
In this paper, numerical solutions of the generalized Burgers-Huxley equation are obtained using a new
technique of forming improved exponential finite difference method. The technique is called implicit
exponential finite difference method for the solution of the equation. Firstly, the implicit exponential finite
difference method is applied to the generalized Burgers-Huxley equation. Since the generalized
Burgers-Huxley equation is nonlinear the scheme leads to a system of nonlinear equations. Secondly, at
each time-step Newton’s method is used to solve this nonlinear system then linear equations system is
obtained. Finally, linear equations system is solved using Gauss elimination method at each time-step. The
numerical solutions obtained by this way are compared with the exact solutions and obtained by other
methods to show the efficiency of the method.
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INTRODUCTION

Most of the problems in various field as physics, chemistry, biology, mathematics
and engineering modeled by nonlinear partial differential equations. One of the
nonlinear partial differential equations is the generalized Burgers-Huxley equation.
The generalized Burgers-Huxley equation of the form;
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The exact solution of Eq. (1) is
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and α, β ,γ and δ are parameters that β ≥ 0, δ > 0, γ ∈ (0,1) . When α = 0 and δ = 1,
Eq. (1) is reduced to the Huxley equation which describes nerve pulse propagation in
nerve fibres and wall motion in liquid crystals[1]

∂u
∂ t
− ∂ 2u

∂x2 = βu(1−u)(u− γ) . (6)

When β = 0 and δ = 1, Eq. (1) is reduced to the Burgers equation which describes
the far field of wave propagation in nonlinear dissipative systems[1]

∂u
∂ t

+αu
∂u
∂x
− ∂ 2u

∂x2 = 0. (7)

It is known that nonlinear diffusion equations (6) and (7) play important roles in
nonlinear physics. They are of special significance for studying nonlinear phenomena.
If we take δ = 1 and α 6= 0, β 6= 0, Eq. (1) becomes the following Burgers-Huxley
equation:

∂u
∂ t

+αu
∂u
∂x
− ∂ 2u

∂x2 = βu(1−u)(u− γ) . (8)

Eq. (8) shows a prototype model for describing the interaction between reaction
mechanisms, convection effects and diffusion transport. This equation was
investigated by Satsuma in 1986[1].

In literature, many numerical methods have been proposed for approximating
solution of the generalized Burgers-Huxley equation. Ismail et al.[2] solved the
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generalized Burgers-Huxley and Burgers-Fisher equations by using the Adomian
decomposition method. Hashim et al.[3] used the decomposition scheme obtained
from the Adomian decomposition method yields an analytical solution in the form of
a rapidly convergent series for the numerical solutions of the generalized
Burgers-Huxley equation. Javidi[4, 5] presented methods for solving of the equation
by using the collocation formula for calculating spectral differentiation matrix for
Chebyshev-Gauss-Lobatto point. Spectral collocation method and Darvishi’s
preconditionings to solve the generalized Burgers-Huxley equation was used by
Darvishi et al.[6]. Batiha et al. [7] used the variational iteration method, which based
on the incorporation of a general Lagrange multiplier in the construction of
correction functional for the equation. Numerical solutions of the equation was
obtained using a polynomial differential quadrature method by Sari and Gürarslan[8].
For numerical solution of the equation, based on collocation method using Radial
basis functions, called Kansa’s approach was used by Khattak[9]. Javidi and
Golbabai[10] presented the spectral collocation method using Chebyshev
polynomials for spatial derivatives and fourth order Runge-Kutta method for time
integration to solve the generalized Burgers-Huxley equation. Biazar and
Mohammadi[11] used the differential transform method for solution of the equation.
A fourth order finite-difference scheme in a two-time level recurrence relation was
proposed for the equation by Bratsos[12]. Dehghan et al. [13] found numerical
solution of the generalized Burgers Huxley equation using three methods based on
the interpolation scaling functions and the mixed collocation finite difference
schemes. Çelik[14] used Haar wavelet method for solving the equation. El-Kady et

al. [15] proposed based on cardinal Chebyshev and Legendre basis functions with
Galerkin method for solution of the equation. The discrete Adomian decomposition
method was applied to a fully implicit scheme of the generalized Burgers-Huxley
equation by Al-Rozbayani[16]. Mittal and Tripathi[17] used the collocation of cubic
B-splines method for numerical solution of the generalized Burgers-Fisher and
generalized Burgers-Huxley equations. Chebyshev Wavelet collocation method for
solving generalized Burgers-Huxley equation proposed by Çelik[18].

The explicit exponential finite difference method was originally developed by
Bhattacharya for solving of the heat equation[19]. Bhattacharya[20] and Handschuh
and Keith[21] used exponential finite difference method for the solution of Burgers
equation. Bahadir solved the KdV equation by using the exponential finite difference
technique[22]. Implicit exponential finite difference method and fully implicit
exponential finite difference method was applied to the Burgers equation by Inan and
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Bahadir[23].
In this paper, we develop an implicit exponential finite difference scheme for

solving the generalized Burgers-Huxley equation. In here, as different from the
previous methods, implicit exponential finite difference method is applied to directly
the non-linear generalized Burgers-Huxley equation. Some examples are presented to
show the ability of this method to solve the equation. It is clearly seen that numerical
method is reasonably in good agreement with the exact solution.

IMPLICIT EXPONENTIAL FINITE DIFFERENCE METHOD

We rearrange Eq. (1) to obtain
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∂ t
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Using the finite difference approximations for derivatives Eq. (10) have been taken
following form
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Eq. (11) is the implicit exponential finite difference method for solution of the
generalized Burgers-Huxley equation. Where the solution domain is discretized into
cells described by the nodes set (xi, tn) in which xi = ih, (i = 0,1,2, ...,N) and tn =

nk, (n = 0,1,2, ...), h = ∆x = 1−0
N is the spatial mesh size and k = ∆t is the time step.

Also Un
i denotes the finite difference approximation to the exact solution u(x, t). Eq.

(11) is system of nonlinear difference equations. Let us consider the nonlinear system
of equations in the form

F(V) = 0 (12)
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where F = [ f1, f2, ..., fN−1]
T and V =

[
Un+1

1 ,Un+1
2 , ...,Un+1

N−1

]T
. Newton’s method

applied to Eq. (12) results in the following iteration:
1. Set V(0), an initial guess.
2. Solved V(m+1) = V(m)− J(V(m))−1F(V(m)) for m = 0,1,2, . . .
where J(V(m)) is the Jacobian matrix which is evaluated analytically. The solution

at the previous time-step is taken as the initial estimate. The Newton’s iteration at each
time-step is stopped when

∥∥∥F(V(m))
∥∥∥

∞

≤ 10−5. The convergence is generally obtained
in two or three iterations. The accuracy of the method is measured in terms of the error
norm defined by

E =


N
∑

i=0
|ui−Ui|2

N
∑

i=0
|ui|2


1
2

. (13)

NUMERICAL RESULTS

In this section, we obtain numerical solutions of the generalized Burgers-Huxley
equation by implicit exponential finite difference method and exact solutions for
problems. The accuracy of the proposed method is measured using the absolute error
which defined by

|u(xi, tn)−U (xi, tn)| .

All of the computational work is performed with h = 0.01 and k = 0.0001.
Problem 1. In Table 1,3,4 we present numerical and exact solutions for various

values of x, t and δ with α = 1, β = 1, γ = 0.001. The absolute errors obtained by
the present method are compared with the other methods [2, 3, 7] in Table 2. All
comparisons show that the present methods offer better results than the others.

Problem 2. Absolute errors for various values of x, t and δ with α = 0.1, β =

0.001, γ = 0.0001 showed in Table 5.
Problem 3. Table 6 shows absolute errors for various values of x , t and β with

α = 1, δ = 1, γ = 0.0001.
Problem 4. Table 7 presents absolute errors for various values of x, t and γ with

α = 5, β = 10, δ = 2.
From all of the computed results is observed that values of the errors are very

small. Also, it should be noted that the accuracy of the results decreased when δ and
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β increased and the accuracy increased when γ decreased. From comparisons of the
numerical results with the exact solutions it is deduced that the proposed method gives
highly accurate solutions. The rates of convergence of the method, computed using

rate =
log
(
Eh/Eh/2

)
log(2)

(14)

where Eh and Eh/2 are the errors defined in Eq. (13) with the grid size h and h/2,
respectively. Rate of convergence at δ = 1 and t = 1 for the Problem 2 is shown
in Table 8. From the table, we observe that the proposed method is second order
accurate in space. From this table, it can be seen that errors approach to zero as the
mesh refines, which shows that the scheme is consistent.

Table 1. Numerical solutions for δ = 1.

x t Numerical Solution Exact Solution Absolute Error

0.1 0.05 0.000500022 0.000500037 1.544843E−08
0.1 0.000500040 0.000500063 2.258727E−08
1 0.000500478 0.000500512 3.372929E−08
5 0.000502477 0.000502511 3.373004E−08
10 0.000504975 0.000505009 3.372751E−08

0.5 0.05 0.000500058 0.000500087 3.469057E−08
0.1 0.000500055 0.000500112 5.764000E−08
1 0.000500468 0.000500562 9.369800E−08
5 0.000502467 0.000502561 9.370081E−08
10 0.000504966 0.000505059 9.369382E−08

0.9 0.05 0.000500122 0.000500137 1.544951E−08
0.1 0.000500140 0.000500162 2.258957E−08
1 0.000500578 0.000500612 3.373378E−08
5 0.000502577 0.000502611 3.373453E−08
10 0.000505075 0.000505109 3.373201E−08
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Table 2. Comparison of the absolute errors for δ = 1.

x t Present Method [2] [3] [7]

0.1 0.05 1.544843E−08 1.93715E−07 1.87406E−08 1.87405E−08
0.1 2.258727E−08 3.87434E−07 3.74812E−08 3.74813E−08
1 3.372929E−08 3.87501E−06 3.74812E−07 3.74812E−07

0.5 0.05 3.469057E−08 1.93730E−07 1.87406E−08 1.87405E−08
0.1 5.764000E−08 3.87464E-07 3.74812E−08 1.37481E−08
1 9.369800E−08 3.87531E-06 3.74812E−07 3.74813E−07

0.9 0.05 1.544951E−08 1.93745E-07 1.87406E−08 1.87405E−08
0.1 2.258957E−08 3.87494E-07 3.74812E−08 3.74813E−08
1 3.373378E−08 3.87561E-06 3.74812E−07 3.74813E−07

Table 3. Numerical solutions for δ = 2.

x t Numerical Solution Exact Solution Absolute Error

0.1 0.05 0.022362607 0.022364010 1.402926E−06
0.1 0.022364804 0.022366855 2.051046E−06
1 0.022414941 0.022417997 3.056210E−06

0.5 0.05 0.022362802 0.022365952 3.150237E−06
0.1 0.022363563 0.022368796 5.233912E−06
1 0.022411444 0.022419934 8.490077E−06

0.9 0.05 0.022366491 0.022367893 1.402867E−06
0.1 0.022368687 0.022370738 2.051080E−06
1 0.022418815 0.022421871 3.056440E−06
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Table 4. Numerical solutions for δ = 3.

x t Numerical Solution Exact Solution Absolute Error

0.1 0.05 0.079382156 0.079390945 8.789379E−06
0.1 0.079397433 0.079410279 1.284676E−05
1 0.079737642 0.079756666 1.902469E−05

0.5 0.05 0.079377402 0.079397138 1.973612E−05
0.1 0.079383686 0.079416470 3.278338E−05
1 0.079709947 0.079762802 5.285447E−05

0.9 0.05 0.079394543 0.079403331 8.788219E−06
0.1 0.079409813 0.079422659 1.284610E−05
1 0.079749911 0.079768936 1.902522E−05

Table 5. Absolute errors for various values of x, t and δ .

x t δ = 1 δ = 2 δ = 4 δ = 8

0.1 0.2 1.561971E−13 3.838021E−11 1.277132E−9 1.743995E−8
0.5 1.770063E−13 4.349335E−11 1.447275E−9 1.976331E−8
0.8 1.780854E−13 4.375852E−11 1.456099E−9 1.988374E−8

0.5 0.2 4.238227E−13 1.041405E−10 3.465347E−9 4.732128E−8
0.5 4.911626E−13 1.206870E−10 4.015944E−9 5.483986E−8
0.8 4.946546E−13 1.215451E−10 4.044498E−9 5.522962E−8

0.9 0.2 1.561971E−13 3.838038E−11 1.277131E−9 1.743996E−8
0.5 1.770063E−13 4.349352E−11 1.447276E−9 1.976332E−8
0.8 1.780854E−13 4.375869E−11 1.456099E−9 1.988376E−8
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Table 6. Absolute errors for various values of x , t and β .

x t β = 1 β = 10 β = 100

0.1 0.2 2.959033E−10 4.142647E−9 4.662398E−8
0.5 3.353246E−10 4.694542E−9 5.283266E−8
0.8 3.373690E−10 4.723160E−9 5.314880E−8

0.5 0.2 8.029042E−10 1.124065E−8 1.265096E−7
0.5 9.304752E−10 1.302665E−8 1.466032E−7
0.8 9.370912E−10 1.311926E−8 1.476294E−7

0.9 0.2 2.959071E−10 4.142698E−9 4.662452E−8
0.5 3.353291E−10 4.694604E−9 5.283328E−8
0.8 3.373735E−10 4.723223E−9 5.314937E−8

Table 7. Absolute errors for various values of x, t and γ.

x t γ = 10−3 γ = 10−4 γ = 10−5

0.1 0.2 2.075083E−5 6.580584E−7 2.081548E−8
0.5 2.339464E−5 7.453542E−7 2.358742E−8
0.8 2.340002E−5 7.494830E−7 2.372992E−8

0.5 0.2 5.633069E−5 1.785646E−6 5.648063E−8
0.5 6.495332E−5 2.068347E−6 6.545147E−8
0.8 6.503520E−5 2.081902E−6 6.591322E−8

0.9 0.2 2.076000E−5 6.580875E−7 2.081557E−8
0.5 2.340657E−5 7.453920E−7 2.358754E−8
0.8 2.341208E−5 7.495213E−7 2.373004E−8
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Table 8. Rate of convergence for δ = 1 at t = 1.

N rate

2 -
4 0.175608438
8 0.078691220
16 0.041403087
32 0.021266315
64 0.011014546

CONCLUSION

In this paper, we have defined a new implicit exponential finite difference method
for solving the generalized Burgers-Huxley equation. Numerical solutions for
different test problems are given using tables. According to the results presented in
these tables, the present method offer high accuracy for the numerical solutions of
the nonlinear generalized Burgers-Huxley equation. In the other hand, as can be seen
from Table 2, results obtained by the implicit exponential finite difference scheme
has better than results obtained from the other numerical schemes.
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