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Abstract

The lack of attention during the driving task is considered as a major risk factor for fatal
road accidents around the world. Despite the ever-growing trend for autonomous driv-
ing which promises to bring greater road-safety benefits, the fact is today’s vehicles still
only feature partial and conditional automation, demanding frequent driver action. More-
over, the monotony of such a scenario may induce fatigue or distraction, reducing driver
awareness and impairing the regain of the vehicle’s control. To address this challenge,
we introduce a non-intrusive system to monitor the driver in terms of fatigue, distraction,
and activity. The proposed system explores state-of-the-art sensors, as well as machine
learning algorithms for data extraction and modeling. In the domain of fatigue supervi-
sion, we propose a feature set that considers the vehicle’s automation level. In terms of
distraction assessment, the contributions concern (i) a holistic system that covers the full
range of driver distraction types and (ii) a monitoring unit that predicts the driver activity
causing the faulty behavior. By comparing the performance of Support Vector Machines
against Decision Trees, conducted experiments indicated that our system can predict the
driver’s state with an accuracy ranging from 89% to 93%.

Keywords: driver monitoring system, intelligent transportation systems, driver distrac-
tion monitoring, driver fatigue monitoring

1 Introduction

Motor vehicle traffic crashes are among the lead-
ing causes of death all over the world, being driver
inattention the most relevant source of the reported
injuries [1]. A study published by the National
Highway Traffic Safety Administration (NHTSA),
in 2015, reported that 94% of traffic accidents are
caused by driver-induced errors. Specifically, dis-
traction and fatigue are the most frequent causes,
representing 41% of the injuries [2]. In the years to
come, addressing these issues will be critical to the

breakthrough of the autonomous driving paradigm.
This advent will have major socio-economic impli-
cations on society, reshaping its lifestyle and re-
defining its key-infrastructures. Fueled by these
concerns and challenges, the academia and industry
are pushing the technology boundaries to achieve
more practical and viable solutions. As such, Driver
Monitoring Systems (DMSs) capable of (i) super-
vising fatigue and distraction, and consequently (ii)
avoiding dangerous driver behavior, have received
great attention from the academia and automotive
industry [3, 4].
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Moving towards a society of automated driving
environments raises a set of new challenges in the
context of DMSs [5]. In such scenarios, the vehicle
performs almost all tasks required for the driving
operation. However, in case of an emergency, an
automation level equivalent to Society of Automo-
tive Engineers (SAE) 2 or 3 requires the driver to
be ready to resume control within the shortest time
possible, as the vehicle gets out of its Operational
Design Domain (ODD) - the specific conditions un-
der which a given automation system is designed
to function [6]. Due to the lack of active involve-
ment in the driving task, drivers may feel a natural
tendency to engage in non-driving related activities,
which reduces their alertness and, consequently, the
ability to perform the fallback operation [7] - the re-
sponse given by the driver to achieve a minimal risk
condition as the automation system leaves its ODD
[6]. Some studies proved that the quality of the fall-
back process decreases as the complexity of driving
non-related tasks increase [8, 9]. This complexity is
intrinsically dependent on the type(s) of distraction
unleashed: (i) visual, (ii) manual, or (iii) cognitive.
Furthermore, other studies [10, 11] also show that
drivers in a partial or conditional autonomous sce-
nario may become fatigued and drowsy faster than
on manual driving scenarios. Clearly, a fatigued or
distracted driver has reduced situation awareness,
which could lead to delayed reactions and impaired
driving performance in a fallback situation [10, 11].
We envision that future in-vehicle information sys-
tems will have the ability to adapt the cockpit ac-
cording to these type of driving situations, coun-
teracting dangerous driver behavior; however, this
requires techniques for the real-time monitoring of
the driver’s state [12].

To overcome this problem, automotive key
players have proposed different driver monitoring
mechanisms, exploring new sensing technologies
and software algorithms. Traditional physiolog-
ical sensors, such as those capable of acquiring
electrocardiograms or electroencephalograms have
demonstrated an impressive capacity to assess the
driver state in terms of distraction, stress, and fa-
tigue. Nonetheless, due to their intrusive nature,
they are only used for validation purposes [3, 13].
In fact, the current state-of-the-art monitoring sys-
tems are based on non-intrusive sensors, embedded
in the vehicle’s cockpit, designed to acquire either
(1) driver’s performance data, such as vehicle speed

and steering movements, or (ii) driver’s facial and
body pose features, such as eye gaze and head pose
[3, 14, 15]. A notable advantage of the later mon-
itoring systems over the former ones is their com-
patibility with partial and conditional autonomous
vehicles. Since in such scenarios the driving task
is performed by the vehicle itself, the driver’s per-
formance cannot be assessed, and consequently, the
systems are not able to infer the driver’s state, which
is preponderant in a fallback situation.

Despite not being as accurate as traditional
physiological sensors, facial and body pose-based
systems present an excellent trade-off between fa-
tigue and distraction detection, which can be im-
proved using data analytic techniques. It is clear
that Artificial Intelligence (Al) areas, such as Ma-
chine Learning (ML), play a significant role in the
context of advanced driver assistance and monitor-
ing systems [16, 17]. Empowered with such emerg-
ing challenges, we present in this paper a DMS ca-
pable of supervising the driver in terms of fatigue,
distraction, and activity, by exploiting non-intrusive
sensor data and features, assisted by ML models
- Support Vector Machines (SVMs) and Decision
Trees (DTs). Concerning the fatigue assessment,
the system was designed to issue a warning as soon
as the driver shows some signs of drowsiness. In
terms of distraction, we covered the whole range
of distraction types, the driver might be exposed
to [3, 18]: (i) visual, (ii) manual, and (iii) cogni-
tive. The classification of the distraction state is en-
hanced by an activity assessor that recognizes four
out of the ten deadliest driving non-related activities
[19]: (i) using a mobile phone, (ii) looking to an ex-
ternal event, (iii) interacting with the infotainment,
and (iv) interacting with passengers. As a matter of
fact, current DMSs does not provide such a com-
prehensive classification of the driver’s state. In
particular, frameworks to supervise driver distrac-
tion focus only on a specific type of distraction and
cannot infer which driving non-related activity is
causing the faulty behavior. In this paper, however,
we follow a holistic approach, presenting a novel
architecture for DMSs. Conducted driving simu-
lator experiments revealed that our system predicts
the driver’s state with an average accuracy between
89% to 93%.
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2 Background

May and Baldwin [20] defined two types of
driver fatigue: (i) sleep-related and (ii) task-related
fatigue. The former results from sleep depriva-
tion, extended duration of wakefulness and time-of-
day (circadian rhythm effect); the latter is related
to mental overload or underload, caused by cer-
tain characteristics of the driving context, such as
task demand and duration. Therefore, task-related
fatigue can be sub-classified as active or passive.
Active fatigue is caused by high demand and high
mental workload driving situations, while passive
fatigue is caused by predictable and monotonous
tasks. By applying this fatigue model to an au-
tonomous driving scenario, it can be concluded that
higher automation levels promote passive fatigue
and decrease the active component, as the driver’s
only task is to monitor the system and take over
vehicle control when the automation system expe-
riences an ODD departure and requires a fallback
maneuver [20, 21].

According to the literature [3, 18], there are
three types of distraction which drivers are exposed
to: (i) visual, (ii) manual, and (iii) cognitive. The
former is induced by tasks that require the driver
to look away from the roadway, such as reading or
watching a video. Manual distraction occurs when
the driver takes away one or both hands from the
Steering Wheel (SW) to perform a non-driving re-
lated activity, such as eating or manipulating the in-
fotainment system. Cognitive distraction is related
to tasks that involve thinking about something other
then the driving activity, affecting the driver’s men-
tal workload [3, 18]. This category encompasses
tasks such as talking to passengers or thinking about
something upsetting.

Conventionally, tasks performed by a vehicle’s
driver are classified as (i) primary, (ii) secondary,
or (iii) tertiary tasks [22, 23]. The former con-
sists of real required driving operations to control
the lateral and longitudinal movement of the vehi-
cle. In turn, the second category refers to activities
that support the primary task and are important for
traffic safety, such as activating indicators or head-
lights. The tertiary task includes convenience activ-
ities that are not related to the driving task, such
as controlling the infotainment system. This ap-
proach can be successfully applied to classify the

drivers’ tasks in vehicles with no driving automa-
tion or with simple driver assistance systems (SAE
level O or 1). However, the paradigm shift caused
by autonomous driving is disrupting the traditional
control of a vehicle by drivers (decision-making and
operation), and therefore, the activities performed
by them [24]. In fact, in partially automated driving
(SAE level 2), the driver’s main task is the moni-
toring of the vehicle’s operation within the road en-
vironment, while in conditional automated driving
(SAE level 3), the driver only needs to perform fall-
back operations, with no need to monitor the vehi-
cle. In highly or fully automated driving (SAE level
4 or 5), the driver acts as a simple passenger [6]. In
this context, actTypes3 classified the diver’s tasks
into (i) driving-related tasks and (ii) non-driving re-
lated tasks. In manual driving, the former com-
prises all activities required to safely control the ve-
hicle, i.e., the traditional primary driving task, or
to increase driving safety and performance, i.e., the
former secondary task. In partial and conditional
automated driving (SAE levels 2 and 3), it includes
activities related to the supervision of driving envi-
ronment and fallback operation, while in highly and
fully automated mode (SAE levels 4 and 5), it only
includes simple activities, such as setting the desti-
nation. The non-driving related tasks, as expected,
refers to tasks that are not related to driving, such as
managing infotainment systems or communicating
with passengers. This also includes new activities
that will become possible with autonomous driv-
ing, such as reading, eating or even sleeping. Since
this work aims to design and develop a DMS for the
manual and conditional automated driving contexts
(SAE levels 0 to 3, inclusive), future references to
types of driving activities will use the classification
proposed by actTypes3.

Typically, non-intrusive DMSs take advantage
of the driver’s visual behavior to infer his/her state.
Consequently, it is essential to review the conven-
tional concepts about eye movements inherent to
the humans’ physiology [25]:

1. Saccades: This term refers to the simultaneous
movement of both eyes. It aims to move the
fovea, the only eye region capable of perceiving
images with high acuity, rapidly from one point
of interest to another [25]. The ballistic aspect
of this movement allows the driver to focus on
various parts of the visual world, gathering in-
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formation to build a mental map of the observed
scene.

2. Fixations: A state of relative stability, where the
gaze is held upon a target in the field of view, al-
lowing the visual system to take detailed infor-
mation about what is being observed [25]. Gen-
erally, a fixation takes more than 100 millisec-
onds, with the duration often used as a metric
that reflects the complexity of the visual infor-
mation the human wants to extract [26].

3. Blinks: A rapid closing and reopening move-
ment of the eyelid that produces tears and
spreads them evenly across the front surface of
the eye, maintaining it smooth and clear. The av-
erage blink rate shows high inter-individual vari-
ability, ranging from 10 to 30 blinks per minute
[27]. This frequency may be affected by en-
vironmental factors, physical activity, cognitive
workload, and fatigue [25].

3 DMS Architecture
q;) Distraction Assessor
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% Driver Monitoring Controller
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I Monitoring Data Flow
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Figure 1. Overall DMS architecture

Figure 1 depicts the architecture of the proposed
DMS, comprising three main layers serving spe-
cific tasks: (i) data, (ii) control, and (iii) classifi-
cation. The former encompasses the sensor array
module, which encloses all sensory systems that
collect driver-related data. To provide a full mon-
itoring of the driver’s state, the overall monitoring
system relies on a multi-modal dataset, extracting
features related to the driver’s physiology and ve-

hicle’s telematics. The core unit of the system is
integrated into the control layer. This layer is re-
sponsible for managing the driver monitoring mod-
ules contained in the upper layer and for controlling
the data that flows to them. The upper layer (classi-
fication) is composed of three main modules and is
responsible for classifying the driver’s state in terms
of fatigue, distraction, and activity.

3.1 Data Layer

Sensor Array

Eye and Head Tracker

IR Image Eye Movement Detector
Cameras Processing
Saccades
; Fixations
Feature :
Extraction Blinks
Ancho Radar SW Assist DSM
Heart Rate Respiration FSR Vehicle's
Monitor Rate Monitor Telematics

Figure 2. Sensor array - architecture

The architecture of the sensor array block is
detailed in Figure 2. In order to take full advan-
tage of the driver visual behavior, the system re-
lies on a commercial eye and head tracker (Smart
Eye Pro (SEP) [28]), with four InfraRed (IR) cam-
eras that can be distributed over the cockpit’s dash-
board. Since the cameras are only sensible to IR
light, it is possible to capture the driver’s face un-
der different lighting conditions, even if the driver
wears sunglasses or eyeglasses. The software plat-
form employs a set of image processing techniques,
which allows to extract a batch of relevant features
from the driver’s eyes and head, as well as to iden-
tify three different eye movements: (i) saccades,
(ii) fixations, and (iii) blinks. Regarding the head
tracking path, this sensor can estimate the 3D pose
of the subject’s head, in terms of position and ori-
entation, within a predefined world coordinate sys-
tem. The eye tracking sub-module, besides detect-
ing the aforementioned eye movements is also re-
sponsible for getting features related to eyes’ ori-
entation, eyelids’ opening, and pupils’ diameter. In
addition to these functionalities, the SEP platform
employs mechanisms that allow uploading a world
model, describing the driver’s field of view, and in-
fer, in real-time, which scenario’s element is being
observed. We considered the driver’s field of view



DETECTING DRIVER'’S FATIGUE, DISTRACTION AND ...

251

divided into four quadrants, two of which divide the
road straight ahead. Some additional elements nec-
essary to assist the driver, such as the side and rear
mirrors and the cluster were defined in the world
model as well. All aforementioned measures are
provided along with a quality factor, useful to de-
termine the validity of a sample.

Even in the field of physiological features, we
used a commercial contactless biometric sensor
(Ancho Radar [29]) to estimate the driver’s heart
and respiration rate. Such sensor relies on radio
frequency waves that measure and capture small
movements in the human body. When correctly
placed in the cockpit, it can track the driver’s chest,
which enables the computation of the heart and res-
piration rate in real-time.

Along with these tracking systems, the sensor
array also features a device to detect the presence
of both, one, and none of the driver’s hands in the
vehicle’s SW. For this purpose, it uses two Force
Sensitive Resistors (FSR), located on each side of
the SW, generating two signals that reflect the con-
ductivity of the sensor. Remaining telematics are
outputted from a Driving Simulator Mockup (DSM)
[30], used as a testing platform for the DMS, which
allowed a wide range of data measures to be col-
lected including driving performance metrics (e.g.
daytime and vehicle’s automation level).

3.2 Control Layer

As aforementioned, the driver monitoring con-
troller acts as the central unit of the entire system.
Its functionality is split into two sub-modules: (i)
the monitoring modules manager and (ii) the data
flow controller (Figure 1). The former is a sim-
ple graphical user interface that controls each of
the three monitoring units (fatigue, distraction, and
activity assessor modules), enabling the user to or-
thogonally switch on/off any of these units. Every
time the driver updates this specification, a message
containing the new settings is sent to the data flow
controller, which updates the list of signals, yield
by the data layer, that are sent to the classification
layer. Regardless of the data source, the data flow
controller must check the quality parameter of the
measures received, forwarding them to the respec-
tive monitoring units only when the quality stan-
dards are met.

3.3 Fatigue Assessor

Eye Tracking Data Fatigue Assessor
e

Heart Rate Drowsiness Detector
Respiration Rate |
Car's Telematics o[ Extraction ~ > ML Model

Figure 3. Fatigue assessor - architecture

The assessment of driver’s fatigue state relies on
the classification of physiological and driving con-
text features by an ML model (Figure 3). The phys-
iological features are provided by the SEP and the
Ancho Radar. The SEP monitors the driver’s eyes,
outputting the opening values of both eyelids and
the result of the blink detection filter used to calcu-
late the PERcentage of eye CLOsure (PERCLOS)
and the blink rate, respectively. The Ancho Radar
was specifically introduced to measure the respira-
tion and heart rate of the driver, which proved to be
a reliable set of data in fatigue detection. In order
to reduce the effect of noisy data points, the mea-
sures received from both sensors are submitted to
a median filter with a window size set to 3. The
described set of physiological features is calculated
using a sliding window that grabs the data of the
past 20 seconds, with a step size of 1 second. Ev-
ery time a sliding window is filled up, this mon-
itoring module issues a query to the DSM, which
replies with the current time-of-day (day or night)
and automation level of the vehicle. After normal-
izing these 6 features (Figure 4) to the range [0, 1],
the system employs a binary ML model to classify
the driver’s state as attentive or fatigued. The con-
struction of this ML model is described in Section
4,

physilogical data driving context

PERCLOS heart daytime automation
rate level
blink respiration
rate rate

Figure 4. Features for fatigue detection

3.4 Distraction Assessor

The distraction assessor unit (Figure 5) provides
a complete monitoring of the driver’s distraction
state, by offering specialized sub-modules in the de-
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tection of visual, manual and cognitive distraction.
These sub-modules are executed in parallel and they
operate independently of each other.

Distraction Assessor

Visual Distraction

GCwiI PERLOOK
Analysis Calculus

Eye Tracking Data
EEE—"

Manual Distraction Detector

Car's Telematics

EEE—— Hands off Steering Wheel

Timer

Eye Tracking Data Cognitive Distraction Detector

acking ety
Heart Rate Feature o \ii Model
——— » Extraction

Figure 5. Distraction assessor - architecture

In order to monitor visual distraction, the sys-
tem takes advantage of the SEP to infer which el-
ement of the world model is the driver looking at.
From the analysis of the Gaze Closest World Inter-
section (GCWI), the eye tracking system outputs a
variable that names the intersected world element,
which, as detailed in Figure 5, is used to compute
the PERcentage of time the driver is not LOOK-
ing ahead (PERLOOK). More specifically, this pa-
rameter is calculated over a sliding window, which
accumulates the name of the gaze intersected ele-
ments for the past 10 seconds, with a step size of
1/60 seconds. This step size corresponds, in prac-
tice, to the inverse of the SEP sampling frequency
(60 Hz), ensuring that every time the window ad-
vances only one sample is removed, being also only
one added. This configuration matches the one used
by RW-VisualDist1, which proposed and evaluated
the PERLOOK for visual distraction inference. To
calculate the PERLOOK, this module considers that
the Field Relevant for Driving (FRD) is only com-
posed by the road straight ahead, which is divided
into two quadrants in the SEP’s world model. Every
time the driver’s gaze fades away from the FRD, the
system increases the PERLOOK parameter. Excep-
tions are made when the driver focus the side or rear
mirrors, or the cluster. In this case, the PERLOOK
is only incremented after 1 second. This modus
operandi meets the premise defined by the AttenD
algorithm [31], which states that eye glances for
driving support elements are only considered as

a distraction when they take more than 1 second.
Similar to the system proposed by RW-VisualDistl,
if the PERLOOK rises above 35%, the driver is re-
garded as visually distracted and a warning is is-
sued.

For manual distraction assessment, the sys-
tem is continuously checking the presence of the
driver’s hands on the SW. For this purpose, the sys-
tem relies on the SW assist sensor included in the
data layer. Every time the driver takes one or both
hands away, the manual distraction assessor starts
to count the time that passes until the driver puts
his/her hands back on. Similar to Mercedes Steer
Assist technology [32], if the difference is greater
than 10 seconds, the system considers that the driver
is potentially distracted.

The monitoring of cognitive distraction is based
on the classification of physiological data extracted
from the driver’s visual behavior and cardiac sta-
tus. The driver’s visual behavior is captured by the
SEP platform, while the cardiac status is provided
by the heart rate monitor, embedded in the Ancho
Radar. The former operates at a sampling frequency
of 60 Hz, while the later at 0.5 Hz. Since the second
sensor operates at a much lower frequency than the
first, an oversampling technique is used to replicate
the most recent heart rate for each data packet re-
ceived from SEP. The received measures are further
submitted to a median filter with a window size set
to 3, in order to reduce the presence of noise and
outliers. From the SEP, the system gets a series of
features that enables the calculation of the standard
deviation of the left and right gaze direction, as well
as the standard deviation of the head orientation and
the average driver’s pupils’ diameter. From the An-
cho Radar output, the cognitive distraction assessor
calculates the average driver’s heart rate. This set
of features, summarized in Figure 6, are calculated
using a sliding window that grabs the data of the
past 5 seconds, with a step size of 1/60 seconds.
After being normalized to the range [0, 1], these
features are used as input of an ML model, which
labels the driver’s state as normal or cognitively dis-
tracted. The development of this ML model is de-
scribed in Section 4.
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Figure 6. Features for cognitive distraction
detection

3.5 Activity Assessor

This unit is responsible for detecting non-driving
related activities that imply, visual, manual, or cog-
nitive distraction. The identified activities, along
with the distraction type normally unleashed by
each of them [3], are detailed in Table 1.

Table 1. List of detected activities

Activity Type(s) of Distraction
Using a mobile phone Manual, Visual, Cognitive
Looking to an external event Visual

Interacting w/ the infotainment
Interacting w/ passengers

Manual, Visual, Cognitive
Visual, Cognitive

As depicted in Figure 7, the driver’s activity su-
pervision is performed by four sub-modules mu-
tually correlated: (i) eye movement encoder, (ii)
wordbooks manager, (iii) feature extraction, and
(iv) an ML model.

Eye Tracking Data

acking Data,,
Eye Mov. Wordbooks
HeadPose  \F Encoder Manager

Car's Telematics )

Distraction State
nonlale @ Feature ML Model
Extraction

Figure 7. Activity assessor - architecture

The Eye Movement Encoder sub-module is re-
sponsible for encoding each saccadic movement,
detected by the SEP platform, into a character that
reflects its spatial disposition. For this purpose, the
system starts by searching for saccadic segments in
the current sampling window. Once a complete seg-
ment is identified, it decomposes the eye movement
into its horizontal and vertical components, by cal-
culating the variation of heading and pitch angles,
respectively. The horizontal and vertical amplitudes

of each saccade are then stored in two indepen-
dent buffers, which are then coded in the characters
found along the horizontal and vertical axes of the
2D Cartesian Coordinate System (CCS) specified in
Figure 8. For this purpose, this sub-module needs
to be previously calibrated for each different driver
using the system, in order to define the maximum
heading (n,,) and pitch (n,) angles used during the
eye movement encoding. This is mandatory to de-
fine the different amplitude regions as depicted in
the 2D CCS (Figure 8).

\pitch
1 L i
o |u A
-----------------
.................... S N S O S
L 1 - r R heading
—————— — —————————>
-Np -0.5np -0.:1n,7 0.11nh 0.5np np
-------------------- -01np@
e
rrrrrrrrrrrrrrrrr (é.5np
b

Figure 8. 2D CCS for eye movement encoding

During the encoding process, the heading an-
gle of each saccadic movement is compared against
the set of intervals that divide the horizontal axis
of this 2D CCS. If it belongs to a small ampli-
tude region ([—0.5n;,—0.1n,[ and 0, 1n,,0.5n,)),
the saccadic movement is coded into the characters
I’ or ’r’, according to the direction of the move-
ment. However, if it falls in a large amplitude in-
terval (] —eo, —0.5n,[ and ]0.5n;,4o<|), the move-
ment is coded into the characters 'L’ or 'R’. All
horizontal saccades that fall into the “dead zone”
([-0.1n4,0.1np)) are not coded, as they are too
small to be relevant. The vertical coding is per-
formed in the same fashion, being the pitch angle
evaluated along the vertical axis. In order to enable
the detection of diagonal eye movements, the re-
turned horizontal and vertical sets of characters are
merged as illustrated in Figure 9. This nomencla-
ture is borrowed from the framework proposed by
RW-Activityl.
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G A K R n G K B u
r r L R I r L R heading
D U d u D d U u pitch

sample
Figure 9. Detection of diagonal saccades

After coding all saccadic sequences in the cur-
rent sampling window, the system starts assessing
the driver’s eye movement patterns. In the context
of this monitoring application, an eye movement
pattern is defined as a string (word) of n successive
characters. To accomplish this, the system iterates
through the eye movement sequence, successively
adding every single movement (character) to four
different strings, which encode all movement pat-
terns up to a length of four. Every time a word of
length n is built, the system updates the correspon-
dent wordbook. For a pattern (word) that is already
registered, its occurrence count is increased. Fig-
ure 10 depicts the management of one of the four
wordbooks.

eye movement sequence

wordbookjength-3
—>
NOUUMnud

NOU 1

N[O UNJOUUMnN ud OUN 1
—>

N O[UNOJUUMNud UNO 1

NOUINOU|UM®NUud NOU 2

word occ

Figure 10. Wordbooks management

The classification of driver activity involves the
extraction of an extensive set of 101 features, which
can be grouped in different categories. They are
calculated using a sampling window of 30 seconds,
with a step size of 0.25 seconds. To reduce the pres-
ence of noise, all received measures are submitted
to a median filter of window size 3. As detailed
in Figure 11, from the saccadic eye movement, the
feature extraction stage computes 60 statistical fea-
tures, describing the amplitude and the direction of
this eye movement, as well as its distribution over

the four quadrants that divide the driver’s field of
view.

saccades
meanamp Valamp  MaXamp rate

large

1
1] small
hor ver hor ver

NN N N

left right up down left right up down
2] Q1 ... Q4 |[3][a1 .. Q4

YN AN

hor ver hor ver

Figure 11. Saccadic features

In terms of fixations, the system calculates 3
statistical features concerning the frequency and
length of this movement, and another 4 to describe
the gaze heading and pitch angles inherent to the vi-
sual behavior of the driver. The feature tree showed
in Figure 12 provides a deeper view of the set of
extracted features.

fixations

meanpmp Vvaramp Mmeanpyr varpyr rate

heading pitch heading pitch

Figure 12. Fixation-based features

Concerning the blink motion, this sub-module
computes the mean and variance of blink duration,
as well as the blink rate. For each wordbook, it
extracts 5 statistical features, describing the occur-
rence count of the registered words, as well as the
wordbook size. More details can be found in Figure
13.

blinks wordbooK,_jength
occ size
meanp,, varp,  rate
mean var diff max

Figure 13. Blink and wordbook features

From the driver’s head pose, the system calcu-
lates the mean and variance of the head rotation
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and position, while measuring the time at which the
head nose vector is directed to each one of the four
quadrants dividing the field of view (Figure 14).

headPose
pos rot timeCrossqq ... timeCrossqgy
mean var mean var

Figure 14. Head pose features

From the vehicle’s telematics, the system com-
putes a set of 3 features (Figure 15) that character-
izes the driver conduct at the SW. In particular, they
reflect the percentage of time driving with one, both
and none of the hands on the SW.

handsOnSW

rate

noHands oneHand bothHands

Figure 15. Vehicle’s telematics features

The result of the feature extraction stage is fur-
ther normalized to the range [0, 1], and used as
input of a multi-class and supervised ML model,
which infers the current driver activity. Such an
ML model also takes into account the most recent
classification of the driver’s distraction state for the
final prediction. Therefore, in addition to the afore-
mentioned 101 features, it also takes as input an ad-
ditional set of 3 binary variables that describe the
driver’s state in terms of visual, manual, and cogni-
tive distraction.

4 Data Modelling: Methodology

This Section unveils the four stages carried out
to build the ML models used to infer the driver’s
state in terms of fatigue, cognitive distraction, and
activity behavior. Manual and visual distraction
are predicted by simply comparing single features
with heuristic thresholds, while fatigue, cognitive
distraction, and activity behavior by using an ML
model. For each one of these ML-based monitor-
ing units, we compared the performance of two ML
algorithms - SVM and DT, and we then select the
one which has the best performance. The results
are presented and discussed in Section 5.

4.1 Stage One: Data Collection

A set of experiments were carried out in three dif-
ferent scenarios, designed to collect data to train
and test the proposed fatigue, activity, and cognitive
distraction assessors. Both scenarios run under the
controlled environment of a DSM, equipped with
three video-projectors, responsible for reproducing
the driving scenario on a curved screen, strategi-
cally placed in front of a stationary cockpit.

Regarding the experiment itself, 20 volunteers
were recruited to drive along with the three scenar-
ios described in the three next subsections. Each
volunteer must meet the following conditions: (i)
hold a driver license for more than a year; (ii) drive
frequently; (iii) has no major medical illness, in-
cluding epilepsy; (iv) and has no recent surgery.

4.1.1 Fatigue Assessment

To get a reliable ML model for fatigue inference,
we collected data in a scenario mixing highway
and city routes. The experiment was divided into
two distinct sessions, each one lasting for an hour.
During the first session, each one of the 20 sub-
jects drove without sleep deprivation. For this pur-
pose, data were collected during the daytime, en-
suring that each subject was submitted to the exper-
iment in the next 10 hours after getting up. The last
session was carried out during the nighttime, after
the subjects being awakened for, at least, 15 hours.
In this phase, all drivers manifested slightly to se-
vere signs of sleepiness. During the driving task,
the drivers were asked, every 5 minutes, to classify
their attentiveness level according to the Karolin-
ska Sleepiness Scale (KSS): a 9-point Likert scale
that measures the subjective level of sleepiness [33].
For data labeling purposes, it was divided into two
broad classes: ”Attentive” and “Fatigued”. The for-
mer concerns the KSS levels in the range of 1-5,
while the latter refers to the interval of 6-9.

Particularly to this test scenario, the recruited
drivers, besides having to meet the requirements ex-
posed in Section 4.1, had to respect (i) a regular
sleep schedule, (ii) no alcohol and drug abuse, and
(iii) no consumption of medication that disturbs the
sleep quality and circadian rthythm. A week before
the experiment, they were instructed to go to bed
between 23:00 and 0:00 and get up between 7:00
and 8:00. Drugs, alcohol, and caffeine were forbid-
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den in the 24 hours before the experiment. Like-
wise, the use of these substances and napping dur-
ing the break of the experiment’s sessions were also
prohibited.

4.1.2 Cognitive Distraction Assessment

The cognitive distraction assessor should be trained
and tested in a scenario that does not require fre-
quent maneuvering. It is believed that this situation,
very frequent in the city or city-like scenarios, does
not allow severe cognitive impairment [34]. In this
context, the experiment was conducted in a high-
way scenario, starting in a low-traffic environment,
which increases till a medium level as the driver ad-
vances.

The recruited drivers were instructed to follow
a leading vehicle, while paying attention to the
speedometer to control their speed at 90 km/h. In
order to induce cognitive distraction, the driver was
subjected to two cognitive tests: (i) one that stimu-
lates the subject’s short-term memory and (ii) an-
other that imposes arithmetic loads. The former
consists of a n-back task, where the driver, in the
presence of a stimuli sequence needs to indicate
when the current stimulus matches the one from n
steps earlier in the sequence [35]. More specifically,
it was applied a 2-back task, being the stimulus a se-
ries of cardinal numbers between 0 and 9. The sec-
ond test involves verbally subtracting 7 from 1000,
successively.

The experience is divided into four segments:
(i) two manual driving sessions, each one lasting 1
minute, with no cognitive distraction induced, and
(i) two driving sessions, each one lasting 2 minutes,
with cognitive loads induced by the tests defined
above. The attentive driving segments take place
at the beginning of the experiment and between the
two cognitive tasks.

4.1.3 Activity Assessment

Monotonous roads, such as highways, has proven to
be the routes where drivers are more prone to prac-
tice distracting activities [36]. Consequently, train-
ing and testing the activity assessor with data col-
lected under such route type is essential to get an
accurate DMS. We designed a test scenario involv-
ing a highway with low traffic, during a sunny day-
time simulated environment. In order to collect data

for the set of four distracting activities to be moni-
tored, it was fundamental to divide the scenario into
two loops, connected by a conditional link. In the
first loop, the road is surrounded by non-distracting
environment elements, creating the necessary con-
ditions to collect data on the following three activ-
ities: (i) using a mobile phone, (ii) interacting with
the infotainment, and (iii) interacting with passen-
gers. The second loop presents a route surrounded
by some distracting elements that appear from time
to time. More specifically, it was defined that a
very uncommon and distracting element might ap-
pear every 800 meters. This loop was strictly de-
signed to collect data in situations where the driver
is looking to an external event, which constitutes the
fourth distracting activity that the system was de-
signed to monitor. The transition between the first
and the second loop occurs when the driver turns on
the headlights. This transition is not instantaneous,
occurring only at the time the driver reaches the end
of the first loop.

The driver experience starts with a 30 seconds
session of manual driving with no distraction im-
posed on the driver. After that, the driver is encour-
aged to sequentially perform the first set of distract-
ing activities, each one lasting 2 minutes. Between
two activities there must be a non-distracting driv-
ing session of, at least, 30 seconds. After finishing
the first set, the participant must turn on the head-
lights in order to enter in the second loop. Consid-
ering that the driver respects the speed limit, this
transition can take a maximum of 5 minutes. In the
second loop, the driver will be most of the time in
normal driving mode, only changing his/her focus
when unexpected external elements appear. This
loop finishes after the 10" distracting element. At a
speed ranging from 60 km/h to 100 km/h, the exper-
iment should take between 17.5 minutes and 23.5
minutes per participant.

4.2 Stage Two: Data Preprocessing

In order to get accurate and unbiased ML mod-
els, it is fundamental to train them with balanced
and normalized datasets. To balance the collected
datasets, we applied the NearMiss-3 algorithm from
the NearMiss family of methods [37]. It is an in-
formed undersampling algorithm, which performs
undersampling in the majority class(es) based on
the distance of its (their) points to the minority class
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[37]. When correctly configured, it allows min-
imizing the number of instances of the majority
class(es) among the samples of the minority one.
This ensures the reduction of data associated with
transitions between classes, and consequently, be-
tween states of the driver. By reducing the tran-
sition data points, the NearMiss-3 algorithm min-
imizes the outliers within each label, which is de-
sirable to correctly train an ML model. The data
preprocessing stage finishes with the normalization
of the resulting datasets to the range [-1, 1].

4.3 Stage Three: Feature Selection

For feature selection, we only considered algo-
rithms of the filter type. They are far more
computationally efficient than the traditional wrap-
per mechanisms, scaling easily to large and high-
dimensional datasets. Furthermore, their results are
completely independent of the ML algorithm of the
classifier [38]. This allows us to train and com-
pare the performance of different ML algorithms
without performing the feature selection stage mul-
tiple times. From the panoply of available filter
methods, we adopted the Correlation Feature Selec-
tion, which is based on the premise: “good feature
subsets contain features highly correlated with the
class, yet uncorrelated with each other” [39]. For
this purpose, it adopts a heuristic that evaluates the
worth of feature subsets by taking into account the
usefulness of individual features for predicting the
class label, as well as the level of inter-correlation
between them. For each feature subset analyzed, it
is given a score in the range [0, 1]. The algorithm
returns the feature subset with the highest score.

4.4 Stage Four: Feature Classification

For the feature classification process, we evaluated
the performance of two supervised ML algorithms:
(1) SVMs and (ii) DTs. SVMs proved to be very
efficient in high dimensional spaces, even when the
number of dimensions is higher than the number of
samples. Despite the expensive computational re-
sources required during the training phase, due to
SVM complexity, the algorithm proved to be very
memory efficient, as it only uses a subset of training
data points (support vectors) in the decision func-
tion [40]. This is quite useful in the automotive do-
main, as it allows the deployment of the monitoring
application to low-power platforms. DTs can also

be easily deployed to this type of platforms, as this
ML algorithm generates understandable and inter-
pretable rules, which does not require to save any
of the training data points - memory efficient. Fur-
thermore, DTs are fast, robust and can handle with
high dimensional and large datasets [41]. The steps
involved in the training of each one of these ML al-
gorithms are uncovered along this Section.

SVMs are associated with a set of hyper-
parameters that must be tuned in order to get the
optimal model for the given classification problem
[42]. Except for the penalty parameter C of the er-
ror term, the set of hyper-parameters that should be
tuned varies according to the chosen kernel (Table
2). To tune them, we used a grid search mechanism,
implemented by the scikit-learn API [42], which
was configured to methodically build and evaluate
a model for each combination of hyper-parameters
specified in Table 2. Each hyper-parameter was
tested with 5 different values, evenly spaced be-
tween the respective lower and upper bounds. Each
model is evaluated using a 5-fold cross-validation
strategy and the model that is selected is the one
that presents the best classification accuracy.

Table 2. Hyper-parameters per SVM kernel [42]

Kernel Function HP values
Linear K(x,y) =xy 0.001 <C<10
0.0001 <y<1
0.0001 <r<1

1 — d > >

Polynomial K (x,y) = (y(xy)+r) 2<d<5

0.001 <C<10
0.0001 <y<1

_ il ]2 SYs
0.0001 <y<1
Sigmoid K(x,y) =tanh(y(xy)+r)  0.0001 <r<1
0.001 <C<10

When building a DT, it is essential to define
the splitting and termination criteria. In the con-
text of the scikit-learn API, this is achieved by sim-
ply tuning the hyper-parameters defined in Table
3. For this purpose, we relied on a grid search
mechanism, configured to evaluate each built DT
according to a 5-fold cross-validation strategy. The
hyper-parameters that accept integers or floats as
input were tested with 20 different values, evenly
spaced between the respective lower and upper lim-
its. Since we did not tune the depth of the DTs to
a fixed range, they were expanded until all leaves
are pure or not contain the minimum number of
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samples to be split, which is defined by the hyper-
parameter “min_samples_split”.

Table 3. Hyper-parameters of DTs [42]

HP name Description HP values
- Metric for finding the - gini
criterion . . ..
optimal split condition - entropy
min_samples_split Minimum nun.lber/rate of [0.05, 1.0]
samples to split a node
. Mini f
min_samples_leaf 1mum nu.mber./rate © [0.01, 1.0]
samples required in a leaf
Maximum number of
max_features [1, nfear]

features considered in a split

5 Experimental Results

This Section exposes and compares the perfor-
mance achieved by the SVM and DT algorithms in
terms of accuracy, precision, recall, and F1-Score.
For a given monitoring unit, we recorded data from
20 participants and the training phase of each algo-
rithm was repeated three times. The SVM and DT
models with the best overall statistics are compared
during this Section. To perform the driver experi-
ment, the data collection and control modules of the
proposed DMS were deployed to a hardware plat-
form running Windows operating system. The la-
beling of the data was automated by a graphical user
interface, embedded in the system’s control layer. It
provides us with the ability to label the data as it is
collected.

5.1 Fatigue Assessment

Figure 16 depicts the Confusion Matrix (CM) de-
scribing the performance of the SVM-based fatigue
model classifier. It confronts the labels predicted by
the model with the ground truth labels of the testing
dataset. As observed, the model was able to rec-
ognize 88% of the non-fatigue samples and 95% of
the samples suggesting signs of fatigue.

From the non-normalized CM, it was calculated
the accuracy of the model, as well as the precision,
recall, and F1-Score per class (Table 4). This model
predicted the driver’s state with an accuracy of 91%.
The precision metric registered an average of 92%,
which implies that 92% of the predictions returned
by the model relative to a class are correct. In terms
of recall, it was able to detect an average of 91% of
the samples reporting a given driver’s state. The F1-

Score - a weighted average of precision and recall -
assumes an average of 91%.
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Figure 16. Normalized CM of the SVM fatigue
model

Table 4. Classification report of the SVM fatigue

model
Class Precision Recall F1-Score
Attentive 0.94 0.88 0.91
Fatigued 0.89 0.95 0.92
average 0.92 0.91 0.91

The CM for the homologous DT model is de-
picted in Figure 17. As observed, this model regis-
ters a drop of 2% in its ability to recognize fatigue
situations (true positives). However, the percentage
of true negatives increased 5%, meaning this model
is less prone to upset the driver with false warnings.
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Figure 17. Normalized CM of the DT fatigue
model

The classification report for the DT model is
provided in Table 5. According to precision, re-
call, and F1-Score metrics, there is a slight increase
in the classification performance, when compared
to the homologous SVM model. Furthermore, the
DT proved to be more balanced, as the precision
and recall, which are complementary metrics, reg-
istered the same value. The results also reveal that
this model is 2% more accurate. In this context, the
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DT was selected to be part of the final fatigue asses-
sor composing the DMS proposed in this paper.

Table 5. Classification report of the DT fatigue

model
Class Precision Recall F1-Score
Attentive 0.93 0.93 0.93
Fatigued 0.93 0.93 0.93
average 0.93 0.93 0.93

5.2 Cognitive Distraction Assessment

Figure 18 shows the normalized CM returned by the
best-performer SVM model built during the three
training trials. As observed, this model was able to
correctly predict 92% of the normal driving situa-
tions, and 87% of the situations implying cognitive
distraction.
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Figure 18. Normalized CM of the SVM cognitive
distraction model

The non-normalized CM was used to calculate
the accuracy of the model, as well as the precision,
recall, and F1-Score per class. The model reached
an accuracy of 89%. The values registered by the
remaining metrics are exposed in Table 5.8. As ob-
served, the system achieves a very good score in
terms of precision (90%) and recall (90%), due to
its low false positive and negative rate, respectively.
Furthermore, the F1-Score shows a very good bal-
ance between these two measures, as it also as-
sumes a value of 90%.

Table 6. Classification report of the SVM
cognitive distraction model

Class Precision Recall F1-Score
Attentive  0.87 0.92 0.90
Distracted 0.92 0.87 0.89

average 0.90 0.90 0.90

The CM for the corresponding DT is shown
in Figure 19. As it can be observed, this model
registers a higher true positive rate (recall) in the
recognition of cognitive distraction. In contrast, the
recognition of normal driving situations suffered a
performance drop of 7%, increasing the number of
false positive warnings, which may upset the driver.
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Figure 19. Normalized CM of the DT cognitive
distraction model

In terms of precision, this model exhibits a re-
verse behavior, being less precise than the homol-
ogous SVM in the recognition of cognitive distrac-
tion (Table 7). As the F1-Score is a weighted av-
erage of precision and recall, we can conclude that
the SVM model is more balanced, slightly outper-
forming the DT. Furthermore, it is also 1% more
accurate. Therefore, the SVM model was selected
to integrate the cognitive distraction assessor which
composes the DMS proposed in this paper.

Table 7. Classification report of the DT cognitive
distraction model

Class Precision Recall F1-Score
Attentive 091 0.85 0.88
Distracted 0.86 0.92 0.89

average (.89 0.88 0.88

5.3 Activity Assessment

The normalized CM of the SVM model with the
best performance in activity assessment is depicted
in Figure 20. As can be observed, the model was
able to detect, at least, 90% of the samples report-
ing a given activity.
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Figure 20. Normalized CM of the SVM activity
model

To get a deeper insight into the achieved per-
formance, the accuracy of the model, as well as the
precision, recall, and F1-Score per class (Table 8)
were computed from the non-normalized version of
the CM. The results indicated an average accuracy
of 91%, which means the model was able to cor-
rectly predict the driver’s activity in 91% of the pre-
dictions performed during the testing phase. The
remaining metrics - precision, recall and F1-Score -
also registered an average of 91%.

Table 8. Classification report of the SVM activity

model
Class Precision Recall F1-Score
Driving 0.88 0.90 0.89
Using a mobile phone 0.94 0.91 0.92
Look. to an ext. event  0.90 0.92 0.91
Inter. w/ the infot. 0.91 0.94 0.83
Inter. w/ passengers 0.94 0.90 0.91
average 0.91 0.91 0.91

Figure 21 shows the normalized CM for the ho-
mologous DT. As observed, the true positive rate of
all classes is much smaller than those presented by
the previous model. This loss is especially evident
in the ”Driving” and ”Looking to an external event”
classes, where the true positive rates drop 27% and
25%, respectively. We believe that this loss of per-
formance is an effect of the inability of this algo-
rithm to deal with datasets with many uncorrelated
variables, which is a known bottleneck of DTs [41].
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Figure 21. Normalized CM of the DT activity
model

In terms of average accuracy, this new model
also performs considerably poorer than the previ-
ous one, registering a value of 75%. As detailed
in Table 9, this behavior is extended to the aver-
age value of the remaining metrics, which reveal a
performance loss between 20% and 22%. The anal-
ysis of the precision, recall, and F1-Score within
each class, confirms the already mentioned diffi-
culty of this model to distinguish between the activ-
ities ”Driving” and “Looking to an external event”.
In this background, the SVM model was selected to
integrate the final activity assessor.

Table 9. Classification report of the DT activity

model
Class Precision Recall F1-Score
Driving 0.53 0.63 0.58
Using a mobile phone 0.87 0.80 0.84
Look. to an ext. event 0.66 0.67 0.66
Inter. w/ the infot. 0.88 0.85 0.87
Inter. w/ passengers 0.89 0.81 0.85
average 0.77 0.75 0.76

6 Related Work

RW-Fatiguel proposed a driver fatigue surveillance
system based on the PERCLOS and average eye
closure speed parameters. These features were used
as input of an Artificial Neural Network (ANN) that
classifies the driver’s state as fatigued or attentive.
The image of the driver’s face was acquired using
an IR camera, mounted on the vehicle’s dashboard,
which captured the driver’s eyes independently of
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the lighting conditions. Following this approach
of using gaze-based features, RW-Fatigue2 evalu-
ated the importance of the yawning frequency as an
indicator of driver’s fatigue. They concluded that
merging this new feature with traditional eye clo-
sure features - PERCLOS and eye closure interval
- by using a robust classifier, such as SVM, pro-
vides better results than comparing single features
with heuristic thresholds. RW-Fatigue3 introduced
a framework to predict driver fatigue situations, us-
ing an ANN fed by features derived from head nod-
ding angle, eye gaze and driving time. In terms of
head nodding, these authors proved that the head
nodding frequency and the mean head nodding an-
gle are very good indicators of the driver’s fatigue
state. When merged (using an ANN) with time-
based indicators, such as time-of-day and time-
on-task, and the traditional PERCLOS parameter,
the results present an accuracy around 94%. As
expected, physiological features such as the heart
and respiration rate are also good indicators of the
driver’s fatigue state [44].

Systems designed to track driver visual distrac-
tion are based on the premise that if the driver
does not look to the road straight ahead for a cer-
tain amount of time, then he/she is visually dis-
tracted. Under the lightning of this premise, RW-
VisualDistl proposed a parameter to measure the
visual distraction level, the PERLOOK, which re-
flects the percentage of time spent not looking
ahead during a certain time interval. Every time
the PERLOOK surpasses 35%, the driver must be
warned as the distraction level enters into a danger-
ous zone. AttenD addressed the research field of
driver visual distraction by proposing the AttenD
algorithm. The core idea behind their work is that a
driver has a time buffer with a maximum capacity of
2 seconds, which is decreased every time the driver
drifts his/her gaze away from the FRD. However, if
the focus is directed to a driving support agent, such
as the side or rear mirrors, or even the speedometer,
the buffer will only start to decrease after a time la-
tency of 1 second. When the driver redirects his/her
gaze back to the road, the buffer will start to fill up
after a period of 0.1 seconds, since the algorithm
considers that it took some time until the driver’s
eyes can focus the road again.

Typical systems that monitor driver’s manual
distraction rely on capacitive or torque sensors,

which are embedded in the vehicle’s SW, being
the generated signals evaluated by a control unit.
Whenever the amplitude of the signal is insuffi-
cient for a predefined time interval, the system re-
gards the driver as manually distracted and issues a
warning. This is the approach followed by most of
the available commercial solutions, such as IEE’s
Hands Off Detection [45] and Mercedes Steer As-
sist [32].

The state-of-the-art monitoring systems to su-
pervise cognitive distraction rely on the analysis
of physiological features, mainly derived from the
driver’s eye gaze and head movement [46, 47]. In
fact, it is proved that cognitive loads result in in-
creased gaze concentration within a narrower range
[48], which directly affects the driver’s visual be-
havior and head orientation. In addition to gaze and
head-based features, RW-CogDist1 also evaluated
the relevance of the inter heartbeats interval and
pupils’ diameter in the recognition of a cognitive
distraction situation. They ended up with a system
able to recognize the driver’s cognitive state with an
accuracy of around 93%. RW-CogDist2 proved that
merging the traditional gaze and head orientation-
based features with driving performance measures,
such as steering angle and vehicle’s speed can also
introduce very promising results.

In the domain of activity recognition, RW-
Activity1 pioneered on human’s visual behavior. To
recognize common office activities, such as read-
ing, watching a video and browsing the web, they
recorded the corneo-retinal potential of the human
eye, through an electrooculography, and applied a
series of algorithms to detect the basic eye move-
ment types - saccades, fixations and blinks - and
extract relevant features from them. Since some
activities imply repetitive eye movement patterns,
these authors proposed a mechanism that maps the
amplitude and direction of saccadic movements to
a character-based representation. By analyzing the
string of returned characters, they were able to iden-
tify and explore different eye movement patterns,
useful to extract additional statistical features. The
processing series of the system terminates with the
classification of the extracted data by an ML model.
This work was further adapted by RW-Activity?2 to
a conditionally autonomous driving scenario. The
main novelty was the introduction of a head track-
ing path, capable of measuring the head position
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and orientation, and the division of the driver’s field
of view into quadrants. This last update allowed
the system to get an insight where and for how long
the driver’s eye gaze and head are oriented. RW-
Activity2 proved that this novel approach led to an
increase in the classification accuracy from 53% to
77%, in the recognition of the following activities:
(i) watching a video, (ii) reading, and (iii) writing
an e-mail.

6.1 Gap Analysis

This paper combined the findings of previous stud-
ies in order to develop a novel system that provides
a comprehensive definition of the driver’s state, in
terms of fatigue, distraction, and activity. For fa-
tigue supervision, we introduced a feature related
to the automation level of the vehicle. Regarding
the distraction assessment, we ended with a holis-
tic system, capable of providing a full-definition of
the driver’s distraction state. This classification is
even enhanced with the identification of the activity
causing the distraction behavior. At the time of ac-
complishment of this study, the literature only pre-
sented standalone systems devoted to a specific dis-
traction type (Table 10). None of them was able to
infer the activity causing the faulty behavior. We
borrowed the approach proposed by RW-Activityl
and RW-Activity?2 for the activity assessment mech-
anism. We improved their solutions by consider-
ing features describing (i) the driver’s conduct at
the SW and (ii) the type of distraction affecting the
driver. This novel approach enabled the recognition
of new driving non-related activities. Similar to the
approach followed on the fatigue and cognitive dis-
traction assessment mechanisms, we compared the
performance of SVM and DT algorithms to classify
the set of extracted features.

In the domain of fatigue and distraction super-
vision, our system does not introduce any improve-
ment in terms of classification performance. How-
ever, the same cannot be said in the domain of activ-
ity assessment, where our DMS completely outper-
forms the ones reviewed. Furthermore, to the best
of the authors’ knowledge, this is the first DMS pro-
viding such a complete and holistic classification of
the driver’s state, completely covering the areas of
fatigue, distraction, and activity (Table 10).

7 Conclusion

In this paper, we proposed a non-intrusive, yet ac-
curate, system to provide a full definition of the
driver’s state in terms of fatigue, distraction, and
activity. We proved that it is possible to monitor
the driver without relying on the traditional physi-
ological sensors, which may upset and disturb the
driving activity itself. In fact, after analyzing the
achieved results, we can conclude that facial and
body pose features, along with non-intrusive phys-
iological data and vehicle’s telematics not intrin-
sic to manual driving situations, represent the best
trade-off between accuracy and ubiquity. In order to
exploit the potential of facial features, including the
driver’s visual behavior, our system relies on a com-
mercial eye and head tracker (SEP), well suited for
the demanding environment of a vehicle’s cockpit.
The largest fraction of the system’s dataset is fed by
this sensor, like an eye gaze and head pose features
dominate in the inference of the driver’s state. The
remaining physiological data, related to heart and
respiration rate, is captured by means of a contact-
less biometric sensor (Ancho Radar). In terms of
vehicle’s telematics, our system acquires data de-
scribing the presence of driver’s hands on the SW,
as well as data related to time-of-day and automa-
tion level of the vehicle.

For fatigue assessment, our system uses an ML-
based approach. In terms of distraction, we de-
signed a holistic system, capable of detecting the
three types of distraction that may affect the driver:
(1) visual, (ii) manual, and (iii) cognitive. The for-
mer two are detected by simply comparing a single
variable with a heuristic threshold, while the lat-
ter relies on an ML model. Besides detecting the
type of distraction affecting the driver, our system
is also able to infer which non-driving related ac-
tivity is causing the faulty behavior. More specifi-
cally, we conceived a monitoring unit, which uses
an ML model to detect four of the deadliest driving
non-related activities: (i) using a mobile phone, (ii)
looking to an external event, (iii) interacting with
the infotainment, and (iv) interacting with passen-
gers.

For every ML-based monitoring unit, we eval-
uated the performance of two supervised ML algo-
rithms: (i) SVMs and (ii) DTs. DTs proved to be
more efficient in the recognition of fatigue situa-
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Table 10. Functionality and performance of previous research on DMSs against our approach

Fatigue Distraction Activity Performance
R&D Study/Technology Monitoring Monitoring Monitoring Acc./Prec./Rec./F1-Score

RW-Fatiguel Yes No No 091/ —/—/—
RW-Fatigue2 Yes No No 095/ —/—/—-
RW-Fatigue3 Yes No No 094/ —/)—/—-
RW-VisualDist1 Yes Yes (Vis.) No 098/ —/—/—-
AttenD No Yes (Vis.) No ————
1IEE’s Hands Off Detection [45] No Yes (Man.) No ——— ] —
Mercedes Steer Assist [32] No Yes (Man.) No ————
RW-CogDist1 No Yes (Cog.) No 093/—-/—1/70.93
RW-CogDist2 No Yes (Cog.) No 096/ —/—/—
RW-Activityl No No Yes —-/0.76/0.71 / —-
RW-Activity2 No No Yes 0.77/0.70/0.76 | —-

Yes Fatigue.: 0.93/0.93/0.93/0.93
Costa et al. Yes (Man./Vis./Cog.) Yes Cog. Dis.: 0.89/0.90/0.90/0.90

Activity: 0.91/091/091/0.91

tions, reaching an accuracy of 93%. However, they
are completely outperformed by SVM models in the
recognition of driver’s activity, which registered an
accuracy of 91%. Concerning the cognitive distrac-
tion assessment, this last ML algorithm also proved
to deliver more balanced results when compared to
DTs, reaching an accuracy of 89%.
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