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Abstract 

In this paper, we apply a combined form of the Laplace transform method with the homotopy perturbation 
method to obtain the solution of nonlinear gas dynamics equation. This method is called the homotopy 
perturbation transform method (HPTM). This technique finds the solution without any discretization or 
restrictive assumptions and avoids the round-off errors. The fact that this scheme solves nonlinear problems 
without using Adomian’s polynomials can be considered as a clear advantage of this algorithm over the 
decomposition method. The results reveal that the homotopy perturbation transform method (HPTM) is very 
efficient, simple and can be applied to other nonlinear problems.  
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1. INTRODUCTION 

Nonlinear phenomena play a crucial role in applied mathematics and physics. We know 
that most of engineering problems are non-linear, and it is difficult to solve them 
analytically. The importance of obtaining the exact or approximate solutions of nonlinear 
partial differential equations in physics and mathematics is still a significant problem that 
needs new methods to discover exact or approximate solutions. Various powerful 
mathematical methods have been proposed for obtaining exact and approximate analytic 
solutions. Some of the classic analytic methods are Lyapunov’s artificial small parameter 
method [1], perturbation techniques [2-4], δ-expansion method [5] and Hirota bilinear 
method [6, 7]. In recent years, many research workers have paid attention to study the 
solutions of nonlinear partial differential equations by using various methods. Among 
these are the Adomian decomposition method (ADM) [8], He’s semi-inverse method [9], 
the tanh method, the homotopy perturbation method (HPM), the differential transform 
method and the variational iteration method (VIM) [10-17]. He [25-38] developed the 
homotopy perturbation method (HPM) by merging the standard homotopy and 
perturbation for solving various physical problems. It is worth mentioning that the HPM 
is applied without any discretization, restrictive assumption or transformation and is free 
from round off errors. The Laplace transform is totally incapable of handling nonlinear 
equations because of the difficulties that are caused by the nonlinear terms. Various ways 
have been proposed recently to deal with these nonlinearities such as the Adomian 
decomposition method [39] and the Laplace decomposition algorithm [40-44]. 
Furthermore, the homotopy perturbation method is also combined with the well-known 
Laplace transformation method [45] and the variational iteration method [47] to produce 
a highly effective technique for handling many nonlinear problems. In a recent paper 
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Khan and Wu [23] proposed the homotopy perturbation transform method (HPTM) for 
solving the nonlinear equations. It is worth mentioning that the HPTM is an elegant 
combination of the Laplace transformation, the homotopy perturbation method and He’s 
polynomials and is mainly due to Ghorbani [20, 21]. The homotopy perturbation 
transform method (HPTM) provides the solution in a rapid convergent series which may 
lead to the solution in a closed form. The advantage of this method is its capability of 
combining two powerful methods for obtaining exact solutions for nonlinear equations. 
Recently several techniques including the Adomian decomposition method and the 
homotopy perturbation method (HPM) have been used to handle nonlinear homogeneous 
gas dynamics equations [18, 19]. Inspired and motivated by the ongoing research in this 
area, we use the homotopy perturbation transform method (HPTM) in solving the 
following nonlinear homogeneous gas dynamics equation 
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with the initial condition 
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2. HOMOTOPY PERTURBATION TRANSFORM METHOD (HPTM) 

To illustrate the basic idea of this method, we consider a general nonlinear partial 
differential equation with the initial conditions of the form: 
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where D is the second order linear differential operator 22 tD ∂∂= , R is the linear 
differential operator of less order than D, N represents the general nonlinear differential 
operator and g(x, t) is the source term. Taking the Laplace transform (denoted in this 
paper by L ) on both sides of eq. (3), we get 
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Using the differentiation property of the Laplace transform, we have 
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Operating with the Laplace inverse on both sides of eq. (5) gives 
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where )t,x(G  represents the term arising from the source term and the prescribed initial 

conditions. Now we apply the homotopy perturbation method    
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and the nonlinear term can be decomposed as  
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for some He's polynomials )u(H n (see [45, 46] ) that are given by 
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Substituting eq. (8) and eq. (7) in eq. (6), we get
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which is the coupling of the Laplace transform and the homotopy perturbation method 
using He's polynomials. Comparing the coefficient of like powers of p, the following 
approximations are obtained. 
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3. EXPERIMENTAL EVALUATION 

In this section we consider the following nonlinear homogeneous gas dynamics equation 
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(12) 
with the initial condition 
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                 (13) 
Taking the Laplace transform on both sides of eq. (12) subject to the initial condition 
(13), we have 
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The inverse of Laplace transform implies that 
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Now, applying the homotopy perturbation method, we get 
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Comparing the coefficients of like powers of p, we have 
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Proceeding in a similar manner, we have                          
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Therefore the solution )t,x(u  is given by 
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It is obvious that a higher number of iterations make )t,x(un converge to the exact 

solution .e xt−
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4. CONCLUSIONS 

In this paper, the homotopy perturbation transform method (HPTM) was successfully 
applied to study the homogeneous case of nonlinear gas dynamics with initial condition. 
The results show that the homotopy perturbation transform method (HPTM) is powerful 
and efficient technique in finding exact and approximate solutions for nonlinear 
differential equations. It is worth mentioning that HPTM is capable of reducing the 
volume of the computational work as compared to the classical methods while still 
maintaining the high accuracy of the numerical result; the size reduction amounts to an 
improvement of the performance of the approach. The fact that the HPTM solves 
nonlinear problems without using Adomian’s polynomials is a clear advantage of this 
technique over the decomposition method. In conclusion, the HPTM may be considered 
as a nice refinement in existing numerical techniques and might find the wide 
applications. 
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