CONGENITAL CYSTIC ADENOMATOID MALFORMATION OF THE LUNG: A CASE REPORT AND REVIEW OF THE LITERATURE

Doroteya V. Malinova, Penka L. Kolova, Radoslav S. Radev

Department of General and Clinical pathology, Forensic Medicine and Deontology, Medical Faculty, Medical University, Varna

Department of Surgical Diseases, Medical Faculty, Medical University, Varna

Corresponding Author: Doroteya V. Malinova
Department of General and Clinical pathology, Forensic Medicine and Deontology Medical University Prof. Dr. Paraskev Stoyanov 55, Marin Drinov str. Varna, 9002 e-mail: dmalinova@gmail.com

Received: November 01, 2014
Revision received: May 29, 2015
Accepted: December 01, 2015

Summary

Congenital cystic adenomatoid malformation (CCAM) is a rare abnormality of lung development. It was classified into 5 types by Stocker in 2002 and is also known under the name of congenital pulmonary airway malformation (CPAM). Cases are typically identified prenatally by routine ultrasonography screening. CCAM may present in the older child and adult as an incidental finding. The case presented is of a 21-year-old male patient who suffered from pulmonary infections with a recurrent productive cough 3-4 times the last 4 years. CT scanning of the thorax showed multiple cystic lesions in the right middle and lower lobes. The areas with the lesions were resected. The macroscopic and histological findings were typical for congenital cystic adenomatoid malformation type 2, which was the final diagnosis. Clinical presentations and prognosis depend on the type of lesion and its sequelae. The diagnosis is confirmed histologically.

Key words: congenital cystic adenomatoid malformation, types, prognosis

Introduction

Congenital cystic adenomatoid malformation (CCAM) is a type of congenital malformation and refers to a group of malformations of the airways. There are different types of lesions (types 0-4), and some are associated with cystic areas and adenomatous overgrowth of the terminal bronchioles [1, 2]. Cases are typically identified prenatally by routine ultrasonography screening [3]. The lesion is usually unilateral (85%) with an equal incidence of microcystic or macrocystic disease, although bilateral cases have been reported [1-3]. CCAM may remain undiagnosed until discovered as an incidental finding later in life. However, its usual postnatal presentation is respiratory distress in the newborn period. This may be due to pulmonary hypoplasia, mediastinal shift, spontaneous pneumothorax, and pleural effusions secondary to hydrops. Recurrent chest infections may be a feature later in life [4]. Prenatal regression and complete prenatal resolution have also been described [5].
Epidemiology

Data from large population registries suggest an incidence of congenital lung cysts in the range of 1 per 8300 to 35 000 live births [6]. Large-cyst subtypes account for about 70% of congenital pulmonary airway malformations (CPAMs), or 2 to 8 per 100 000 live births.

Etiology and pathogenesis

The cause of CCAM is unknown. One theory holds that it is the result of bronchial structures failing to mature properly at the time the lungs begin to form - the fifth or sixth week of gestation. Another theory suggests that CCAM is due to an abnormal growth pattern of lung tissue that occurs as a result of bronchial obstruction [7]. Histologic studies reveal rapid vascular and epithelial growth within the tumor. Recent findings of accelerated cellular proliferation and decreased apoptosis within resected CCAM specimens further suggest a benign neoplastic development [1]. There is no known genetic cause for CCAM, and no cases of recurrence in a sibling or offspring have been reported. Increased cell proliferation and decreased apoptosis may cause malignant transformation. Pleuropulmonary blastoma, and bronchioloalveolar carcinoma in particular have been reported [7-11].

Case presentation

We present a case of a 21-year-old male patient who suffered from pulmonary infections with a recurrent productive cough 3-4 times the last 4 years. Computed tomography (CT) of the thorax showed multiple cystic lesions (Figure 1) in the right middle and lower lobes. The areas with the lesions were resected. Macroscopic and histological findings were typical for CCAM type 2, which was the final diagnosis. Gross inspection revealed multi-cystic lesion with partially solid and necrotic areas (Figure 2). Histology showed proliferation of bronchiole-like structures and macro- and microcysts lined by columnar or cuboidal epithelium and absence of cartilage and bronchial glands. Squamous metaplasia and inflammatory cells were observed in some areas (Figure 3, 4).
Figure 4. Bronchiole-like structures lined by columnar or cuboidal epithelium with walls composed of connective tissue and smooth muscle cells, without cartilage and glands. In the lumen of the structures there are inflammatory cells. In the surrounding area – hyperemia and inflammatory cells (Hematoxylin and eosin stain, 20x10)

Discussion

Stocker [7, 12, 13] classified these congenital lung lesions based on the site of their origin and labelled them from 0 to 4 to indicate their progression down the airways. Type 0, formerly called acinar dysplasia [14], is referred to as bronchial and is associated with other malformations. Type I is characterised by large cysts - up to 10 cm in diameter, and is described as bronchial/bronchiolar type. It constitutes about 50% of postnatal cases of CCAM. Type I cysts are lined by pseudostratified ciliated cells. The prognosis is usually good. Type II lesions are called bronchiolar and comprise 40% of postnatal cases. Type II cysts are small (about 1 cm in diameter) and numerous. They resemble dilated bronchioles and are separated by normal alveoli. These cysts are lined by cuboidal, ciliated, or columnar epithelial cells. Type II lesions are often associated with other congenital malformations and the outcome depends on the severity of these anomalies. Common malformations associated with type II include renal agenesis and dysgenesis, cardiac anomalies – tetralogy of Fallot, persistent truncus arteriosus, diaphragmatic hernia, small intestine anomalies - jejunal atresia, skeletal anomalies [8, 14]. Type III lesions are called bronchiolar/aleveolar duct and they comprise 10% of the cases. Grossly, this type is characterised by large microcystic-appearing masses that may cause mediastinal shifting. Histologic findings include bronchiolar structures separated by alveoli. Bronchioles are lined by ciliated cuboidal epithelium and alveolar spaces between them – by nonciliated cuboidal epithelium. The outcome of type III lesions is variable[15]. Type IV cysts are described as peripheral. They account for 15% of postnatal cases. Type IV cysts are large (up to 10 cm in diameter) and lined by flattened epithelial cells. Histologically they may resemble cystic pleuropulmonary blastoma [11, 13, 16]. Stocker (1994) suggested that the term congenital pulmonary airway malformation was more accurate, because of the large variety of anomalies included in this classification. However, CCAM and CPAM are both used today [13].

In infants and children, malformations communicate with the tracheobronchial tree, creating a valvular mechanism, which causes hyperinflation of the cystic zone during inspiration and less deflation during expiration. Enlarged cysts compressing the normal pulmonary structure lead to the respiratory symptoms. Glandular tissue proliferation may cause mucin accumulation and recurrent infections. The majority of clinical presentations of CPAM at different ages have been reported as respiratory distress and failure in infants, and repeated airway infections in children [17-19]. In adults, it is also most commonly presented with repeated airway infections. To the best of our knowledge, there have been fewer than 60 reports of CPAM in patients aged 18 and over. The association between CPAM and malignancy has also been well documented. Malformation and proliferation cause hamartomas over the tracheobronchial tree. Type 1 CPAM may involve malignant transformation of mucinous bronchioloalveolar carcinoma [10, 20], and type 4 CPAM requires examination of the entire lesion to exclude pleuropulmonary blastoma [7, 21]. Even though malignant transformation is rare, the prognosis is very different from that in benign cystic lesions. Surgical resection is the gold standard of management for CPAM for both pathological diagnosis and treatment.

In conclusion, CPAM can present at any age and the clinical appearances vary from immediate postnatal respiratory failure to an accidental finding on chest radiography. Malignancy and frequent airway infections are major concerns in these patients. Surgical excision is recommended to make a definite diagnosis and rule out hidden malignancies. It is also the treatment of choice.
References


