
Applying Fractional Calculus to Analyze
Economic Growth Modelling

D. LUO, J. R. WANG AND M. FEC̆KAN

Abstract

In this work, we apply fractional calculus to analyze a class of economic growth modelling (EGM) of the
Spanish economy. More precisely, the Grünwald-Letnnikov and Caputo derivatives are used to simulate
GDP by replacing the previous integer order derivatives with the help of Matlab, SPSS and R software. As
a result, we find that the data raised from the Caputo derivative are better than the data raised from the
Grünwald-Letnnikov derivative. We improve the previous result in [12].
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1. INTRODUCTION

It is well known that EGM is one of the most important models in studying the
dynamics of finance behaviour. After reviewing the classical EGM in the literature,
one can see that the integer order derivatives and integrals are always used to
characterize such procedure in the development of economics. However, there exist
some gaps by using the classical calculus to simulate the data from the real models.
Recently, the basic theory including existence theory, stability and control theory for
all kinds of fractional differential equations and inclusions [1; 2; 3; 4; 5; 6; 7; 8; 9] is
studied extensively. In addition, one can see that fractional calculus [10] is also
widely used to construct economic models involving the memory effect in the
evolutionary process. It has been proved that fractional models [11] are better than
integer models and provide an excellent tool for the description of memory of EGM,
which has been taken into account in [12; 13; 14; 15; 16; 17; 18; 19].

In [12], the authors study GDP growth for the Spanish and Portuguese cases by
applying Grünwald-Letnnikov fractional EGM via data between 1960 and 2012. By
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setting the mean absolute deviation as performance index and using Nelder-Mead’s
simplex search method, the coefficients and orders proposed in the fractional EGM
are obtained. By comparing the coefficients of fractional EGM and integer EGM, a
new hybrid model involving integer calculus and fractional calculus is established to
remove low influence variables in the models. It is shown that fractional models have
a better performance than the classical models.

In the present paper, we go on the study of GDP growth for the Spanish case to
improve fractional EGM in [12] by using different computational methods. More
precisely, we use four different EGMs, namely Grünwald-Letnnikov integer/fractional
type and Caputo integer/fractional type models. Moreover, Nelder-Mead’s simplex
search method is replaced by genetic algorithm to give orders in the current work.
The method of least squares is used to give the estimation of the coefficients. In spite
of software of Matlab, SPSS and R are also used in linear regression analysis. We
note that the Spanish case is used in this paper only for possibility to compare our
achievement and proposed models with previous ones.

2. INTEGER AND FRACTIONAL EGMS

Throughout of this paper, we denote land area by LA (km2), arable land by AL
(km2), population by P, school attendance by SA, gross capital formation by GCF,
exports of goods and services by EGS, general government final consumption
expenditure by GGFCE, money and quasi money by MQM, number of variables of
the model by NVM and number of parameters of the model by NPM. We remark that
all the data used here are taken from 1960 to 2012. We also denote the mean square
error by MSE, the mean absolute deviation by MAD, the coefficient of determination
by R2, Akaike Information Criterion by AIC and the weight of AIC for the i-th model
by ωi.

Consider the following general formulation of EGM: z = f (x1,x2, · · ·) where f is a
given function. For simplify, we introduce the following notations:

x1 x2 x3 x4 x5 x6 x7 x8

LA AL P SA GCF EGS GGFCE MQM

and

z n k t

GDP NVM NPM Year
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Define

MSE =

n
∑

i=1
(zi− z̃i)

2

n
,

MAD =

n
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i=1
|zi− z̃i|

n
,

R2 = 1−

n
∑

i=1
(zi− z̃i)

2

n
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(zi− z̄)2
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AIC = n log

n
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i=1
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2

n
+2k+

2k(k+1)
n− k−1

,

if we have m model, then

ωi =
exp
(
−

AICi−min
m

AIC
2

)
∑

m
j=1 exp

(
−

AIC j−min
m

AIC
2

) .
Next, we recall the following standard integer order model (IOM)

z(t) = ∑
i=1,2,3,4,6,7

cixi(t)+ c5(I1
t0,tx5)(t)+ ∑

i=8,9
cix′i(t).

We also need the following modified models:

• IOM1 (Grünwald-Letnnikov integer type)

z(t) = ∑
i=1,2,3,4,6,7

ci(
GLD0

t0,txi)(t)+ c5(
GLD−1

t0,tx5)(t)+ ∑
i=8,9

ci(
GLD1

t0,txi)(t),

• IOM2 (Caputo integer type)

z(t) = ∑
i=1,2,3,4,6,7

ci(
CD0

t0,txi)(t)+ c5(I1
t0,tx5)(t)+ ∑

i=8,9
ci(

CD1
t0,txi)(t),

• FOM1 (Grünwald-Letnnikov fractional type)

z(t) =
9

∑
i=1

ci(
GLDαk

t0,txi)(t),

• FOM2 (Caputo fractional type)

z(t) =
9

∑
i=1

ci(
CDαi

t0,txi)(t),
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where t0 denotes the first year and the fractional calculus [10] is given by

(Iα
a,tu)(t) :=

1
Γ(α)

∫ t

a

u(τ)
(t− τ)1−α

dτ, 0 < α ≤ 1,

and the Grünwald-Letnnikov (GL) derivative

GLDα
a,tu(t) = lim

h→0

∑
[(t−a)/h]
j=0

hα
(−1) jC j

α u(t− jh),

C j
α =

(−1) jΓ(α− j)
Γ( j+1)Γ(−α− j+1)

, 0 < α ≤ 1,

C j
α =

Γ(α +1)
Γ( j+1)Γ(α− j+1)

, −1≤ α < 0,

C j
α = 1, α = 0,

and the Caputo derivative

CDα
a,tu(t) =

1
Γ(1−α)

∫ t

a

u′(s)
(t− s)α

ds, t > a, 0 < α ≤ 1.

3. MAIN RESULTS

3.1. Economic data for Spanish economy

By using the Spanish data from 1960 to 2012 in [12, Table 5], we apply Matlab to
obtain the following figures (see Figure 1).

3.2. The coefficients and orders

By using genetic algorithm in the Matlab, we obtain the following data (see Tables
I and II). Here we remark that the coefficients are estimated by using the method of
least squares.
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Fig. 1. Data for Spanish
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Table I. The orders of the fractional operators
IOM1 FOM1 IOM2 FOM2

α1 0 0.31072 0 0.26735

α2 0 -0.75424 0 -0.69281

α3 0 -0.73633 0 -0.70304

α4 0 -0.99999 0 -0.67233

α5 -1 -1 -1 -0.60068

α6 0 -0.83616 0 -0.95969

α7 0 0.31073 0 0.43180

α8 1 -0.13985 1 0.31072

α9 1 -0.34465 1 -0.94727

Table II. The coefficients of the fractional operators
IOM1 FOM1 IOM2 FOM2

c1(×1005) 9.903 1.954 10.393 227.211

c2(×1009) 7.531 11.371 -0.872 9.732

c3(×1004) -1.416 -1.150 -0.851 -1.009

c4(×1010) -2.455 0.141 -0.207 1.576

c5(×10−1) 2.887 0.296 1.658 1.963

c6(×10−1) -2.123 4.707 -0.269 2.464

c7(×1000) -3.845 1.513 -1.16 1.072

c8(×10−2) 9.582 4.236 16.556 5.358

c9(×10−2) 1.759 9.542 12.459 -6.060

Now we are ready to give analysis by virtue of estimated value from Matlab via true
value.
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Table III: Performance indices for the Spanish economy

index Variable IOM1 FOM1 IOM2 FOM2

MSE(×1020) 4.042 0.638 3.075 0.479

R2 0.9947 0.9992 0.9960 0.9994

MAD(×1010) 1.666 0.642 1.540 0.569

AIC 2537.0 2439.1 2522.5 2423.9

AIC without x1 2536.8 2477.2 2523.6 2463.5

one variable x2 2535.3 2521.2 2519.6 2496.1

x3 2537.4 2508.4 2521.1 2496.3

x4 2534.7 2439.7 2519.5 2446.4

x5 2565.1 2437.0 2528.9 2440.3

x6 2534.6 2514.6 2519.6 2485.1

x7 2550.9 2445.4 2520.8 2450.6

x8 2538.2 2445.9 2537.4 2428.8

x9 2534.1 2441.8 2536.7 2422.7

ω found from the x1 7% 0% 3% 0%

AIC without one x2 15% 0% 24% 0%

variable x3 5% 0% 11% 0%

x4 20% 18% 24% 0%

x5 0% 73% 0% 0%

x6 21% 0% 24% 0%

x7 0% 1% 13% 0%

x8 4% 1% 0% 5%

x9 27% 7% 0% 95%

REMARK 3.1. The value 0% implies that the i-th variable for the corresponding
models cannot be removed in the simulation from Table III.
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3.3. Analysis of significance level

Now we apply Matlab, SPSS and R software to give the analysis of significance
level (see Tables IV and V)

Table IV. Significance level of GL model

IOM1 FOM1

Variable Matlab SPSS R Matlab SPSS R

x1 -0.765 0.557 1.637 3.326 5.378 6.841

x2 0.898 0.078 1.058 11.35 6.250 12.436

x3 -1.451 -1.711 -1.760 -10.479 -11.511 -10.623

t x4 -0.656 0.368 -0.901 1.663 -3.215 1.736

x5 4.869 8.353 6.001 0.787 -1.048 0.631

value x6 -0.530 -0.791 -0.584 9.760 3.949 11.473

x7 -3.156 -3.637 -4.035 2.855 .531 2.546

x8 2.006 2.149 2.049 2.755 .343 3.143

x9 0.512 0.510 0.391 2.172 7.868 2.541

x1 0.449 0.580 0.108699 0.001 0.000 1.96e-08

x2 0.374 0.938 0.295763 1.597e-14 0.000 5.33e-16

x3 0.154 0.094 0.085435 2.047e-13 0.000 1.00e-13

P x4 0.515 0.715 0.372647 0.104 0.002 0.08954

x5 1.550e-5 0.000 3.37e-7 0.436 0.300 0.53117

value x6 0.599 0.433 0.562351 1.793e-12 0.000 8.16e-15

x7 0.003 0.001 0.000215 0.007 0.598 0.01448

x8 0.051 0.037 0.046428 0.009 0.733 0.00299

x9 0.612 0.613 0.698030 0.035 0.000 0.01467

REMARK 3.2. The red data in Table IV denote 5% significance level.
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Table V. Significance level of Caputo model

IOM2 FOM2

Variable Matlab SPSS R Matlab SPSS R

x1 0.257 1.463 2.012 3.039 -6.802 7.020

x2 -0.130 -1.103 -0.126 4.478 7.638 11.312

x3 -1.161 -1.159 -1.241 -5.981 5.878 -11.178

t x4 -0.043 .890 -0.248 4.338 8.019 4.798

x5 2.879 3.159 3.021 3.722 2.982 4.632

value x6 -0.111 -.094 0.001 4.812 -5.245 10.100

x7 -1.013 -.638 -1.032 5.552 -4.452 5.638

x8 4.038 4.622 4.376 2.575 -2.736 2.783

x9 3.873 4.489 4.282 -1.311 7.173 -1.478

x1 0.798 0.150 0.05041 0.004 0.000 1.38e-08

x2 0.897 0.276 0.90010 5.479e-05 0.000 2.340e-14

x3 0.252 0.253 0.22103 3.901e-07 0.000 2.78e-14

P x4 0.966 0.378 0.80550 8.554e-05 0.000 1.83e-05

x5 0.006 0.003 0.00418 0.001 0.005 4.39e-05

value x6 0.912 0.925 0.99934 1.867e-05 0.000 8.69e-13

x7 0.317 0.527 0.30772 1.634e-06 0.000 1.35e-06

x8 2.181e-4 0.000 7.33e-05 0.014 0.009 0.0103

x9 3.616e-4 0.000 9.88e-05 0.197 0.000 0.1778

REMARK 3.3. The red data in Table V denote 5% significance level.

3.4. Fitting results

Now we are ready to give the fitting results for IOM, FOM1 and FOM2 (see Fig.
2).

REMARK 3.4. (i) From the figure of data fitting in IOM1 and FOM1, one can
see that the simulation result of FOM1 is better than the simulation result of IOM1.

(ii) From the figure of data fitting in IOM2 and FOM2, one can see that the
simulation results of IOM2 and FOM2 are very close to original data. However, R2

of FOM2 is closer to 1 than R2 of IOM2. Thus, FOM2 is better than IOM2.
(iii) From the figure of data fitting in IOM1 and IOM2 , one can see that the

simulation result of IOM2 is better than the simulation result of IOM1.
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Fig. 2. Data fitting
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original data

IOM2(R2=0.9960)

FOM2(R2=0.9994)
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(iv) From the figure of data fitting in FOM1 and FOM2, one can see that FOM2 is
closer to original data than FOM1 although the value of R2 for both FOM1 and FOM2
tend to 1.

From above, one can deduce that FOM2 is the most suitable model for this case.

3.5. Comparison of models

Finally, we present the following tables (see Table VI and Table VII) to compare the
current results with the previous ones in [12], which show that our results derived by
genetic algorithm are much better than the results derived by Nelder-Mead’s simplex
search method [12].

Table VI. The model of [12]
Integer Fractional Fractional Integer Fractional

(5) (6) (12) (13) (14)

AIC 2554.3 2473.8 2474.4 2552.9 2472

ωi 0% 0% 0% 0% 0%
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Table VII. Our results
IOM1 FOM1 IOM2 FOM2

AIC 2537 2439.1 2522.5 2423.9

ωi 0% 5% 0% 95%

3.6. Conclusions

This paper studies a class of economic growth modelling for the Spanish case.
Based on our results, four models of fractional calculus (IMO1, IMO2, FOM1 and
FOM2) are proposed. It is shown that the date of GDP raised from the Caputo
derivative are better than the Grünwald-Letnnikov derivative. They are not identical
in the significance level of models (t value and P value) via Matlab, SPSS and R
software. In addition, the data of FOM2 are derived via genetic algorithm and the
method of least squares, which is better than IOM1, IOM2, FOM1 and the reference
[12].
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