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Abstract

Evolutionary Multi-agent System introduced by late Krzysztof Cetnarowicz and devel-
oped further at the AGH University of Science and Technology became a reliable opti-
mization system, both proven experimentally and theoretically. This paper follows a work
of Byrski further testing and analyzing the efficacy of this metaheuristic based on popular,
high-dimensional benchmark functions. The contents of this paper will be useful for any-
body willing to apply this computing algorithm to continuous and not only optimization.
Keywords: multi-agent systems, metaheuristics, evolutionary computing

1 Introduction

Novel metaheuristics are always needed in order to
tackle difficult problems that cannot be solved by
the deterministic means (cf. [31]). At the same time
these metaheuristics cannot be proposed only to ex-
plore a new metaphor, but their existence should
be properly motivated and proven (cf. [28]). In
this paper we try to delve into intrinsic features
of an agent-based evolutionary metaheuristic, i.e.
EMAS (Evolutionary Multi-Agent System), and ex-
plore the parameters of the search, looking for rela-
tions between their values and their efficacy.

EMAS has been proposed in 1996 by Krzysztof
Cetnarowicz [16] and since then gathered many
successful followers who worked on a signifi-
cant number of applications (continuous, discrete
optimization), single-criteria, multi-criteria, mul-
timodal [13]. Moreover a number of software
frameworks were created keeping in mind that they
should be used i.a. to flexibly support EMAS com-
puting, following formal deliberations on their fea-

sibility [12, 24]. Following preliminary results pre-
sented in [6] (summarized by rather qualitative con-
clusion), we would like to provide a more tangible
and measurable results trying to assess the quality
of the EMAS-based search in the continuous opti-
mization domain.

A detailed insight into parametrization of
EMAS and immunological EMAS [10, 11] (e.g. ef-
ficiency, energy levels) for a selected benchmark
function was given in [6]. This paper may be treated
as its direct follow-up, showing the influence of dif-
ferent parameters of variation operators, different
configurations of the agent population, different di-
mensions of the tackled problems and a broader se-
lection of benchmark functions. This paper brings
makes possible for a potential user of EMAS to
gather more preliminary experience before setting
and tuning properly the algorithm for a particular
use.

The paper is organized as follows. In the be-
ginning the EMAS basics are recalled, along with

  – 97
10.2478/jaiscr-2018-0026



82 Michal Mizera, Pawel Nowotarski, Aleksander Byrski, Marek Kisiel-Dorohinicki

motivation for constructing of such computing sys-
tems, then the extensive experimental results sec-
tion begins, where EMAS applied to solving pop-
ular benchmark problems like Rosenbrock, Schwe-
fel, Rastrigin etc. [17] is tested systematically using
different configurations, looking for optimal ones
for particular tested problems. Finally, the paper is
concluded.

2 Evolutionary Multi-Agent Sys-
tem

Evolutionary Multi Agent-System [16] can be
treated as an interesting and quite efficient meta-
heuristic, moreover with a proper formal back-
ground proving its correctness [5]. therefore this
system has been chosen as a tool for solving the
problem described in this paper.

Evolutionary processes are by nature decen-
tralized and therefore evolutionary processes in a
multi-agent system at a population level may be
easily introduced. It means that agents are able to
reproduce (generate new agents), which is a kind of
cooperative interaction, and may die (be eliminated
from the system), which is the result of competi-
tion (selection). A similar idea with a limited au-
tonomy of agents located in fixed positions on some
lattice (like in a cellular model of parallel evolution-
ary algorithms) was developed by Zhong et al. [33].
The key idea of the decentralized model of evolu-
tion in EMAS [23] was to ensure the full autonomy
of agents.

Such a system consists of a relatively large
number of rather simple (reactive), homogeneous
agents [32], which have or work out solutions to the
same problem (a common goal). Due to computa-
tional simplicity and the ability to form independent
subsystems (sub-populations), these systems may
be efficiently realized in distributed, large-scale en-
vironments (see, e.g. [8]). One has to refer here
to the work of Hanna and Cagan [22] who also
propose evolutionary multi-agent systems, however
they work rather on the level of more technical pro-
cessing by employing the agent-paradigm, contrary
to the idea of integrating the agency and evolution
in the EMAS described here.

Agents in EMAS represent solutions to a given
optimization problem. They are located on islands

representing distributed structure of computation.
The islands constitute local environments, where
direct interactions among agents may take place. In
addition, agents are able to change their location,
which makes it possible to exchange information
and resources all over the system [23].

In EMAS, phenomena of inheritance and selec-
tion – the main components of evolutionary pro-
cesses [21, 2] – are modeled via agent actions of
death and reproduction (see Figure 1). As in the
case of classical evolutionary algorithms, inheri-
tance is accomplished by an appropriate definition
of reproduction. Core properties of the agent are
encoded in its genotype and inherited from its par-
ent(s) with the use of variation operators (mutation
and recombination). Moreover, an agent may pos-
sess some knowledge acquired during its life, which
is not inherited. Both inherited and acquired infor-
mation (phenotype) determines the behavior of an
agent. It is noteworthy that it is easy to add mech-
anisms of diversity enhancement, such as allotropic
speciation (cf. [14, 1]) to EMAS. It consists in in-
troducing population decomposition and a new ac-
tion of the agent based on moving from one evo-
lutionary island to another (migration) (see Figure
1).

Assuming that no global knowledge is avail-
able, and the agents being autonomous, selec-
tion mechanism based on acquiring and exchang-
ing non-renewable resources [16] is introduced. It
means that a decisive factor of the agent’s fitness
is still the quality of solution it represents but ex-
pressed by the amount of non-renewable resource it
possesses. In general, the agent gains resources as
a reward for “good” behavior, and looses resources
as a consequence of “bad” behavior (behavior here
may be understood as e.g. acquiring a sufficiently
good solution). Selection is then realized in such
a way that agents with a lot of resources are more
likely to reproduce, while a low level of resources
increases the possibility of death. So according
to classical Franklin’s and Graesser’s taxonomy –
agents of EMAS can be classified as Artificial Life
Agents (a kind of Computational Agents) [20].

Many optimization tasks, which have already
been solved with EMAS and its modifications,
have yielded better results than certain classical
approaches. They include, among others, opti-
mization of neural network architecture [3], multi-
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Figure 1. Evolutionary multi-agent system (EMAS)

objective optimization [27], multi-modal optimiza-
tion [18] and financial optimization [19]. EMAS
has thus been proved to be a versatile optimization
mechanism in practical situations. A summary of
EMAS-related review has is given in [9].

EMAS may be held up as an example of a cul-
tural algorithms, where evolution is performed at
the level of relations among agents, and cultural
knowledge is acquired from the energy-related in-
formation. This knowledge makes it possible to
state which agent is better and which is worse, jus-
tifying the decision about reproduction. Therefore,
the energy-related knowledge serves as situational
knowledge. Memetic variants of EMAS may be
easily introduced by modifying evaluation or vari-
ation operators (by adding an appropriate local-
search method).

3 Experimental results

In this Section, various experimental results
connected with tuning the EMAS will be presented,
mostly focusing on mutation, as this component
of the computing system is mostly connected with
finding a balance between exploration and exploita-

tion. Other aspects will also be tackled, e.g. the
number of the evolutionary islands. The presented
experimental results are supposed to be a contin-
uation and extension of the research presented in
[6]. All these experiments were realized using
Zeus supercomputer (HP BL2x220c, Intel Xeon, 23
TB, 169 TFlops) made available by ACC Cyfronet
AGH.

The Base configuration of EMAS looks as fol-
lows:

– Migration Minimum Threshold = 120,

– Newborn energy = 100,

– Fight transferred energy = 40,

– Reproduction minimum threshold = 120,

– Initial energy = 100,

– Mutation probability = 0.01,

– Mutation radius = 0.1,

– Global mutation probability = 0,

– Torus size = 10x10,

Evolutionary island

genotype
agent

energy

genotype
agent

energy

genotype
agent

energy
high energy:
reproduction

genotype
agent

energy

low energy:
death

genotype
agent

energy

genotype
agent

energy

genotype
agent

energy

imigration
emigration

evaluation and
energy transfer

Evolutionary island
A

A
A

A

A

A

Evolutionary island
A

A
A

A

A

Amigrations

Figure 1: Evolutionary multi-agent system (EMAS)

quence of “bad” behavior (behavior here may be un-
derstood as, e.g. acquiring sufficiently good solu-
tion). Selection is then realized in such a way that
agents with a lot of resources are more likely to re-
produce, while a low level of resources increases
the possibility of death. So according to classi-
cal Franklin’s and Graesser’s taxonomy—agents of
EMAS can be classified as Artificial Life Agents (a
kind of Computational Agents) [20].

Many optimization tasks, which have already
been solved with EMAS and its modifications,
have yielded better results than certain classical ap-
proaches. They include, among others, optimization
of neural network architecture [3], multi-objective

optimization [27], multi-modal optimization [18]
and financial optimization [19]. EMAS has thus been
proved to be a versatile optimization mechanism in
practical situations. A summary of EMAS-related
review has is given in [9].

EMAS may be held up as an example of a cultural
algorithms, where evolution is performed at the level
of relations among agents, and cultural knowledge is
acquired from the energy-related information. This
knowledge makes it possible to state which agent
is better and which is worse, justifying the deci-
sion about reproduction. Therefore, the energy-
related knowledge serves as situational knowledge.
Memetic variants of EMAS may be easily introduced
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– Number of islands = 3,

– Initial population size (per island) = 25.

3.1 Initial experiments

Aiming at extending the research presented in
[6], we tried to test broader ranges of a selected
configuration parameters. For example, in the be-
ginning, in order to assess the capability of solv-
ing problems of different difficulty, the Rastrigin
benchmark was used in different dimensions (see
Figure 2), running the computation for different pe-
riods of time. Namely completing 1 hour and 3
hours were assumed as stopping conditions and the
observed results were compared.

In Figure 2a the best fitness observed during
1 hour is shown and in Figure 2b, the same for
3 hours. It is quite obvious to see, that EMAS
behaves predictably in this test, namely assuming
longer computing time, the results become signifi-
cantly closer to global optimum (note different scale
used on Y-axis). Moreover, the tests for the in-
stances of lower and equal to 200 finish with sub-
optimal results very close to the global optimum in
the case of 3 hours.

3.2 Energy thresholds

Next, again in Figure 2, dependencies of best
fitness on time for different reproduction thresholds
are shown. Namely, graphs showing these depen-
dencies for minimum reproduction equal to 20 (see
Figure 2c), 100 (see Figure 2d) and 200 (see Figure
2e) are presented. Moreover, below each graph the
number of individuals in the system is shown, in or-
der to check the stability of the population (note that
the number of individuals in EMAS is not constant
but varies, caused by the reproduction and death ac-
tions performed by the agents).

Regarding the fitness, it is easy to see that all
the experiments yield a similar result (note these are
only single runs in order to observe actual shapes
of the fitness curves, so this conclusion cannot be
drawn as a general one).

However, the most important observation based
on these graphs is relevant to the dynamics of the
population: in the first case (reproduction 20) the
curve showing the number of agents in the popula-
tion is smooth, while in the two next cases (100 and

200) the number of individuals fluctuates. More-
over, in the first case the number of individual rises,
while in the two latter: falls down.

Of course it can be explained when looking at
the actual values of the parameters: in all the cases
the initial energy is 100, while in the first case
the reproduction energy is lower than this threshold
and most of the individuals start with reproduction.
Later the average energy falls below the reproduc-
tion threshold, and the agents must gather energy in
order to reproduce. However, not too many meet-
ings are needed (note that the reproduction thresh-
old is only 20, while the 40 units of energy is trans-
ferred when the agent wins a fight. As the trans-
fer energy is close to the death energy, usually after
winning the fight by one agent, the other dies: so the
balance remains more or less stable, thus the curve
is smoother than in the latter cases.

At the same time, more “predictable” situation
arises for the two latter experiments, when the re-
production energy is significantly higher than the
initial energy. In those cases, the number of agents
falls quickly down first (as many of them die rather
than reproduce) and later, when some of the agents
gather enough energy, reproduction actions are re-
alized. As there is significantly more energy to be
gathered than in the first case, to reproduce, the fluc-
tuation of the number of agents can be observed – in
the population, different numbers of agents repro-
duce and die at the same time, thus showing clearly
the parallel ontogenesis happening in the popula-
tion.

Finally, in Figure 2f the dependency of the final
fitness on the reproduction, minimum parameter is
presented. It seems that the optimal value of this pa-
rameter for the tested problem in the current setting
is 100. For lower values of the reproduction thresh-
olds, many more agents were present in the popu-
lation, requiring much more computing power and
finally bringing worse results. For the reproduction
threshold equal to 100 the number of agents fluc-
tuates around 30, proving the observations found
in the literature (cf. [15]) that the subpopulation
should not be very big, in order to do evolutionary
computation in an efficacious and efficient way.
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Figure 2. Final fitness after different time of computation, depending on the number of dimensions of the
tackled Rastrigin problem. Single runs of computation with different reproduction thresholds, below each

graph, the number of individuals in population is displayed. The final graph depicts the final fitness
depending on the reproduction threshold.

(a) 1 hour (b) 3 hours

(c) Reproduction threshold 20 (d) Reproduction threshold 100

(e) Reproduction threshold 200 (f) Final fitness depending on the reproduction minimum

Figure 2: Final fitness after different time of computation, depending on the number of dimensions of
the tackled Rastrigin problem. Single runs of computation with different reproduction thresholds, below
each graph, the number of individuals in population is displayed. The final graph depicts the final fitness
depending on the reproduction threshold.
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3.3 Mutation parameters

For the mutation-related research the following
configuration was used:

– Migration Minimum Threshold = 120,

– Newborn energy = 100,

– Fight transferred energy = 40,

– Reproduction minimum threshold = 90,

– Initial energy = 100,

– Mutation probability = [0.005, 0.01, 0.02, 0.03,
0.05, 0.1. 0.2, 0.3, 0.5. 0.7. 0.9],

– Mutation radius = [0.1, 0.20, 0.5, 0.75, 1.0, 1.5,
2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] /
[0.05, 0.07, 0.1, 0.15, 0.20, 0.25, 0.35, 0.5, 0.75,
1.0],

– Dimensionality of the problems = Schwefel - 20,
Rosenbrock - 100, Rastrigin - 100, Griewank -
100,

– Torus size = 10x10,

– Number of islands = 3,

– Initial population size (per island) = 25,

– Number of iterations = 2501.

In Figure 3 mutation parameters were initially
tested for the Rastrigin benchmark in order to find
their optimal values for the considered problem. It
is very clear, when looking at the two first graphs
showing the dependency of the final fitness for the
value of mutation probability (see Figures 3a and
3b) that the value of 0.01 seems to be optimal, and
this is quite predictable as too small value of muta-
tion probability will not introduce enough diversity
into the genetic material.

Note that the ontogenesis in EMAS does not
have such high rate as in classic evolutionary algo-
rithms, there are no generations that tend to replace
all the population with new individuals, therefore
a proper setting of ontogenesis-related parameters
will help in wise exploration and exploitation of the
search space.

Initial research of mutation parameters gave
significant improvement of results. We decided to

analyze in details effects of changing probability
and radius on results. For each problem series of
experiments with different values were conducted.

Regarding the mutation radius (see Figures 3c
and 3d, the optimal results are located in a small
plateau between 0.7 and 1.4. The values below this
range clearly hampered the exploration capability
and the results were very bad. At the same time the
values above this range were not so bad, however
the quality of the obtained fitness slowly decreased,
that is quite natural, as having too high mutation
step would bring the search very quickly to oscil-
late between the sub-optimal results.

Finally, using the optimal mutation parameters
found, we have tackled the Rastrigin problem in dif-
ferent dimensions (between 2 and 500), see Figures
3e, 3f. In the first graph, the best results are ob-
served up to dimension equal to 80, however when
the perspective changes, one can see a significant
improvement comparing to the results presented in
Figures 2a and 2b. Comparing the stopping condi-
tion, the results close to the global optimum were
attained up to 200 dimensions after 1 or 3 hours in
the previous experiments, and only after 14 mins. in
the case of the experiments using optimal mutation
parameters.

Of course, using the optimal mutation param-
eters found for Rastrigin problem in the case of
solving other problems cannot bring the same or
sometimes even similar efficacy results. We tried to
apply the discussed parameters to optimization of
Schwefel problem in different dimensions (see Fig-
ure 4a) and the result was more than discouraging,
namely increasing the dimensionality of the prob-
lem the quality of results decreased dramatically.

Thus, we decided to pursue the further exami-
nation of different efficacy-related effects observed
when experimenting with several selected bench-
mark functions and mutation parameters. First the
Griewank function in 200 dimensions was tested.
In Figure 4b it is easy to see that starting from the
value of mutation radius around 3, the final fitness
obtained is reasonably close to the optimum. Fur-
ther exploration of the mutation radius range would
probably bring stabilization of the curve, but such
experiments will be realized in the future. In this
paper, we tended to retain the assumed symmetry
of the results thus we did not cross the maximum
value of the mutation radius: 10.
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ferent dimensions (between 2 and 500), see Figures
3e, 3f. In the first graph, the best results are ob-
served up to dimension equal to 80, however when
the perspective changes, one can see a significant
improvement comparing to the results presented in
Figures 2a and 2b. Comparing the stopping condi-
tion, the results close to the global optimum were
attained up to 200 dimensions after 1 or 3 hours in
the previous experiments, and only after 14 mins. in
the case of the experiments using optimal mutation
parameters.

Of course, using the optimal mutation param-
eters found for Rastrigin problem in the case of
solving other problems cannot bring the same or
sometimes even similar efficacy results. We tried to
apply the discussed parameters to optimization of
Schwefel problem in different dimensions (see Fig-
ure 4a) and the result was more than discouraging,
namely increasing the dimensionality of the prob-
lem the quality of results decreased dramatically.

Thus, we decided to pursue the further exami-
nation of different efficacy-related effects observed
when experimenting with several selected bench-
mark functions and mutation parameters. First the
Griewank function in 200 dimensions was tested.
In Figure 4b it is easy to see that starting from the
value of mutation radius around 3, the final fitness
obtained is reasonably close to the optimum. Fur-
ther exploration of the mutation radius range would
probably bring stabilization of the curve, but such
experiments will be realized in the future. In this
paper, we tended to retain the assumed symmetry
of the results thus we did not cross the maximum
value of the mutation radius: 10.

FINE TUNING OF . . .

Figure 3. Final fitness depending on mutation probability and mutation radius, finally optimal mutation
parameters depending on dimensions for the tackled Rastrigin problem.

(a) Mutation probability (zoomed) (b) Mutation probability

(c) Mutation radius (zoomed) (d) Mutation radius

(e) Optimal mutation parameters depending on dimen-
sions (zoomed)

(f) Optimal mutation parameters depending on dimen-
sions

Figure 3: Final fitness depending on mutation probability and mutation radius, finally optimal mutation
parameters depending on dimensions for the tackled Rastrigin problem.
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Figure 4. Final fitness for the tackled Schwefel and Griewank problems using optimal mutation parameters
found for Rastrigin depending on the number of dimensions.

Figure 5. Final fitness of the tackled Rastrigin problem for different probabilities depending on the
mutation radius.

(a) Schwefel (b) Griewank

Figure 4: Final fitness for the tackled Schwefel and Griewank problems using optimal mutation parameters
found for Rastrigin depending on the number of dimensions.
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Figure 4. Final fitness for the tackled Schwefel and Griewank problems using optimal mutation parameters
found for Rastrigin depending on the number of dimensions.

Figure 5. Final fitness of the tackled Rastrigin problem for different probabilities depending on the
mutation radius.

FINE TUNING OF . . .

Next, we have returned to the Rastrigin problem
for a moment, in order to check the efficacy for dif-
ferent values of mutation radius, assuming the mu-
tation probability to 0.01 and later to 0.7, in order to
test two quite contrary values. The results are pre-
sented in Figure 5. One can easily see that the best
efficacy was observed for the mutation probability
equal to 0.01 and the mutation radius between 0.5
and 1.5 – in these cases the obtained results were
relatively close to the optimum.

When testing higher mutation rate, namely 0.7,
the obtained results for the smallest value of mu-
tation radius are quite worse than the one obtained
for mutation probability 0.01, and their quality de-
creases even more, when the mutation radius be-
comes higher.

In the case of optimization of Rosenbrock func-
tion, the obtained results had apparently lower ef-
ficacy – see Figure 6. The starting parameters
turned out to be the best ones. Rosenbrock function
belongs to especially difficult problems, therefore
much more effort would be required here than only
testing two mutation probabilities: 0.01 and 0.3.

Considering Schwefel problem while testing
two different probabilities of mutation, namely 0.01
and 0.3 for different mutation radii (see Figure 7) no
apparent success was encountered, the efficacy for
all the observed cases stayed quite diverse and more
or less stable.

Finally, considering Griewank problem while
testing four different probabilities of mutation,
namely 0.01, 0.1, 0.3 and 0.7 for different mutation
radii (see Figure 8), it is easy to see that increas-
ing the mutation probability in the assumed range
increased the efficacy of the problem solution.

3.4 Population structure

For the population structure examination the
following configuration was used:

– Migration Minimum Threshold = 120,

– Newborn energy = 100,

– Fight transferred energy = 40,

– Reproduction minimum threshold = 90,

– Initial energy = 100,

– Mutation probability = 0.01,

– Mutation radius = 1,

– Dimensionality of the problems = Schwefel - 20,
Rosenbrock - 100, Rastrigin - 75, Dejong - 250,
Greiwang - 75,

– Torus size = 6x6, 8x8, 10x10,

– Number of islands = [1,2,3,5,7,10,15,20,25,30,50],

– Initial population size (per island) = 25,

– Number of iterations = 30000/(Number of is-
lands) + 1.

An important parameter affecting the efficiency
and efficacy (and diversity of the search) of the evo-
lutionary metaheuristic is the number of subpopu-
lations. We have tackled four selected benchmark
problems, namely Rastrigin, Schwefel, Rosenbrock
and Griewank, changing the number of the evolu-
tionary islands involved. In Figure 9 the final fit-
ness obtained for these four problems run in differ-
ent configurations concerning the number of islands
are shown. It is quite predictable that increasing the
number of islands makes possible more accurate lo-
calization of the suboptimal solutions with relation
to the global optimum. Testing Rosenbrock, Ras-
trigin and Griewank problems the final fitness was
of range close to 100-200. In the case of Schwe-
fel function, the approaching to the global optimum
was also observed, yet the final result was close to
5000, far from the global optimum.

The subpopulations present on each of evolu-
tionary islands are located on tori of a certain size.
In Figure 10 the final fitness depending on the num-
ber of evolutionary islands for different sizes of tori,
considering Rastrigin and Schwefel problems. It is
clear that the number of evolutionary islands again
affects the final result to a large extent. At the same
time the size of torus seems to be less significant,
although apparently, the best results were obtained
for the size 6 in the case of Schwefel function, and
for the size 10 in the case of Rastrigin function.

It is to note that while increasing the number
of islands, the time of computation was decreased
(as the iteration number was decreased), so the total
sum of operations realized in the computing system
was practically constant.
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Figure 6. Final fitness of the tackled Rosenbrock problem for different probabilities depending on the
mutation radius.

(a) Rosenbrock, mutation probability 0.01 (zoomed) (b) Rosenbrock, mutation probability 0.01

(c) Rosenbrock, mutation probability 0.3 (zoomed) (d) Rosenbrock, mutation probability 0.3

Figure 6: Final fitness of the tackled Rosenbrock problem for different probabilities depending on the
mutation radius
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Figure 6. Final fitness of the tackled Rosenbrock problem for different probabilities depending on the
mutation radius.

FINE TUNING OF . . .

Figure 7. Final fitness of the tackled Schwefel problem for different probabilities depending on the
mutation radius.

(a) Schwefel, mutation probability 0.01 (zoomed) (b) Schwefel, mutation probability 0.01

(c) Schwefel, mutation probability 0.3 (zoomed) (d) Schwefel, mutation probability 0.3

Figure 7: Final fitness of the tackled Schwefel problem for different probabilities depending on the mutation
radius
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Figure 8. Final fitness of the tackled Griewank problem for different probabilities depending on the
mutation radius.

(a) Griewank, mutation probability 0.01 (b) Griewank, mutation probability 0.1

(c) Griewank, mutation probability 0.3 (d) Griewank, mutation probability 0.7

Figure 8: Final fitness of the tackled Griewank problem for different probabilities depending on the mutation
radius
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Figure 8. Final fitness of the tackled Griewank problem for different probabilities depending on the
mutation radius.

FINE TUNING OF . . .

Figure 9. Final fitness of the tackled different problems for different number of evolutionary islands.

(a) Rastrigin (b) Schwefel

(c) Rosenbrock (d) Griewank

Figure 9: Final fitness of the tackled different problems for different number of evolutionary islands.
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Figure 10. Final fitness of the tackled Rastrigin and Schwefel for different sizes of torus depending on the
number of islands.

(a) Rastrigin, torus size 6 (b) Schwefel, torus size 6

(c) Rastrigin, torus size 8 (d) Schwefel, torus size 8

(e) Rastrigin, torus size 10 (f) Schwefel, torus size 10

Figure 10: Final fitness of the tackled Rastrigin and Schwefel for different sizes of torus depending on the
number of islands.
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Figure 10. Final fitness of the tackled Rastrigin and Schwefel for different sizes of torus depending on the
number of islands.

FINE TUNING OF . . .

Conclusion

Summing up and recalling again the well-
known “no free lunch theorem” by Wolpert and
MacReady [31], one can state that there will always
be a place in the computational sciences for another
metaheuristic. At the same time one has to keep in
mind quite surprising, yet very true findings of sci-
entists like Sorensen [28] and propose new meta-
heuristics carefully, with proper theoretical back-
ground and when they are really needed.

In the opinion of authors, EMAS belongs to
such metaheuristics, bringing together evolution
and theagency, and being able to solve many prob-
lems for the last 20 years advantageously over
other metaheuristics. Theoretical background was
provided by Byrski and Schaefer [5] proving that
EMAS is an universal optimization algorithm.

Byrski also gave broad experimental evidence
on the applicability of EMAS to solving high-
dimensional benchmark functions in [7]. The re-
sults presented in this paper can be treated as a
follow-up and extension of this work, tackling more
problems in significantly broader range of parame-
ters, and can be used as a reference for all interested
in utilizing this efficient and efficacious metaheuris-
tic in continuous optimization problems.

The research on EMAS is and will be con-
tinued, focusing on different hybridization of this
metaheuristic algorithm, e.g. [25, 4] and differ-
ent ways of implementation, e.g. in order to uti-
lize properly the available supercomputing infras-
tructure e.g. [29, 30]. Currently, two hybridization
of EMAS are researched, namely the one with Dif-
ferential Evolution (in progress, not published yet)
and with Particle Swarm Optimization (preliminary
results already published in [26]).
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[28] Kenneth Sörensen. Metaheuristicsthe metaphor ex-
posed. International Transactions in Operational Re-
search, 22(1):3–18, 2015.

[29] Jan Stypka, Wojciech Turek, Aleksander Byrski,
Marek Kisiel-Dorohinicki, Adam D. Barwell,
Christopher Brown, Kevin Hammond, and Vladimir
Janjic. The missing link! a new skeleton for evolu-
tionary multi-agent systems in erlang. International
Journal of Parallel Programming, 46(1):4–22, Feb
2018.

[30] Wojciech Turek, Jan Stypka, Daniel Krzywicki, Pi-
otr Anielski, Kamil Pietak, Aleksander Byrski, and
Marek Kisiel-Dorohinicki. Highly scalable erlang
framework for agent-based metaheuristic comput-
ing. J. Comput. Science, 17:234–248, 2016.

[31] D.H. Wolpert and W.G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 67(1), 1997.

[32] M.J. Wooldridge. An Introduction to Multiagent
Systems. John Wiley & Sons, 2009.



97Michal Mizera, Pawel Nowotarski, Aleksander Byrski, Marek Kisiel-Dorohinicki

[12] Aleksander Byrski and Marek Kisiel-Dorohinicki.
Agent-based model and computing environment fa-
cilitating the development of distributed computa-
tional intelligence systems. In Gabrielle Allen,
Jarosław Nabrzyski, Edward Seidel, Geert Dick van
Albada, Jack Dongarra, and Peter M. A. Sloot, ed-
itors, Computational Science – ICCS 2009, pages
865–874, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[13] Aleksander Byrski and Marek Kisiel-Dorohinicki.
Evolutionary Multi-agent Systems: From inspira-
tions to applications, volume 680 of Studies in Com-
putational Intelligence. Springer, 2017.
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