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Abstract

Deep Neural Networks (DNN) are nothing but neural networks with many hidden lay-
ers. DNNs are becoming popular in automatic speech recognition tasks which combines a
good acoustic with a language model. Standard feedforward neural networks cannot han-
dle speech data well since they do not have a way to feed information from a later layer
back to an earlier layer. Thus, Recurrent Neural Networks (RNNs) have been introduced
to take temporal dependencies into account. However, the shortcoming of RNNs is that
long-term dependencies due to the vanishing/exploding gradient problem cannot be han-
dled. Therefore, Long Short-Term Memory (LSTM) networks were introduced, which are
a special case of RNNs, that takes long-term dependencies in a speech in addition to short-
term dependencies into account. Similarily, GRU (Gated Recurrent Unit) networks are an
improvement of LSTM networks also taking long-term dependencies into consideration.
Thus, in this paper, we evaluate RNN, LSTM, and GRU to compare their performances
on a reduced TED-LIUM speech data set. The results show that LSTM achieves the best
word error rates, however, the GRU optimization is faster while achieving word error rates
close to LSTM.
Keywords: Spectrogram, Connectionist Temporal Classification, TED-LIUM data set

1 Introduction

Deep learning is a term used to describe a spe-
cific class of artificial neural networks one that is
composed of many layers. Neural networks for
short, have existed for many decades. However, the
training of deep architectures had failed until Geof-
frey Hinton’s breakthrough work in 2006 [1]. Even
though there are some algorithmic innovations to
these deeper networks, however, the dramatic rise
in computing power using GPUs made the process-
ing of larger data sets possible.

Deep learning methods have many application
areas, and many successes have been seen in par-
ticular in the image processing area. For example,
a deep learning architecture called Convolutional
Neural Networks (CNNs) are designed to emulate
the behavior of visual cortex. CNNs perform very
well on any visual recognition tasks. The CNN ar-
chitecture consists of special layers called convolu-
tional layers and pooling layers. These layers allow
the network to encode certain images properties.

Autoencoders is another class of a deep learning
architecture. Autoencoders are used to reduce the
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input data by decreasing the dimensionality of the
feature space. In stacked denoising autoencoders,
for example, a partially corrupted output is cleaned,
i.e., de-noised.

Another area where deep learning is success-
fully applied is automatic speech recognition. In
automatic speech recognition, good acoustic and
language models are combined [2, 3]. The speech
recognition problem involves time-series data.

Feedforward neural networks are unidirectional
whereby the outputs of one layer are forwarded
to the following layer. These feedforward net-
works cannot persist past information. Further-
more, when DNNs are used to analyze speech
recognition, certain issues are encountered includ-
ing different speaking rates, and temporal depen-
dencies [4, 5, 6]. DNNs can only model fixed size
sliding window of acoustic frames but cannot han-
dle different speaking rates [6]. Recurrent Neural
Network (RNN) is another class of network that
contains loops in the hidden layer to retain the in-
formation at the previous time step to predict the
value of the current time step. This mechanism
helps RNNs to handle different speaking rates [6].

Temporal dependencies could be an issue while
analyzing speech recognition tasks. Temporal de-
pendencies may be present in the short-term or
long-term depending on the speech recognition
problem. RNNs take into account only the short-
term dependencies due to the vanishing/exploding
gradient problem. In the last couple of years, RNNs
are being applied to a variety of problems such as
machine translation, image captioning, and speech
recognition. Speech involves a dynamic process,
and thus, RNN seems a good choice over traditional
feedforward network [7].

However, the applicability of RNN is limited
due to two reasons. The first is that RNNs re-
quire pre-segmented training and post-processing
of the output to convert it into labeled sequences.
The Connectionist Temporal Classification (CTC)
for labeling sequence data in training with RNN
solves this shortcoming. The CTC method has been
proven to be helpful where alignment between in-
put and output labels is unknown [8]. Second,
for the long-term dependencies in data where the
gap between the relevant information and the place
where it is needed is large, RNNs have only lim-
ited use. Thus, a special type of RNN, Long Short-

Term Memory (LSTM) networks have been intro-
duced. LSTMs are designed to work on long-term
dependencies in data. LSTM prove to be effec-
tive in speech recognition tasks [7] where the spe-
cial memory cells of LSTMs are used to identify
long dependencies. Slightly different than LSTM is
the Gated Recurrent Unit (GRU) introduced in 2014
[9]. GRUs are also designed for long-term depen-
dencies and work well with sequential data as do
LSTMs.

In this paper, we have evaluated the perfor-
mance of RNN, LSTM, and GRU for speech recog-
nition applied to the reduced TED-LIUM data set
[10] using an appropriate regularization method.
Different parameterized models are trained end-to-
end using CTC for labeling sequence data.

The paper is structured as follows. Section 2
describes related work in the area of speech recog-
nition and deep learning. In Section 3 the three
approaches applied are described. Section 4 de-
scribes the experiments conducted and discusses the
results. The conclusion and future work is provided
in Section 5.

2 Related Work

Traditionally, generative models were used for
speech recognition. Generative models are typi-
cally composed of Maximum-A-Posteriori (MAP)
estimation, Gaussian Mixture Models (GMMs),
and Hidden Markov Models (HMM) [11, 12].
These traditional models require expert knowledge
(i.e., knowledge of a specific language) as well
as preprocessing of the text for Automatic Speech
Recognition (ASR) [12]. Fortunately, an end-to-
end ASR does not require expert knowledge be-
cause it depends on paired acoustics and language
data [12].

Recent advances in deep learning have given
rise to the use of sequence-to-sequence models (dis-
criminative models) for speech recognition [11, 13].
In simple terms, sequence-to-sequence model for
speech recognition takes an acoustic sequence as in-
put and returns a transcript sequence as output [11].

Our work is guided by many previous works
done in this area. In particular, RNNs have achieved
excellent results in language modeling tasks as out-
lined in [14, 15]. Language modeling is based on
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a probabilistic model that is fitted to assign proba-
bilities to sentences. This is accomplished by pre-
dicting the next word in a sentence given previous
word data. The experiments were performed on the
popular Penn Tree Bank (PTB) data set [15].

Language modeling is key to many problems
such as speech recognition, machine translation or
image captioning. RNNs and LSTMs have both
been used to map sequences to sequences as well.
Sequence to sequence models are made up of two
RNNs; an encoder to process the input and a de-
coder to generate the output. In [16], multi-layered
RNN cells have been used for the translation tasks
and were evaluated on a popular English to French
translation from the WMT’14 data set [16].

LSTM network architectures have proven to be
better than standard RNNs on learning Context Free
Language (CFL) and Context Sensitive Language
(CSL) as described in [17]. Particularly, in speech
recognition tasks, RNNs and LSTMs have achieved
excellent results. Sequence labeling is an important
task in training RNNs during the speech recogni-
tion process. HMM-RNN frameworks were used in
the past [18, 19], however, they do not perform well
with DNN.

Graves et al. [8] came up with a very effi-
cient Connectionist Temporal Classification (CTC)
method of sequence labeling to train RNNs end-to-
end. This method works very well for problems
where input-output label alignment is unknown,
and the method does not require pre-segmented
training data and post-processing of the outputs. In
addition, Graves et al. also introduced deep LSTM
RNNs and evaluated the framework on speech
recognition. Particularly, RNN with CTC was used
to train the model end-to-end. The authors achieved
the best recorded score on the TIMIT phoneme
recognition benchmark [7].

Sak et al. [20] evaluated and compared the per-
formance of LSTM, RNN and DNN architectures
on a large vocabulary speech recognition problem
- the Google English Voice Search Task. The au-
thors have used an updated architecture compared
to standard LSTM to make better use of the model
parameters.

Several experiments are performed on the
TIMIT speech data set using bidirectional LSTM,
deep bidirectional LSTMs, RNNs, and hybrid ar-

chitectures. Bidirectional LSTM networks have
been used for the phoneme classification task [21,
22]. Results have shown that bidirectional LSTM
performs better than unidirectional LSTM and stan-
dard RNNs on the frame-wise phoneme classifica-
tion task. These results suggest that bidirectional
LSTM is an effective architecture for speech pro-
cessing where context information is very impor-
tant.

A hybrid bidirectional LSTM-HMM system ap-
plied to phoneme recognition has proved as an
improvement over unidirectional LSTM-HMM as
well as traditional HMM systems. Bidirectional
LSTMs have been experimented on the handwriting
recognition problem, and were evaluated on both
online and offline data, thus proving to outperform
the state-of-the-art HMM based system [23].

Deep bidirectional LSTMs have been applied
to the speech recognition task whereby each hid-
den layer was replaced by a combination of a for-
ward layer and a backward layer. In this architec-
ture, every hidden layer receives input from both
the forward and backward layer at one level be-
low. This type of deep bidirectional LSTM network
combined with the CTC objective function has been
used for end-to-end speech recognition. The net-
work was evaluated on the Wall Street Journal cor-
pus [24]. The authors’ novel approach with the ob-
jective function has allowed direct optimization of
the word error rate, even in the absence of a lan-
guage model. A hybrid of deep bidirectional LSTM
and HMM system has been used for speech recog-
nition on the TIMIT data [25] outperforming GMM
deep network benchmarks on part of the Wall Street
Journal corpus.

Different DNN architectures have been evalu-
ated on hundreds of hours of speech data in recent
years like Wall Street Journal, Librispeech, Switch-
board, TED-LIUM, Fisher Corpus [26, 27, 28].
Specifically, the TED-LIUM data set has been used
in a variety of tasks such as in audio augmentation
[28], in modeling probabilities of pronunciation and
silence [29], etc. Furthermore, the TED-LIUM data
set has also been used in automatic speech recog-
nition combined with human correction at the word
level and lattice level [30].

Gated Recurrent Units (GRU) recurrent neural
networks were introduced by Cho et al. in 2014
[31]. GRUs are similar to LSTMs, both were de-
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signed to handle long term dependencies. However,
GRUs have a simpler structure than LSTMs. Both
architectures have been used for polyphonic music
modeling as well as for speech recognition tasks
[9, 32]. The results show that GRUs are equally
efficient as LSTMs.

Our work is similar to Baidu research [26]
where a bidirectional RNN is used to speed up
the speech recognition performance using GPU
(Graphics Processing Unit) parallelization. We
have used a single GPU structure for our experi-
ments to evaluate and compare the results of three
recurrent networks, namely bidirectional RNN,
bidirectional LSTM, and bidirectional GRU.

3 Recurrent Neural Network Ar-
chitecture

This Section first outlines the three models used
for the experimentation followed by the chosen ar-
chitecture description.

3.1 Recurrent Neural Network (RNN)

As mentioned earlier, in RNN the decision
made at time t − 1 affects the decision at time t.
Thus, the decision of how the network will respond
to new data is dependent on two things, (1) the cur-
rent input, and (2) the output from the recent past.
RNN calculates its output by iteratively calculating
the following two equations

ht = H (Wxhxt +Whhht−1 +bh), (1)

yt =Whyht +by, (2)

where x is the inputs, y is the output sequence, h is
the hidden vector sequence at time slices t = 1 to
T . Further W represents the weight matrices, and b
represents the biases. H is the activation function
used at the hidden layers.

3.2 Long Short-Term Memory (LSTM)

As a solution to the shortcomings of normal
RNNs, Hochreiter and Schmidhuber came up with
LSTM networks [33]. Special memory cell archi-
tecture in LSTM make it easier to store information
for long period. The cell structure has been modi-
fied by many people since then, however, the stan-

dard formulation of a single LSTM cell can be given
by following equations

ft = σ(Wf · [ht−1,xt ]+b f ), (3)

it = σ(Wi · [ht−1,xt ]+bi), (4)

C̃t = tanh(WC · [ht−1,xt ]+bC), (5)

Ct = ft ∗Ct−1 + it ∗C̃t , (6)

ot = σ(Wo · [ht−1,xt ]+bo), (7)

ht = ot ∗ tanh(Ct), (8)

where σ is the sigmoid function, tanh is the hyper-
bolic tangent function, i, f , o, C, C̃ are the input
gate, forget gate, output gate, memory cell content,
and new memory cell content, respectively. The
sigmoid function is used to form three gates in the
memory cell, whereas the tanh function is used to
scale up the output of a particular memory cell.

3.3 Gated Recurrent Units (GRU)

Introduced in 2014 [9], GRUs are similar to
LSTMs but they have fewer parameters. They also
have gated units like LSTMs which controls the
flow of information inside the unit but without hav-
ing separate memory cells. Unlike LSTM, GRU
does not have output gate, thus exposing its full
content. GRU formulation can be given by follow-
ing equations

rt = sigm(Wxrxt +Whrht−1 +br), (9)

zt = sigm(Wxzxt +Whzht−1 +bz), (10)

h̃t = tanh(Wxhxt +Whh(rt ⊙ht−1)+bh), (11)

ht = zt ⊙ht−1 +(1− zt)⊙ h̃t , (12)

where rt , zt , xt , ht are the reset gate, update gate, in-
put vector and output vector, respectively. Similar
to LSTM, W denotes the weight matrices, b the bi-
ases, sigm is the sigmoid activation, and tanh is the
hyperbolic tangent activation function.

Both LSTM and GRU are equally capable to
handle long term dependencies, and have been ex-
perimented and compared with machine translation
tasks and proved to be comparably efficient [34].
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does not have output gate, thus exposing its full
content. GRU formulation can be given by follow-
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3.4 Architecture for Experiments

The RNN architecture that we are using is based
on [26]. The architecture takes speech spectro-
grams as an input and creates English text as an out-
put. During pre-processing, a typically small win-
dow of a raw audio waveform is taken to compute
FFT (Fast Fourier Transform) to calculate the mag-
nitude (power) to describe the frequency content in
the selected local window. Then, the spectrogram
is generated by concatenating frames from adjacent
windows of the input audio. These spectrograms
serve as the input features for the RNN.

Consider a single input utterance x and la-
bel y as being sampled from the training set X =
{(x(1),y(1)),(x(2),y(2)), ...} where every utterance
x(i) is a time series of length T (i); T (i) is a time-slice
represented as a vector of speech features x(i)t from
t = 1, ...,T (i). Eventually, the sequence of inputs x
are converted into the sequence of character prob-
abilities for transcription y as ŷt = P(ct |x), where
ct ∈ {a,b,c, ...,z,space,apostrophe,blank}.

The RNN model consists of one input layer, one
output layer and five hidden layers. Figure 1 shows
the architecture with the different layers and nota-
tion used below. The hidden layer is denoted by
h(l). Thus, for input x, h(0) is the input and the out-
put at the input layer depending on the spectrogram
frame xt and context C of frames where t is the time.
The first three of the five hidden layers are normal
feedforward layers. For each time t, these are cal-
culated by

h(l)t = g(W (l)h(l−1)
t +b(l)) (13)

In Equation 13, g(z) is a clipped rectified linear
unit (ReLu) activation function that is used to cal-
culate the output at hidden layers, W (l) represents
the weight matrix, and b(l) is the bias vector at layer
l. In order to avoid the vanishing gradient problem,
ReLu functions are chosen over sigmoid functions.

The following layer (layer 4) is a Bidirectional
Recurrent layer (BRNN) consisting of one for-
ward hidden sequence and one backward hidden se-
quence [7]. Standard RNNs make use of only the
previous context information but bidirectional RNN
explore the future context as well. In particular, for
speech where complete utterances are recorded at
once, BRNN is a better choice over simple RNN.
The set of two hidden sequence layers in BRNN,

one forward recurrent sequence h( f ), and one back-
ward hidden sequence h(b) can be formulated as

h( f )
t = g(W (4)h(3)t +W ( f )

r h( f )
t−1 +b(4)), (14)

h(b)t = g(W (4)h(3)t +W (b)
r h(b)t+1 +b(4)). (15)

Please note that the forward sequence is calcu-
lated from t = 1, ..., t = T (i) for the ith utterance,
whereas the backward sequence is calculated from
t = T (i), ..., t = 1. This way BRNN processes the
data in both directions using two separate hidden
sequences, and then ‘feedforward’ the output to the
next layer, which is layer 5. Thus,

h(5)t = g(W (5)h(4)t +b(5)), (16)

where h(4)t = h( f )
t +h(b)t .

Our experiments are performed with three mod-
els, one where we use bidirectional RNN, the sec-
ond with bidirectional LSTM, and the last model
with a bidirectional GRU layer. The formulation of
bidirectional LSTM or GRU is the same as bidirec-
tional RNN, however, instead of RNN we use either
an LSTM cell or a GRU cell in layer 4.

For the output layer a standard softmax function
is used in order to calculate the predicted probabili-
ties of characters for each time slice t, and character
k in the alphabet. This output is given by

h(6)t,k = ŷt,k ≡ P(ct = k|x) =

exp(W (6)
k h(5)t +b(6)k )

∑ j exp(W (6)
j h(5)t +b(6)j )

, (17)

where W (6)
k and b(6)k denote the kth column of the

weight matrix and the kth bias, respectively.

After the character probabilities are calculated,
the CTC loss is calculated next [26]. The CTC loss
function is used to integrate over all possible align-
ments of characters. Thus, given the output of the
network, the CTC loss function calculates the er-
ror of the predicted output as the negative log like-
lihood of the probability of the target. For this,
the network output from Equation 17, the probabil-
ities of the alphabet over each time frame, is the
input to the CTC loss function. Given the defini-
tion of the CTC loss, the gradient of the loss ac-
cording to its inputs have to be calculated. This
loss can then be ‘backpropagated’ to the weights of
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Figure 1. RNN Architecture

the network. The ADAM optimization algorithm
[35] has been used for the backpropagation train-
ing since this training algorithm is very tolerant to
learning rate as well as to other training parameters,
and thus, requires less fine-tuning.

4 Experiments and Results

In this Section, first the data set is described as
well as the evaluation measures used for the experi-
ments are listed, followed by the results and discus-
sion.

4.1 Data Set

We have used a subset of the improved TED-
LIUM release 2 corpus [10]. The latest version of
the TED-LIUM data set has an improved language
model which is an important factor in achieving re-
duced WER (Word Error Rate) values [2]. The data
set is publicly available and contains filtered data
having audio talks and their transcriptions obtained
from the TED website. This corpus is particularly
designed to train acoustic models. For our exper-
iments, we have reduced the data set of size 34.3
GB to 11.7 GB. The data set is available at [36].

The data set has separate data folders for training,
validation and testing. The following is contained
in the data set:

– 378 audio talks in NIST sphere format (SPH)

– 378 transcripts in STM format

– Dictionary having pronunciation (152k entries)

– Improved language model having selected
monolingual data from WMT12 corpus [2]

4.2 Evaluation Measures

In speech recognition, there are two different
types of performance or evaluation measures, which
are based on (1) accuracy, and (2) speed [37]. Eval-
uation measures based on accuracy include WER,
loss, and mean edit distance.

WER is the most commonly used error mea-
surement in ASR. It is derived from the Levenshtein
distance [38] and calculated as [39, 40]

WER = (
S+ I +D

N
)×100, (18)

where S is the number of substitutions, I is number
of insertions, D is number of deletions, and N is the
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the network. The ADAM optimization algorithm
[35] has been used for the backpropagation train-
ing since this training algorithm is very tolerant to
learning rate as well as to other training parameters,
and thus, requires less fine-tuning.

4 Experiments and Results

In this Section, first the data set is described as
well as the evaluation measures used for the experi-
ments are listed, followed by the results and discus-
sion.

4.1 Data Set

We have used a subset of the improved TED-
LIUM release 2 corpus [10]. The latest version of
the TED-LIUM data set has an improved language
model which is an important factor in achieving re-
duced WER (Word Error Rate) values [2]. The data
set is publicly available and contains filtered data
having audio talks and their transcriptions obtained
from the TED website. This corpus is particularly
designed to train acoustic models. For our exper-
iments, we have reduced the data set of size 34.3
GB to 11.7 GB. The data set is available at [36].

The data set has separate data folders for training,
validation and testing. The following is contained
in the data set:

– 378 audio talks in NIST sphere format (SPH)

– 378 transcripts in STM format

– Dictionary having pronunciation (152k entries)

– Improved language model having selected
monolingual data from WMT12 corpus [2]

4.2 Evaluation Measures

In speech recognition, there are two different
types of performance or evaluation measures, which
are based on (1) accuracy, and (2) speed [37]. Eval-
uation measures based on accuracy include WER,
loss, and mean edit distance.

WER is the most commonly used error mea-
surement in ASR. It is derived from the Levenshtein
distance [38] and calculated as [39, 40]

WER = (
S+ I +D

N
)×100, (18)

where S is the number of substitutions, I is number
of insertions, D is number of deletions, and N is the
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total number of words in the actual transcript. The
interpretation of WER is that the lower the WER,
the better the speech recognition is [39, 40].

The loss is also referred to as Expected Tran-
scription Loss [24]. The expected transcription loss
function is defined by

L(x) = ∑
y

Pr(y|x)L(x,y), (19)

where x is the given input sequence, Pr(y|x) the
distribution over transcription sequences y defined
by CTC, and L(x,y) a real-valued transcription loss
function.

The edit distance can be best explained with an
example. Let us say the normalized edit distance
between two words/strings (consider A and B) is
d(A,B) [41]. The mean edit distance is calculated
by

d(A,B) = min(
W (P)

N
), (20)

where P is the editing path between string A and
string B, W (P) is the total sum of weights of all the
edited operations of P, and N is the total number
of edited operations (the length of editing path, P)
[41].

4.3 Parameter Setup

The following parameters were used for the
runs:

– Dropout rate = 30%

– Number of epochs = 10

– Training batch size = 16

– Test batch size = 8

– Activation function = ReLU

– Neuron count in hidden layers = 500 or 1,000
(as indicated)

– Adam optimizer:

– β1 = 0.9

– β2 = 0.999

– ε = 1e-8

– learning rate = 0.0001

4.4 Results

We ran the three models (RNN, LSTM, GRU)
with two different architectures. The first used 500
nodes in each hidden layer whereas the second con-
sisted of a 1,000-node architecture.

Table 1 provides the results of the 500-node
architecture experiments. In terms of WER,
RNN achieved 87.02%, LSTM 77.55%, and GRU
79.39% with LSTM scoring best. The loss is mea-
sured as part of the neural network optimization
and shows a similar trend to the WER with 186.61,
160.51, and 162.22 for RNN, LSTM, and GRU,
respectively. In terms of the mean edit distance,
LSTM achieved the best value with 0.3853.

Table 2 lists the results of the experiments us-
ing the 1,000-node architecture. Again, LSTM ob-
tained the best WER value of 65.04% followed by
GRU with 67.42% and RNN with 78.66%. The loss
values of LSTM and GRU are close with 134.35 and
136.89, respectively. The best mean edit distance is
0.3222 achieved by LSTM.

Figure 2 plots the WER values graphically.
The figure clearly shows the lowest WER values
achieved by LSTM for both network architectures
(500- and 1,000-node network).

Figure 3 shows the WER values of each model
(RNN, LSTM, GRU) for the 1,000-node architec-
ture. The test set was applied after each epoch
had elapsed, i.e., the model obtained during train-
ing is tested on the test data immediately after each
epoch and the WER is documented. We can see that
LSTM achieves the best WER value as mentioned
above. However, what can be observed from the
figure is that the best WER value of each model is
actually obtained after the 9th epoch. The values
at the 9th epoch are 78.43%, 64.76%, 67.34% for
RNN, LSTM, and GRU, respectively.

In terms of the running time, RNN beats both
LSTM and GRU with the shortest execution times
as shown in Figure 4. However, since the WER val-
ues of LSTM and GRU are much better, RNN is not
really comparable. For the 500-node architecture
LSTM ran for more than 2 days whereas GRU ran
for approximately 1.5 days. The difference is more
significant for the 1,000-node architecture. LSTM
ran slightly longer then 7 days whereas GRU only
ran for 5 days and 5 hours.
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Table 1. Results for 500-node layer architecture

Model WER (%) Loss Mean edit distance

RNN 87.02 186.61 0.4484
LSTM 77.55 160.51 0.3853
GRU 79.39 162.22 0.3939

Table 2. Results for 1,000-node layer architecture

Model WER (%) Loss Mean edit distance

RNN 78.66 164.60 0.3991
LSTM 65.04 134.35 0.3222
GRU 67.42 136.89 0.3308

Figure 2. WER results in %

Figure 3. WER values in % per epoch for all models and the 1,000-node architecture



243Apeksha Shewalkar, Deepika Nyavanandi, Simone A. Ludwig

Table 1. Results for 500-node layer architecture

Model WER (%) Loss Mean edit distance

RNN 87.02 186.61 0.4484
LSTM 77.55 160.51 0.3853
GRU 79.39 162.22 0.3939

Table 2. Results for 1,000-node layer architecture

Model WER (%) Loss Mean edit distance

RNN 78.66 164.60 0.3991
LSTM 65.04 134.35 0.3222
GRU 67.42 136.89 0.3308

Figure 2. WER results in %

Figure 3. WER values in % per epoch for all models and the 1,000-node architecture

PERFORMANCE EVALUATION OF DEEP NEURAL NETWORKS APPLIED . . .

Figure 4. Running time in days

5 Conclusion

Since standard feedforward neural networks
cannot handle speech data well (due to lacking a
way to feed information from a later layer back to
an earlier layer), thus, RNNs have been introduced
to take the temporal dependencies of speech data
into account. Furthermore, RNNs cannot handle the
long-term dependencies due to vanishing/exploding
gradient problem very well. Therefore, LSTMs and
a few years later GRUs were introduced to over-
come the shortcomings of RNNs.

This paper evaluated RNN, LSTM and GRU
and compared their performances on a reduced
TED-LIUM speech data set. Two different archi-
tectures were evaluated; a network with 500 nodes
and a network with 1,000 nodes in each layer. The
evaluation measures used were WER, loss, mean
edit distance, and the running time. The results
show that the WER value of LSTM and GRU are
close (LSTM scoring slightly better than GRU),
however, the running time of LSTM is larger than
GRU. Thus, the recommendation for the reduced
TED-LIUM speech data set is to use GRU since
it returned good WER values within an acceptable
running time.

Future work will include parameter optimiza-
tion in order to investigate the influence on different
parameter settings. Furthermore, the learning rate,
dropout rate as well as higher numbers of neurons
in the hidden layers will be experimented with.

Acknowledgment

This work used the Extreme Science and En-
gineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant
number ACI-1548562. We also gratefully acknowl-
edge the support of NVIDIA Corporation.

References
[1] G. E. Hinton, S. Osindero, Y. Teh, A fast learning

algorithm for deep belief nets, Neural Computation
18, 1527-1554, 2006.
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