy (dependent on the 
percentile of the risk factor) of the institutions and threatens the stability of the 
broader financial system.

The difference between the actual VaR and the asymptotic one can be approxi-
mated by a Taylor series expansion centred around the asymptotic portfolio loss 
(Gordy and Lütkebohmert, 2013). Given the parameters that are needed in order 
to estimate the moments of loss given default (LGD), GA becomes a function 
dependent on the number of exposures. The following simplified version of GA 
shows the factors that influence the adjustment:

		  (2)

Here, the terms si,Ki stand for share of exposure and capital requirement for the 
ith obligor, respectively and  . As GA depends on si we see that the port-
folio invariance assumption does not hold in this setup. The parameters γ, δ are 
regulatory parameters which we set to γ=0.25 and δ=4.83 following the Basel 
CP2 (Gordy and Lütkebohmert, 2013). The precision parameter is set to ξ=0.25 
an E[LGD], which stands for expected loss given default and is set to its regulatory 
value of 0.45.

Table 1: Components of the Granularity Adjustment Equation (2)

Considering cases when the data might be incomplete, Gordy and Lütkebohm-
ert (2013) derive maximum and minimum bounds for the granularity adjust-
ment. This can be achieved both for a heterogeneous or homogenous portfolio 
structure. The mapping of a heterogeneous portfolio into a homogeneous one 
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is achieved by making transformations in four parameters, namely the share of 
exposure, the risk factor loading, the number of exposures in the transformed 
new homogenous portfolio, and the new variance of LGD. The importance of the 
upper and lower bounds stands in the fact that calculating the exact GA is dif-
ficult to implement in real life given the amount and variation in the parameters 
it uses as an input.

Simulation Setup 

We use a methodology, which is based on hypothetical portfolios of corporate 
exposures that typically display a large variation in terms of size. In order to 
achieve representativeness and comparability of the results, we partly calibrate 
the portfolio characteristics to those of Gordy and Lütkebohmert (2013). As for 
the distribution of the borrowers across rating grades, we assume a structure that 
follows a log-normal distribution, which is observed in real-life banks’ portfolios 
(Unicredit Bulbank, 2012). Based on the generated portfolios, we simulate the 
respective loss distribution function.

Portfolio Structure 

Since one of our objectives is to demonstrate the negative relation between GA and 
the number of exposures, we consider portfolios of four different sizes, namely 
1000, 2000, 3000, and 6000 exposures. Each of the portfolios is constructed based 
on the same distributions in terms of the pair (PDi,EADi).

Rating Grades

We set the rating grades to follow a log-normal distribution. Each of the portfo-
lios is assumed to have 17 rating classes starting from AAA to C. The portfolios 
represent only the performing loans of an institution and thus do not include 
already defaulted borrowers. The PD bands are set in accordance to the table (2) 
below (Featherstone, Roessler, and Barry, 2006):
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Table 2: Rating Grades’ Probabilities

Rating  Grade Lower Bound Upper bound

AAA 0.000% 0.020%

AA+ 0.020% 0.030%

AA 0.030% 0.040%

AA- 0.040% 0.050%

A+ 0.050% 0.070%

A 0.070% 0.090%

A- 0.090% 0.140%

BBB+ 0.140% 0.210%

BBB 0.210% 0.310%

BBB- 0.310% 0.520%

BB+ 0.520% 0.860%

BB 0.860% 1.430%

BB- 1.430% 2.500%

B+ 2.500% 4.305%

B 4.305% 8.611%

B- 8.611% 12.180%

C 12.180% 90.000%

In order to ensure that the PDs follow a log-normal distribution, we first generate 
random variables which are normally distributed Y∼N(μ,σ) and then take their 
exponential (eY), so that for the individual PDs we get: PDi=eYi. As a mean and 
standard deviation of the log-normal distribution we set the following values: 
μ’≈1.17% and σ’≈2.31%. These parameters are then converted based on the fol-
lowing formulas:

    and    				   (3)

Using the above parameters we first simulate the unconditional probabilities of 
default PDi for each obligor i=1,…,n. Below we illustrate a typical distribution 
across the different PD-rating classes.
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Figure 1: Distribution of Rating Grades

As seen above, the procedure results in a relatively safe portfolio with less than 
5% of the borrowers in the grades B, B-, and C, which is representative of a typical 
mid-size institution.

Exposures

Once we have assigned PDs, we proceed to generate the exposures. In order to set 
up a realistic portfolio, we take into account the dependence between exposure 
amount and PDs and set the distribution within each PD-band as log-normal. 
Thus, for the exposures we get to be the following:

   where      and      and   

We assume that, following standard risk-management practices, both the mean 
and the variance of the exposures are negatively related to the PDs, thus:

   and   

Regarding the calibration in terms of exposures, we build our simulation accord-
ing to the structure in Table 3. In order to proceed we need to convert each of 
the parameters in the table accordingly by making use of the two formulas in 
equations (3).
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Table 3: Portfolio Structure (mean, standard deviation) in euros

P(2000, 3000, 6000) P(1000)

Mean St.Dev Mean St.dev

AAA € 15,000,000.00 € 25,000,000.00 € 15,000,000.00 € 25,000,000.00

AA+ € 15,000,000.00 € 25,000,000.00 € 15,000,000.00 € 25,000,000.00

AA € 15,000,000.00 € 25,000,000.00 € 15,000,000.00 € 20,000,000.00

AA- € 12,000,000.00 € 20,000,000.00 € 12,000,000.00 € 20,000,000.00

A+ € 10,000,000.00 € 20,000,000.00 € 10,000,000.00 € 15,000,000.00

A € 10,000,000.00 € 20,000,000.00 € 10,000,000.00 € 15,000,000.00

A- € 8,000,000.00 € 20,000,000.00 € 8,000,000.00 € 15,000,000.00

BBB+ € 8,000,000.00 € 15,000,000.00 € 6,000,000.00 € 15,000,000.00

BBB € 5,000,000.00 € 10,000,000.00 € 5,000,000.00 € 10,000,000.00

BBB- € 4,000,000.00 € 10,000,000.00 € 4,000,000.00 € 10,000,000.00

BB+ € 3,000,000.00 € 5,000,000.00 € 3,000,000.00 € 5,000,000.00

BB € 3,000,000.00 € 5,000,000.00 € 3,000,000.00 € 5,000,000.00

BB- € 3,000,000.00 € 4,000,000.00 € 3,000,000.00 € 4,000,000.00

B+ € 3,000,000.00 € 4,000,000.00 € 3,000,000.00 € 4,000,000.00

B € 3,000,000.00 € 4,000,000.00 € 3,000,000.00 € 4,000,000.00

B- € 3,000,000.00 € 4,000,000.00 € 3,000,000.00 € 4,000,000.00

C € 3,000,000.00 € 4,000,000.00 € 3,000,000.00 € 4,000,000.00

Once we generate the exposures we observe the distribution of a typical portfolio 
across the rating classes (relative share per grade).

Figure 2: Exposure-Weighted Distribution

Granularity Adjustment and the Monte Carlo Simulation

In order to examine and quantify the relation between GA and the portfolio size 
we apply two approaches. The first one is closely linked to the ASFR model and 
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assumes a static portfolio with the only uncertainty stemming from the realiza-
tion of the systemic factor. Even though this is not a realistic representation of 
what is observed in reality, we employ this approach for the sake of comparability 
with the ASFR model.

In the second approach we allow our portfolios to change stochastically over 
time. Thus while initially we have a given ’vector’ of borrowers, say Pn (t0)=(p1 (t0 ), 
p2 (t0 ),..., pn (t0 )), at the end of the simulation we get a ’quasi-permutation’ of the 
vector entries, Pn (t1)=(p1 (t1 ), p2 (t1 ),..., pn (t1 )). We use the same distribution in 
generating the random variables, which preserves the portfolio structure, yet al-
lows for changes in individual entries. This corresponds to the normal processes 
of retirement and acquisition of new customers as well as the rating migrations 
and exposure changes within the set of existing customers.

In other words, we have two processes with respect to time t, namely, A:Xt0
→Xt1

  
(risk factor simulation) and B:Pn(t0)→Pn(t1) (portfolio mapping). With this setup we 
proceed to tackle the question: given t scenarios which simulate the condition of 
the economy in the following year, what is the resulting distribution of portfolio 
losses? In both approaches we make use of Monte-Carlo simulations in order to 
generate the loss distribution. By repeatedly simulating the systematic risk factor 
X=x, we replicate possible real-life scenarios, and thus the realized amounts of 
loss.

Specifically, we follow a similar procedure to Gordy (2003). The ASRF model as-
sumes the risk factor to be normally distributed N(0,1). So far, in our model we 
have the unconditional PDs, where PDi represents the expected PD of borrower i 
with respect to X. Hence, PDi=E[PDi |X]. In order to account for the behavior of 
borrowers under an extreme scenario we consider the mapping of each of the un-
conditional PDs into conditional ones, i.e. given the realization of the risk factor. 
The mapping function is derived following the Merton (1974) model similarly to 
the ASRF model: the return Ri of an asset (loan in our case) according to Merton 
is given by Ri=ψi ϵi-Xωi, where ωi is a risk factor weight. In order for the obligor 
to default we have Ri falling below a threshold value γi. Arranging the equation 
in order to get the i.i.d N(0,1) term ϵi to the one side, and then applying the prob-
ability distribution function we get:

Noting the distribution of ϵi we get:
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We let γi=Φ-1 (PDi ) where Φ-1 corresponds to the inverse normal distribution and 
ψi is given by:

And for the weights we have:

Note that ρi stands for the correlation of the borrower with respect to the risk fac-
tor. The correlations are found based on the Basel II criteria as a function of the 
PD with the use of the following formula:

At each trial of the simulation, we simulate the risk factor X. For each borrower 
we then draw independent random numbers (uniformly distributed in the closed 
set [0,1]), based on which we let each of the borrowers default with the corre-
sponding conditional probability of default. We perform 10,000 simulations for 
each examined portfolio. In case of ambiguous results, we double the number of 
the simulations. The granularity adjustment is calculated as (α.999 (L)-K).

Results

In this section we present the results from the Monte Carlo simulation and the 
Granularity Adjustment for both cases of dynamic and fixed portfolios.

Dynamic Portfolios

Due to the high number of required simulations, we perform our dynamic proce-
dure on three portfolios, consisting of 1,000, 2,000, and 3,000 customers, respec-
tively denoted by P(1000), P(2000), and P(3000). In all three cases we observe that 
there is indeed a difference between the Basel II prescribed level of capital K and 
the simulated amount of unexpected loss based on the 99.9 percentile.
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Table 4: Dynamic Portfolios Results (GA calculated by formula according to Gordy)

P(1000) P(2000) P(3000)

Percentiles GA GA GA

99.85 €25,407,289 €24,353,848 €25,487,045

99.86 €20,500,716 €20,384,191 €21,405,581

99.87 €14,719,470 €22,608,650 €35,620,593

99.88 €25,162,009 €32,552,270 €23,837,024

99.89 €25,092,955 €31,535,973 €20,060,998

99.9 €15,371,922 €20,464,457 €30,124,074

99.91 €29,215,812 €28,366,997 €22,364,146

99.92 €26,106,688 €22,975,428 €17,243,649

99.93 €21,218,952 €27,440,460 €28,562,812

99.94 €25,780,281 €24,833,826 €26,334,157

99.95 €18,010,898 €30,731,524 €30,203,776

                                                            K-UL K-UL K-UL

99.85 €-20,032,544 €23,752,96 €100,012,913

99.86 €-42,273,652 €14,743,331 €74,851,185

99.87 €-71,026,496 €44,402,164 €61,411,769

99.88 €-50,629,516 €16,952,477 €39,431,005

99.89 €-55,112,546 €35,273,773 €17,037,945

99.9 €-78,012,613 €-32,416,945 €-9,206,630

99.91 €-22,777,533 €-100,355,217 €-20,238,957

99.92 €-53,449,540 €-153,395,335 €-26,408,657

99.93 €-77,091,124 €-139,083,792 €-61,002,011

99.94 €-79,307,483 €-151,278,775 €-93,205,441

99.95 €-126,283,823 €-159,566,538 €-108,642,968

While the number of simulations needs to be increased in order to generate 
monotonicity in the results, our simulations show clearly that there is an increas-
ing discrepancy (and thus the need to adjust for the lack of granularity) as the 
number of exposures decreases.

Despite representing the more realistic dynamic portfolio setup, these results do 
not allow for a direct comparison between the simulated loss amounts and the 
granularity adjustment suggested by Gordy and Lütkebohmert (2013) as the lat-
ter is based on a fixed portfolio structure in the individual borrower characteris-
tics. We consider this case in the following section.
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Fixed Portfolios

In this section, the above procedure is repeated by selecting at random a repre-
sentative portfolio for each portfolio size and keeping it fixed over time t.

For all four portfolio sizes under consideration, namely P(1000), P(2000), P(3000), 
P(6000), we see a discrepancy in the capital requirement (Basel) and the realized 
amount of unexpected loss, similarly to above.

Figure 3: Loss Distribution for 1000 Borrowers

Figure 4: Loss Distribution for 2000 Borrowers
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Figure 5: Loss Distribution for 3000 Borrowers

 

Figure 6: Loss Distribution for 6000 Borrowers

Table (5) provides GA calculated via the Gordy’s formula and the amounts by 
which the considered portfolios are undercapitalized.

Table 5: GA and the realized granularity difference at the 99.9th percentile

GA (P(1000)) GA (P(2000)) GA (P(3000)) GA (P(6000))

€19,133,312 €24,719,738 €26,092,012 €24,394,455

Percentile K-UL K-UL K-UL K-UL

0.9988 €-5,104,519 €9,059,568 €28,358,276 €129,546,200

0.9989 €-12,621,738 €-16,066,590 €-3,234,769 €85,176,628

0.9990 €-20,196,117 €-19,661,487 €-47,528,122 €-23,259,649

0.9991 €-22,609,005 €-34,937,750 €-91,712,158 €-41,462,778

0.9992 €-29,447,560 €-62,618,442 €-108,053,664 €-76,436,058
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We conclude that in all cases, given a 99.9th percentile of the risk factor α.999 (X), 
there is a probability p>.001 that banks might be undercapitalized in any given 
year. The next table shows the decline in the magnitude of the necessary adjust-
ment as n goes up.

Table 5: Magnitude of GA relative to K+GA

P(1000) P(2000) P(3000) P(6000)

GA/(K+GA) 7.8% 4.9% 3.7% 1.6%

Going back to equation (2) we see that the inverse relationship as n grows is con-
firmed. Thus, while the granularity adjustment is quite significant for the first 
three portfolios, in terms of  GA/(K+GA), as n grows (i.e. n=6000) this ratio tends 
to become smaller, eventually approaching zero as n→∞.

Figure 7 Granularity Adjustment ratio with respect to K+GA

Granularity and Expected Loss

One additional interesting topic, which has not been addressed by the literature, 
relates to the levels of expected loss EL for portfolios of differing granularity. The 
goal of this section is to investigate this effect. Taking the sum over all borrowers 
we get for EL:

As discussed above, the R stands for loan loss provisions and its importance lies 
in the fact that it represents a significant part of the operational cost of doing 
business for the FI. It is assumed, corresponding to modern risk-management 
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practices, that this amount corresponds to the loss averaged over all possible re-
alizations of the risk factor (corresponding to a typical economic scenario).

As X∼N(0,1) we set the risk factor’s value equal to zero. Differently from the above 
scenarios, we keep the PDs fixed, i.e. non-stochastic and independent of X. Thus, 
in this simulation we let each borrower default independently with probability 
pi=PDi. The goal is to generate a distribution around the expected loss of the 
portfolio and analyse the variation around the mean.

Mapping Procedure

In order to isolate the effect of granularity, after fixing a portfolio, we perform 
a mapping of both the exposures and the PDs. The PDs (for all i) are set to the 
exposure weighted average defined as follows:

While the exposures are set to the portfolio average:

After performing this mapping, we achieve a uniform portfolio which exhibits 
no variation in exposure sizes and probabilities of default. The only difference is 
in the absolute size of the individual exposures, which depends on the number of 
borrowers in a portfolio.

Results

Comparing the results from the simulations we see that while EL remains rel-
atively similar between the homogeneous and heterogeneous portfolios (small 
differences are due to the maturity adjustments), its standard deviation changes 
significantly. The following table summarizes our findings:
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Table 7: Change in σE[LGD] between uniform and heterogeneous portfolios

Portfolios P(1000) P(2000) P(3000)

Heterogeneous Homogeneous Heterogeneous Homogeneous Heterogeneous Homogeneous

μE[LGD] 
€16,802,411,10 €17,617,841.40 €40,772,237.65 €43,006,577.39 €59,211,673.62 €62,363,175.14

σE[LGD] 
€11,189,068.89 €7,187,643.05 €20,240,688.90 €11,437,979.48 €22,123,821.97 €12,741,091.32

(∆σE[LGD])/μE[LGD]  0.23 0.20 0.15

Even though variation in the realized losses does not necessarily pose any seri-
ous risk to the solvency of the FI (as K would cover such loss), deviations from EL 
would mean that the FI does not have an optimal amount of provisions and could 
thus experience liquidity problems in some years, while it would underutilize its 
assets in others. From the table we see that the variation in the portfolio exposure 
sizes could cause a deviation in the EL of at least ≥15%. Moreover, this does not 
happen in an adverse, but rather in a normal scenario for the bank. If we assume 
that given a typical year, the actual loss happens to be one standard deviation 
away from the mean, this could lead to an additional 65% higher default costs 
than expected.

Below are presented graphs corresponding to distributions of homogeneous and 
heterogeneous portfolios of three different sizes. As can be easily observed, the 
heterogeneous portfolios display thicker tails than the homogeneous ones, lead-
ing to a higher probability for extreme deviations in EL.

Figure 8: Expected Loss Distribution for P(1000)
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Figure 9: Expected Loss Distribution for P(2000)

Figure 10: Expected Loss Distribution for P(3000)
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Conclusions

In this paper we have confirmed the findings of Gordy and Lütkebohmert (2013) 
about the significance of the granularity adjustment as a discrepancy between 
the 99.9th percentile of realized losses and the Basel capital requirement. In or-
der to do so we followed two Monte Carlo simulations approaches. In the classic 
approach we hold the initial portfolio fixed over time. In the second approach, 
which we consider more realistic, we let the initial portfolio change over time t. 
Both setups confirm that a portfolio’s lack of granularity is a significant contribu-
tor to the amount of unexpected loss, and thus to capital requirements. We show 
that, as expected, GA is negatively related to the number of exposures. Further-
more, we find that the variation in expected losses is also significantly affected 
by the size of the portfolio exposures (non-granularity). Where portfolio non-
granularity is present FIs will observe loss amounts that fluctuate considerably 
around EL, leading to inefficient use of resources.

In the presence of non-granular portfolios, a financial institution could opt for 
adding the granularity adjustment to the actual amount of capital, which would 
have several consequences. While it could be beneficial for the bank in terms of 
increased stability (better rating) it could also mean that it is losing ground to its 
competitors in terms of profitability unless it transfers part (if not all) of the addi-
tional capital costs to the obligor. To that end, we argue that it would be appropri-
ate to include a granularity adjustment in the capital requirement component of 
the loan price. By accounting for the real cost of concentration risk, a first-mover 
FI could gain a competitive edge in risk-pricing and thus positively influence its 
performance both in terms of profitability and market share.
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