
5

Journal of Applied Mathematics, Statistics and Informatics (JAMSI), 8 (2012), No. 1

RELIABILITY PROPERTIES OF RESIDUAL
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Abstract

The concepts of residual life time and inactivity time are extensively used in reliability theory for
modeling life time data. In this paper we prove some new results on stochastic comparisons of
residual life time and inactivity time in series and parallel systems. These results are in addition to
the existing results of Li & Zhang (2003) and Li & Lu (2003). We also present sufficient conditions
for aging properties of the residual life time and inactivity life time of series and parallel systems.
Some examples from Weibull and Gompertz distributions are provided to support the results as
well.
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1. INTRODUCTION

Let X and Y be two statistically independent random variables with an absolutely
continuous distribution function F (·) and G(·), survival function F (·) = 1 − F (·)
and G(·) = 1 − G(·) and probability density function f(·) and g(·) respectively.
Suppose that

{x ∈ R : f(x) > 0} = {x ∈ R : g(x) > 0} = (0,∞) = S (say),

where R = (−∞,∞). Let X and Y denote the lifetimes of two components, say C1

and C2. A series (parallel) system comprising of components C1 and C2 functions
if and only if all (at least one) of its component function(s). Study of reliability
properties of series and parallel systems is of importance to reliability engineers.
Clearly min(X,Y ) and max(X,Y ) are respectively the lifetime of series and parallel
systems comprising of components C1 and C2; here min(X,Y ) (max (X,Y )) denotes
the minimum (maximum) of X and Y respectively. The residual life of X with
age/time t ≥ 0 is given by

Xt = (X − t |X > t), t ≥ 0,

and inactivity time of X at time t ≥ 0 is given by

X(t) = (t−X |X ≤ t), t ≥ 0.
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For a fixed t ≥ 0, the survival functions of Xt and X(t) are given by

SR,t(x) = P (Xt > x) =

{
1 if x < 0
F (x+t)

F (t)
, if x ≥ 0

,

and

SI,t(x) = P (X(t) > x) =

⎧⎨
⎩

1 if x < 0
F (t−x)
F (t) , if 0 ≤ x < t

0 if x ≥ t

,

respectively. Let FR,t(x) = 1−SR,t(x) and FI,t(x) = 1−SI,t(x) be the correspond-
ing cumulative distribution functions. Block et. al. (1988), Chandra & Roy (2001),
Li & Zhang (2003), Li & Lu (2003), Li & Zuo (2004), Misra et al. (2008) and
Pellerey & Petakos (2002) studied reliability properties of residual life/inactivity
time. The stochastic comparisons of residual life time and inactivity time in series
and parallel systems is discussed by Li and Lu (2003) and Li & Zhang (2003). Note
that

—the residual life of series (parallel) system having components X and Y is
(min(X,Y ))t ((max(X,Y ))t);

—the inactivity time of series (parallel) system having components X and Y is
(min(X,Y ))(t) ((max(X,Y ))(t));

—the lifetime of the series (parallel) system having residual lives Xt and Yt is
min(Xt, Yt) (max(Xt,Yt));

—the lifetime of series (parallel) system having inactivity times X(t) and Y(t) is
min(X(t), Y(t))((max(X(t),Y(t))).

Let ηf (x) = −f ′(x)/f(x), x ∈ S, and ηg(x) = −g′(x)/g(x), x ∈ S denote the
eta functions of random variable X and Y respectively. Glaser (1980) demonstrated
that the eta functions play a vital role in the study of the failure rates. Throughout
this paper, terms increasing and decreasing will be used for non-decreasing and
non-increasing, respectively.
For the completeness in the presentation we include below some definitions of

stochastic orders which are standard in the literature [See Shaked and Shanthiku-
mar (2007)].

Definition 1.1. The random variable X is said to be smaller than random vari-
able Y in the

(a) likelihood ratio (lr) ordering (X ≤lr Y ) if g(x)
f(x) increases in x ∈ S;

(b) reversed failure rate (rfr) ordering (X ≤rfr Y ) if G(x)
F (x) increases in x ∈ S;

(c) usual stochastic (st) ordering (X ≤st Y ) if F (x) ≤ G(x), for all x ∈ R.

Now we introduce some notions of aging (see Barlow and Proschan (1981)):

Definition 1.2. The random variable X is said to have

(d) increasing failure rate (IFR) if the failure rate function f(x)
F̄ (x)

is increasing in

x ∈ S;
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(e) decreasing failure rate (DFR) if the failure rate function f(x)
F̄ (x)

is decreasing in

x ∈ S;

(f) decreasing reversed failure rate (DRFR) if the reversed failure rate function
f(x)
F (x) is decreasing in x ∈ S.

Now we provide a brief review of literature related to the results proved in the
paper. Li & Zhang (2003) proved that if X and Y are independent and identically
distributed then, for all t ≥ 0, (max(X,Y ))t ≤st max(Xt, Yt); similar results are
also proved for inactivity time. Li & Lu (2003) strengthen the results of Li & Zhang
(2003) and proved that ifX and Y are independent and identically distributed then,
for all t ≥ 0,

(i) (max(X,Y ))t ≤lr max(Xt, Yt);

(ii) (max(X,Y ))(t) ≤lr max(X(t), Y(t)); and

(iii) min(X(t), Y(t)) ≤lr (min(X,Y ))(t) .

Li & Lu (2003) also proved that, if X and Y are independent (not necessarily
identical distributed) then, for all t ≥ 0,

(i) (max(X,Y ))t ≤fr max(Xt, Yt);

(ii) (max(X,Y ))(t) ≤fr max(X(t), Y(t)); and

(iii) min(X(t), Y(t)) ≤fr (min(X,Y ))(t) .

In section 2 of the paper, we obtain some new results on stochastic comparisons
of residual life time and inactivity time in series and parallel systems. By assuming
that X and Y are independent, but not necessarily identical distributed and letting
X ≤rfr Y, ηf < 0 and ηg > 0, (or Y ≤rfr X, ηf > 0 and ηg > 0) we proved that
the parallel system of used components, i.e., max(Xt, Yt), is better than the used
parallel system, i.e., (max(X,Y ))t, in the sense of likelihood ratio order. Also by
assuming X and Y are independent, but not necessarily identical distributed and
letting X ≤lr Y , (or Y ≤lr X) we proved that, for any t ≥ 0,

(max(X,Y ))(t) ≤fr max(X(t), Y(t));

and

min(X(t), Y(t)) ≤fr (min(X,Y ))(t) .

In section 3, we proved various aging properties of used/inactive parallel/series
systems and the parallel/series system of used/inactive components. Section 4
provides some examples relevant to the results provided in sections 2, 3.

2. STOCHASTIC COMPARISON

Li & Lu (2003) proved that if X and Y are independent and identical distributed
then, for any t ≥ 0, (max(X,Y ))(t) ≤lr max(X(t),Y(t)). They also proved that if
X and Y are independent, but not necessarily identically distributed then, for any
t ≥ 0, (max(X,Y ))(t) ≤fr max(X(t),Y(t)). Here in the following theorem, we find

the sufficient conditions for (max(X,Y ))(t) ≤lr max(X(t),Y(t)) to hold when X and
Y are independent, but not necessarily identically distributed.
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Theorem 2.1. If X ≤lr Y or Y ≤lr X then, for any t ≥ 0, (max(X,Y ))(t) ≤lr

max(X(t),Y(t)).

Proof. Let t ≥ 0 be fixed. Let H1,t(x) and h1,t(x) denote respectively the cu-
mulative distribution function and probability density function of random variable
(max (X,Y ))(t). Then for 0 ≤ x ≤ t,

H1,t(x) = P [(max(X,Y ))(t) ≤ x]

=
F (t)G(t)− F (t− x)G(t− x)

F (t)G(t)
, (2.1)

and

h1,t(x) =
F (t− x)g(t− x) + f(t− x)G(t− x)

F (t)G(t)
. (2.2)

LetM1,t(x) andm1,t(x) denote the cumulative distribution function and probability
density function of random variable max(X(t),Y(t)). We have, for 0 ≤ x ≤ t,

M1,t(x) = P
(
(max(X(t), Y(t))) ≤ x

)
=

(
F (t) − F (t− x)

F (t)

)(
G(t) − G(t− x)

G (t)

)
, (2.3)

and

m1,t(x) =
(F (t) − F (t− x)) g(t− x) + (G(t) − G(t− x)) f(t− x)

F (t)G ( t)
. (2.4)

Consider, for 0 ≤ x < t,

R1,t(x) =
m1,t(x)

h1,t(x)

=
(F (t) − F (t− x)) g(t− x) + (G(t) − G(t− x)) f(t− x)

F (t− x)g(t− x) + f(t− x)G(t− x)

= −1 +
F (t) g(t− x) + G(t) f(t− x)

F (t− x)g(t− x) + f(t− x)G(t− x)
.

It is easy to verify that, for 0 ≤ x < t,

R′1,t(x) =
f(t− x)g(t− x)

[F (t− x)g(t− x) + f(t− x)G(t− x)]2

[
2F (t)g(t− x) + 2G(t)f(t− x)

+ [{ηf (t− x)− ηg(t− x)}{G(t)F (t− x)−G(t− x)F (t)}]
]
. (2.5)

We will prove the assertion for the case X ≤lr Y as for the case Y ≤lr X the
assertion follows similarly. Note that,

X ≤lr Y ⇔ ln

(
g(t)

f(t)

)
is increasing in t ∈ (0,∞) ⇔ ηf (t) ≥ ηg(t), ∀t > 0. (2.6)

Also,

X ≤lr Y ⇒ X ≤rfr Y ⇔ F (u)G(v) ≥ F (v)G(u), ∀ 0 ≤ u ≤ v < ∞. (2.7)

Using (2.6) and (2.7) in (2.5), we conclude that R′1,t(x) ≥ 0, ∀ 0 ≤ x < t, i.e.,
(max(X,Y ))(t) ≤lr max(X(t), Y(t)).
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The following corollary is an immediate consequence of Theorem 2.1.

Corollary 1. If X =st Y , then (max(X,Y ))(t) ≤lr max(X(t), Y(t)).

Remark 1. The result stated in Corollary 1 is in by Li and Lu (2003).

Li & Lu (2003) proved that if X and Y are independent and identical distributed
then, for any t ≥ 0, (min(X,Y ))(t) ≥lr min(X(t), Y(t)). They also proved that if
X and Y are independent, but not necessarily identically distributed then, for any
t ≥ 0, (min(X,Y ))(t) ≥fr min(X(t), Y(t)). Here in the following theorem, we find
the sufficient conditions for (min(X,Y ))(t) ≥lr min(X(t), Y(t)) to hold when X and
Y are independent, but not necessarily identically distributed.

Theorem 2.2. If X ≤lr Y or Y ≤lr X then, for any t ≥ 0, (min(X,Y ))(t) ≥lr

min(X(t), Y(t)).

Proof. Fix t ≥ 0. Let H2,t(x) and h2,t(x) denote respectively the cumu-
lative distribution function and probability density function of random variable
(min(X,Y ))(t). Then, for 0 ≤ x ≤ t,

H2,t(x) = P
(
(min(X,Y ))(t) ≤ x

)
=

(1− F (t− x))(1−G(t− x))− (1− F (t))(1−G(t))

1− (1− F (t))(1−G(t))
, (2.8)

and

h2,t(x) =
(1− F (t− x))g(t− x) + (1−G(t− x))f(t− x)

1− (1− F (t))(1−G(t))
. (2.9)

For 0 ≤ x ≤ t, let M2,t(x) and m2,t(x) denote respectively the cumulative distribu-
tion function and probability density function of random variable min(X(t), Y(t)) .
Then, for 0 ≤ x ≤ t,

M2,t(x) = P (min(X(t), Y(t)) ≤ x)

= 1 − F (t− x)G(t− x)

F (t)G(t)
, (2.10)

and

m2,t(x) =
f(t− x)G(t− x) + F (t− x)g(t− x)

F (t)G(t)
. (2.11)

Consider, for 0 ≤ x < t,

R2,t(x) =
h2,t(x)

m2,t(x)

=

(
F (t)G(t)

1− (1− F (t))(1−G(t))

)(
(1− F (t− x))g(t− x) + (1−G(t− x))f(t− x)

F (t− x)g(t− x) + f(t− x)G(t− x)

)

= A(t)Zt(x),

where

A(t) =
F (t)G(t)

1− (1− F (t))(1−G(t))
,
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and, for 0 ≤ x < t,

Zt(x) = −1 +
g(t− x) + f(t− x)

F (t− x)g(t− x) + f(t− x)G(t− x)
.

Clearly, for 0 ≤ x < t,

Z′
t(x) =

1

[F (t− x)g(t− x) +G(t− x)F (t− x)]2

[
− [F (t− x)g(t− x) + f(t− x)G(t− x)]

[g′(t− x) + f ′(t− x)] + [g(t− x) + f(t− x)][F (t− x)g′(t− x) + f(t− x)g(t− x)

+ f ′(t− x)G(t− x) + g(t− x)f(t− x)]
]

=
1

[F (t− x)g(t− x) +G(t− x)f(t− x)]2

[
2g2(t− x)f(t− x) + 2f2(t− x)g(t− x)

+ [F (t− x){−g(t− x)f ′(t− x) + f(t− x)g′(t− x)}] + [G(t− x){g(t− x)f ′(t− x)

− f(t− x)g′(t− x)}]
]

=
f(t− x)g(t− x)

[F (t− x)g(t− x) +G(t− x)f(t− x)]2

[
2g(t− x) + 2f(t− x)

+ [{ηf (t− x)− ηg(t− x)}{F (t− x)−G(t− x)}]
]
.

(2.12)

We will prove the assertion for the case X ≤lr Y as for the case Y ≤lr X the
assertion follows similarly. Note that, as in proof of Theorem 2.1,

X ≤lr Y ⇔ ηf (t) ≥ ηg(t), ∀t > 0. (2.13)

Also,

X ≤lr Y ⇒ X ≤st Y ⇔ F (u) ≥ G(u), ∀ 0 ≤ u < ∞. (2.14)

Using (2.13) and (2.14) in (2.12), we conclude that Z ′t(x) ≥ 0, ∀ 0 ≤ x < t, i.e.,
(min(X,Y ))(t) ≥lr min(X(t), Y(t)).

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2. If X =st Y , then (min(X,Y ))(t) ≥lr min(X(t), Y(t)).

Remark 2. The result stated in Corollary 2 is in by Li and Lu (2003).

Li & Lu (2003) proved that if X and Y are independent and identical distributed
then, for any t ≥ 0, (max(X,Y ))t ≤lr max(Xt, Yt). They also proved that if X
and Y are independent, but not necessarily identically distributed then, for any
t ≥ 0, (max(X,Y ))t ≤fr max(Xt, Yt). Here in the following theorem, we find the
sufficient conditions for (max(X,Y ))t ≤lr max(Xt, Yt) to hold when X and Y are
independent, but not necessarily identically distributed.

Theorem 2.3. If X ≤rfr Y, ηf ≤ 0 and ηg ≥ 0 or Y ≤rfr X, ηf ≥ 0 and
ηg ≤ 0 then, for any t ≥ 0, (max(X,Y ))t ≤lr max(Xt, Yt).

Proof. Let t ≥ 0 be fixed. Let H3,t(x) and h3,t(x) denote respectively the cu-
mulative distribution function and probability density function of random variable
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(max (X,Y ))t. Then for x ≥ 0,

H3,t(x) = P [(max(X,Y ))t ≤ x]

=
F (t+ x)G(t+ x)− F (t)G(t)

1− F (t)G(t)
, (2.15)

and

h3,t(x) =
f(t+ x)G(t+ x) + g(t+ x)F (t+ x)

1− F (t)G(t)
. (2.16)

LetM3,t(x) andm3,t(x) denote the cumulative distribution function and probability
density function of random variable max(Xt, Yt). We have, for x ≥ 0,

M3,t(x) = P ((max(Xt, Yt)) ≤ x)

=

(
F (t+ x) − F (t)

1− F (t)

)(
G(t+ x) − G(t)

1−G (t)

)
, (2.17)

and

m3,t(x) =
(G(t+ x) − G(t)) f(t+ x) + (F (t+ x) − F (t)) g(t+ x)

(1− F (t)) (1−G(t))
. (2.18)

Consider, for x ≥ 0,

R3,t(x) =
m3,t(x)

h3,t(x)

=

(
1− F (t)G(t)

(1− F (t)) (1−G(t))

)(
(G(t+ x)−G(t)f(t+ x)) + (F (t+ x)− F (t)g(t+ x))

(1− F (t)) (1−G(t))

)

= B(t)Ut(x),

where

B(t) =
1− F (t)G(t)

(1− F (t)) (1−G(t))
,

and

Ut(x) = 1− f(t+ x)G(t) + g(t+ x)F (t)

f(t+ x)G(t+ x) + g(t+ x)F (t+ x)
.

It is easy to verify that, for x ≥ 0,

U ′t(x) =
f(t+ x)g(t+ x)

[f(t+ x)G(t+ x) + g(t+ x)F (t+ x)]2

[
2 (G(t)f(t+ x) + g(t+ x)F (t))

+ (G(t+ x)F (t)−G(t)F (t+ x)) (ηg(t+ x)− ηf (t+ x))
]

(2.19)

We will prove the assertion for the case X ≤rfr Y, ηf ≤ 0 and ηg ≥ 0 as for the
case Y ≤rfr X, ηf ≥ 0 and ηg ≤ 0 the assertion follows similarly. Note that,

X ≤rfr Y ⇔ F (u)G(v) ≥ F (v)G(u), ∀ 0 ≤ u ≤ v < ∞. (2.20)

Now using (2.20), ηf ≤ 0 and ηg ≥ 0 in (2.19), we conclude that U ′t(x) ≥ 0, ∀x ≥ 0,
i.e., (max(X,Y ))t ≥lr max(Xt, Yt).



12

N. GUPTA, N. GANDOTRA AND R.K. BAJAJ

3. AGEING PROPERTIES:

In this section we discuss the aging properties of the residual life time and inactivity
time in series and parallel systems. The following property proves that if the random
variables X and Y have DRFR, then this property is preserved by the random
variable max (Xt, Yt).

Property 1. Suppose that the random variables X and Y have DRFR. Then,
for any t ≥ 0, the random variable max (Xt, Yt) has DRFR.

Proof. Fix t > 0. Let λt(x) and μt(x) denote respectively the reversed failure
rates of Xt and Yt and let M4,t(x) denote the cumulative distribution function of
max (Xt, Yt). Let FR,t(x) and GR,t(x) denote respectively the cumulative distribu-
tion functions of Xt and Yt. Then, for x ≥ 0,

λt(x) =
f(x+ t)

F (x+ t)− F (t)
, μt(x) =

g(x+ t)

G(x+ t)−G(t)
, and M4,t(x) = FR,t(x)GR,t(x).

X has DRFR implies that F (x)f ′(x) ≤ f2(x), ∀x > 0, which in turn implies that
λ′t(x) ≤ 0, ∀x > 0 (i.e., Xt has DRFR or equivalently ln (FR,t(x)) is concave in
x ∈ (0,∞)). Similarly Y has DRFR implies that Yt has DRFR (i.e., ln (GR,t(x)) is
concave in x ∈ (0,∞)). Thus if X and Y have DRFR then

ln (M4,t(x)) = ln (FR,t(x)GR,t(x)) = ln (FR,t(x)) + ln (GR,t(x))

is concave in x ∈ (0,∞), i.e., max (Xt, Yt) has DRFR.

In the following property we prove that if the random variables X and Y have
DRFR, then the random variable (max(X,Y ))(t) has IFR.

Property 2. Suppose that the random variables X and Y have DRFR. Then,
for any t ≥ 0, the random variable (max(X,Y ))(t) has IFR.

Proof. Fix t ≥ 0. Obviously if random variables X and Y have DRFR, then
max(X,Y ) also has DRFR. Also it is easy to verify that if a non-negative random
variable Z has DRFR then, for any s ≥ 0, the random variable Z(s) = (s−Z|Z ≤ s)
has IFR. Thus under the hypothesis of the theorem, max(X,Y ) has DRFR, which
in turn implies that (max(X,Y ))(t) has IFR.

In the following property we prove that if the random variables X and Y have
IFR, then the random variable max(X(t), Y(t)) has DRFR.

Property 3. Suppose that the random variables X and Y have IFR. Then, for
any t ≥ 0, the random variable max(X(t), Y(t)) has DRFR.

Proof. Fix t ≥ 0. Obviously if random variables X and Y have IFR, then ran-
dom variables X(t) and Y(t) have DRFR. This in turn implies that max(X(t), Y(t))
has DRFR.

In the following property we prove that if the random variables X and Y have
DRFR, then the random variable min(X(t), Y(t)) has IFR.

Property 4. Suppose that the random variables X and Y have DRFR. Then,
for any t ≥ 0, the random variable min(X(t), Y(t)) has IFR.
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Proof. Fix t ≥ 0. Obviously if random variables X and Y have DRFR, then
random variables X(t) and Y(t) have IFR. This in turn implies that (min(X,Y ))(t)
has IFR.

The following property proves that if the random variables X and Y have IFR,
then this property is preserved by the random variable min(Xt, Yt).

Property 5. Suppose that the random variables X and Y have IFR. Then, for
any t ≥ 0, the random variable min(Xt, Yt) has IFR.

Proof. Fix t ≥ 0. Obviously if random variables X and Y have IFR, then
random variables Xt and Yt have IFR. This in turn implies that min(Xt, Yt) has
IFR.

The following property proves that if the random variables X and Y have IFR,
then this property is preserved by the random variable (min(X,Y ))t.

Property 6. Suppose that the random variables X and Y have IFR. Then, for
any t ≥ 0, the random variable (min(X,Y ))t has IFR.

Proof. Fix t ≥ 0. Obviously if random variables X and Y have IFR, then
min(X,Y ) also has IFR. Also it is easy to verify that if a non-negative random
variable Z has IFR then, for any s ≥ 0, the random variable Zs = (Z − s|Z > s)
has IFR. Thus under the hypothesis of the theorem, min(X,Y ) has IFR, which in
turn implies that (min(X,Y ))t has IFR.

4. EXAMPLES

Weibull and Gompertz distribution are important life distributions which are used
in reliability modeling. In this section we provide some examples relevant to the
theory developed in Sections 2, 3. For a survey of these distributions one may refer
Marshall and Olkin (2007).

Weibull distribution
Consider that the random variable X has Weibull distribution with parameters

(α, λ) and with survival function

F̄ (x) = e−(λx)α , x > 0, λ > 0, α > 0.

Then, its probability density function is

f(x) = αλαxα−1e−(λx)α , x > 0, λ > 0, α > 0,

and

f ′(x) = αλαxα−2e−(λx)α ((α− 1)− αxαλα) .

Clearly f ′(x) ≤ 0, if α ≤ 1. Similarly let Y follows Weibull (β, μ). Note that f ′ ≤ 0
and g′ ≤ 0 ⇔ F and G are concave ⇒ lnF and lnG are concave ⇔ X and Y have
DRFR. Hence if X and Y follows Weibull(α, λ), α ≤ 1, and Weibull(β, μ), β ≤ 1,
then sufficient conditions of Property 1, 2 and 4 are satisfied.
It is well known that the random variable X, which follows Weibull(α, λ), has

IFR if α ≥ 1 (see Barlow and Proschan (1981)). Therefore, if X and Y follows
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Weibull(α, λ) α ≥ 1 and Weibull (β, μ), β ≥ 1, then sufficient conditions of Property
3, 5 and 6 are satisfied.
To observe when X ≤lr Y (Y ≤lr X), consider

g(x)

f(x)
=

β

α

μβ

λα
ψ(x),

where ψ(x) = xβ−αe(λx)
α

e−(μx)β . Further

ψ′(x) = xβ−α−1e(λx)
α

e−(μx)β
(
(β − α) + αλαxα − βμβxβ

)
= xβ−α−1e(λx)

α

e−(μx)β
(
α(λαxα − 1) + β(1− μβxβ)

)
,

if we take α = β, λ ≥ μ (α = β, λ ≤ μ), then ψ′(x) ≥ 0 (ψ′(x) ≤ 0), i.e., X ≤lr Y
(Y ≤lr X).
Hence if X and Y follows Weibull(α, λ) and Weibull(β, μ), respectively such that

α = β, it is clear from above arguments (also see Theorems 2.1 and 2.2) that,

(max(X,Y ))(t) ≤lr max(X(t),Y(t)),

and

(min(X,Y ))(t) ≥lr min(X(t), Y(t)).

Gompertz distribution
If we consider the random variable X has Gompertz distribution with scale pa-

rameter λ and frailiy parameter ξ, i.e., X follows Gompertz(λ, ξ). Then, the random
variable X has survival function

F̄ (x) = e−ξ(eλx−1), x ≥ 0, λ ≥ 0, ξ ≥ 0,

its probability density function is

f(x) = λξeλx−ξ(eλx−1), x ≥ 0, λ ≥ 0, ξ ≥ 0,

and

f ′(x) = λ2ξeλx−ξ(eλx−1)(1− ξeλx). (4.1)

On applying the Maclaurin’s series to eλx in expression (4.1), we have

f ′(x) = λ2ξeλx−ξ(eλx−1)

(
1− ξ

(
1 + λx+

(λx)2

2!
+ . . .

))

If we choose ξ > 1, then f ′(x) ≤ 0. Similarly let Y follows Gompertz(μ, η). Note
that f ′ ≤ 0 and g′ ≤ 0 ⇔ F and G are concave ⇒ lnF and lnG are concave
⇔ X and Y have DRFR. Clearly if X and Y follows Gompertz(λ, ξ), ξ > 1, and
Gompertz(μ, η), η > 1, respectively, then sufficient conditions of Property 1, 2 and
4 are satisfied.
To observe when X ≤lr Y (Y ≤lr X) consider for the case when λ = μ,

g(x)

f(x)
=

ηe−η(eλx−1)

ξe−ξ(eλx−1)

=
η

ξ
e(e

λx−1)(ξ−η),
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which is increasing (decreasing) in x if ξ ≥ η (ξ ≤ η). Therefore if we take λ = μ,
ξ ≥ η (λ = μ, ξ ≤ η) then X ≤lr Y (Y ≤lr X).

Hence if X and Y follows Gompertz(λ, ξ) and Gompertz(μ, η) respectively such
that λ = μ, it is clear from above arguments (also see Theorems 2.1 and 2.2) that,

(max(X,Y ))(t) ≤lr max(X(t),Y(t)),

and

(min(X,Y ))(t) ≥lr min(X(t), Y(t)).

5. CONCLUSION

The stochastic comparison of residual life and inactivity time of series and parallel
systems had been studied in the literature when the random variables are inde-
pendent and identically distributed. In this paper such results are extended when
the condition of identical distribution is omitted. By assuming that X and Y are
independent, but not necessarily identical distributed and letting X ≤lr Y, ηf ≤ 0
and ηg ≥ 0, (or Y ≤lr X, ηf ≥ 0 and ηg ≤ 0) we proved that the parallel system
of used components, i.e., max(Xt, Yt), is better than the used parallel system, i.e.,
(max(X,Y ))t, in the sense of likelihood ratio order. Also by assuming X and Y
are independent, but not necessarily identical distributed and letting X ≤lr Y , (or
Y ≤lr X) we proved that, for any t ≥ 0,

(max(X,Y ))(t) ≤fr max(X(t), Y(t));

and

min(X(t), Y(t)) ≤fr (min(X,Y ))(t) .

Also, we proved various aging properties of used/inactive parallel/series systems
and the parallel/series system of used/inactive components. These results are sup-
ported by well known distributions, such as Weibull and Gompertz distributions.
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