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Abstract

Hebbian learning rule is well known as a memory storing scheme for associative memory
models. This scheme is simple and fast, however, its performance gets decreased when
memory patterns are not orthogonal each other. Pseudo-orthogonalization is a decor-
relating method for memory patterns which uses XNOR masking between the memory
patterns and randomly generated patterns. By a combination of this method and Hebbian
learning rule, storage capacity of associative memory concerning non-orthogonal patterns
is improved without high computational cost. The memory patterns can also be retrieved
based on a simulated annealing method by using an external stimulus pattern. By utiliz-
ing complex numbers and quaternions, we can extend the pseudo-orthogonalization for
complex-valued and quaternionic Hopfield neural networks. In this paper, the extended
pseudo-orthogonalization methods for associative memories based on complex numbers
and quaternions are examined from the viewpoint of correlations in memory patterns. We
show that the method has stable recall performance on highly correlated memory patterns
compared to the conventional real-valued method.
Keywords: Hopfield neural network, pseudo-orthogonalization, complex numbers, quater-
nions

1 Introduction

Hebbian learning rule is a well-known scheme
for embedding patterns onto associative memories,
such as Hopfield neural networks [1]. This scheme
is simple and straightforward, however, it has a cru-
cial issue for the embedding patterns; the patterns
should be orthogonal to each other. On embedding
correlated patterns by this scheme, the storage per-
formance of the network is significantly decreased.
Thus, many researches for storing correlated pat-
terns direct to orthogonalization of these patterns,

such as pseudo-inverse matrix method [2] and iter-
ative learning scheme [3]. Though these methods
enable all the correlated patterns to be stable local
minima in the network, their computational costs
grow with respect to the network size and the num-
ber of patterns to be embedded.

A novel method has been proposed that enables
correlated patterns onto associative memories with
low computational cost [4]. The method, which
is called pseudo-orthogonalization, first prepares a
random pattern (mask pattern) of which length is
the same as that of a memory pattern, and element-
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wise exclusive not-or (XNOR) operation is applied
between the random pattern and the memory pat-
tern. The pattern to be embedded in the network is
a concatenation of XNORed pattern (masked pat-
tern) and the corresponding random pattern. These
pseudo-orthogonalized patterns have low correla-
tion, thus, they can be embedded by using Hebbian
learning rule without a degradation of storage ca-
pacity. The length of these patterns become double,
however, the embedding process is simple and re-
quires rather low computational cost.

Recently, the applications of complex or hyper-
complex number systems to neural networks have
been studied extensively [5, 6]. The complex-
valued or quaternionic extensions would be suitable
for the pseudo-orthogonalization scheme; the pair
of a pattern can be naturally embedded by utilizing
imaginary part(s). The pseudo-orthogonalization
method has been extended based on complex num-
bers and quaternions [7]. In previous study, the nu-
merical simulation results show that the proposed
method can store the patterns better than the con-
ventional (real-valued) method from the viewpoint
of the loading rate, which is defined as the ra-
tio of the number of embedded memory patterns
to the number of neurons in the network. How-
ever, the performance for embedding correlated pat-
terns has not been investigated in details. In this
paper, the performance for the extended pseudo-
orthogonalization method is examined from the
view point of correlations in memory patterns. We
show that the extended method has stable recall
performance on highly correlated memory patterns
compared to the conventional real-valued method
does.

2 Preliminaries

In this Section, we explain Hebbian learning
rule and the network dynamics for real-valued,
complex-valued, and quaternionic Hopfield neural
networks.

2.1 Real-Valued Hopfield Neural Network

Let (ξµ
1, . . . ,ξ

µ
N), ξµ

m ∈ {+1,−1} be the µ-th
learning pattern. Hebbian learning rule for real-
valued Hopfield neural network (RHNN) is repre-

sented as

wmn =
1
N

P

∑
µ=1

ξµ
mξµ

n, (1)

where wmn is a synaptic weight between m-th and n-
th neurons, which satisfies the conditions wmm = 0
and wmn = wnm for all m and n, and P is the num-
ber of the learning patterns. The dynamics of the
network is given as

xm(t +1) = sgn

(
N

∑
n=1

wmnxn(t)

)
, (2)

where xm(t) ∈ {+1,−1} denotes the output of the
m-th neuron at the time step t and N is the total
number of neurons in the network. The function
sgn(·) is an activation function which is defined by
sgn(u) = 1 when u ≥ 0, and sgn(u) = −1 when
u < 0.

2.2 Complex-Valued Hopfield Neural Net-
work

In complex-valued Hopfield neural net-
work(CHNN), the inputs, output, and synaptic
weights are encoded by complex values [8, 6, 9].
The m-th element of a µ-th complex-valued learn-
ing pattern is given as ξµ

m = ξµ
m
(e)

+ ξµ
m
(i)i, where

ξµ
m
(e)
,ξµ

m
(i) ∈ {+1,−1}. Hebbian learning rule for

CHNN is defined as

wmn =
1

2N

P

∑
µ=1

ξµ
mξµ∗

n , (3)

where synaptic weights satisfy the conditions
wmm ≥ 0 and wmn = w∗

nm. Here, the asterisk denotes
the complex conjugation. The dynamics of the net-
work is given as follows

xm(t +1) = csgn

(
N

∑
n=1

wmnxn(t)

)
. (4)

The function csgn(·) is an activation function
for complex-valued neurons which is defined by
csgn(s) = sgn(s(e))+ sgn(s(i))i.

2.3 Quaternionic Hopfield Neural Net-
work

Quaternions [10] are a class of hypercomplex
numbers that consist of a real number and three
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sgn(u) = 1 when u ≥ 0, and sgn(u) = −1 when
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numbers that consist of a real number and three
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kinds of imaginary number, i, j , and k. For-
mally, a quaternion is defined as a vector in a four-
dimensional vector space

x = x(e) + x(i)i + x( j) j + x(k)k, (5)

where x(e),x(i),x( j), and x(k) are real numbers.
Quaternion bases satisfy the following identities:
i2 = j2 = k2 = i jk =−1. Quaternions are also writ-
ten using 4-tuple or 2-tuple notations as follows

x = (x(e),x(i),x( j),x(k)) = (x(e),x), (6)

where x = (x(i),x( j),x(k)). In this representation x(e)

is the scalar part of x, and x forms the vector part.
The quaternion conjugate is defined as

x∗ = (x(e),−x) = x(e)− x(i)i − x( j) j − x(k)k. (7)

We define the operation between quater-
nions, p = (p(e), p) = (p(e), p(i), p( j), p(k)) and q =
(q(e),q) = (q(e),q(i),q( j),q(k)). The addition and
subtraction of quaternions are defined in the same
manner as that of complex numbers or vectors by

p±q = (p(e)±q(e), p±q) (8)

= (p(e)±q(e), p(i)±q(i), p( j)±q( j), p(k)±q(k)).
(9)

With regard to the multiplication, the product of p
and q is represented as follows

pq = (p(e)q(e)− p ·q, p(e)q+q(e)p+ p×q). (10)

In Quaternionic Hopfield Neural Network
(QHNN), all neuronal parameters in the network
are encoded by quaternions [11, 12, 13]. Let the
m-th element of a µ-th quaternionic learning pat-
tern be ξµ

m = ξµ
m
(e)

+ξµ
m
(i)i +ξµ

m
( j) j +ξµ

m
(k)k where

ξµ
m
(e)
,ξµ

m
(i)
,ξµ

m
( j)
,ξµ

m
(k) ∈ {+1,−1}. Hebbian learn-

ing rule for QHNN is represented as

wmn =
1

4N

P

∑
µ=1

ξµ
mξµ∗

n , (11)

where synaptic weights satisfy the conditions
wmm ≥ 0 and wmn = w∗

nm. The dynamics of the net-
work is given as follows

xm(t +1) = qsgn
( N

∑
n=1

wmnxn(t)
)
. (12)

The function qsgn(·) is an activation function for
quaternionic neurons which is defined by qsgn(s) =
sgn(s(e))+ sgn(s(i))i + sgn(s( j)) j + sgn(s(k))k.

3 Pseudo-Orthogonalization based
on Complex Numbers and
Quaternions

The purpose of the pseudo-orthogonalization
method is to randomize memory patterns, so that
they can be stored by Hebbian learning [4]. We
present a pseudo-orthogonalization method based
on complex numbers and quaternions in this Sec-
tion [7].

First, let us recapitulate the basic pseudo-
orthogonalization method. In the pseudo-
orthogonalization, the memory patterns are masked
by using random patterns as shown in Fig. 1. The
pseudo-orthogonalized patterns which are the con-
catenation of the random patterns and the masked
patterns are embedded to the network. Fig. 2 shows
the generation method for the masked patterns. The
masked patterns are obtained by element-wise mul-
tiplication of the memory patterns and random pat-
terns. Thus, the original patterns can be recon-
structed from the masked patterns and the random
patterns as shown in Fig. 3.

Figure 1. Schematic of pseudo-orthogonalization.

Figure 2. Generation of masked patterns.

by using random patterns as shown in Fig. 1. The
pseudo-orthogonalized patterns which are the con-
catenation of the random patterns and the masked
patterns are embedded to the network. Fig. 2 shows
the generation method for the masked patterns. The
masked patterns are obtained by element-wise multi-
plication of the memory patterns and random pat-
terns. Thus, the original patterns can be recon-
structed from the masked patterns and the random
patterns as shown in Fig. 3.

Let (ξ1, . . . , ξN ) where ξm ∈ {+1,−1} be the orig-
inal memory pattern and (r1, . . . , rN ) where rm ∈
{+1,−1}) be a random pattern corresponding to the
original pattern. The m-th element of the real-valued
pseudo-orthogonalized pattern is generated by

ηr
m =

{
rn, if m = 2n − 1

rnξn, if m = 2n
. (13)

This is the concatenation of the random pattern and
the XNOR masked pattern between the original mem-
ory pattern and the random pattern (see Fig. 4(a)).
Thus, The element ηm takes either +1 or −1 and
the length of the pseudo-orthogonalized pattern, de-
noted by N ′, becomes twice as the original one, i.e.
N ′ = 2N .

Next, we show a method of pseudo-
orthogonalization by using complex numbers.
The random pattern is assigned to the real part
of the complex values and the masked pattern is
assigned to the imaginary part in the method utilizing

Memory pattern

×
Random pattern

→
Masked pattern

Pseudo-orthogonalized pattern

Figure 1: Schematic of pseudo-orthogonalization.

complex numbers, Thus, the m-th element of the
complex-valued pseudo-orthogonalized pattern is
defined by

ηc
m = rm + rmξmi. (14)

Therefore, the original patterns can be reconstructed
by

ξm = η
c(r)
m η

c(i)
m . (15)

In this case, the length of the original and randomized
patterns are same, i.e. N ′ = N (see Fig. 4(b)).

Finally, a method of pseudo-orthogonalization by
using quaternions is described. The m-th element
of the quaternionic pseudo-orthogonalized pattern is
defined by

η
q
m = r2m−1 + r2m−1ξ2m−1i + r2mj + r2mξ2mk .

(16)

That is, odd numbered elements in random patterns
are assigned to the real part and the rest is assigned to
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in masked patterns are assigned to the imaginary part
i and the rest is assigned to the imaginary part k.
Therefore, the original patterns can be reconstructed
by
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N ′ = N/2 is obtained in the quaternionic pseudo-
orthogonalization method (see Fig. 4(c)).
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by using random patterns as shown in Fig. 1. The
pseudo-orthogonalized patterns which are the con-
catenation of the random patterns and the masked
patterns are embedded to the network. Fig. 2 shows
the generation method for the masked patterns. The
masked patterns are obtained by element-wise multi-
plication of the memory patterns and random pat-
terns. Thus, the original patterns can be recon-
structed from the masked patterns and the random
patterns as shown in Fig. 3.

Let (ξ1, . . . , ξN ) where ξm ∈ {+1,−1} be the orig-
inal memory pattern and (r1, . . . , rN ) where rm ∈
{+1,−1}) be a random pattern corresponding to the
original pattern. The m-th element of the real-valued
pseudo-orthogonalized pattern is generated by

ηr
m =

{
rn, if m = 2n − 1

rnξn, if m = 2n
. (13)

This is the concatenation of the random pattern and
the XNOR masked pattern between the original mem-
ory pattern and the random pattern (see Fig. 4(a)).
Thus, The element ηm takes either +1 or −1 and
the length of the pseudo-orthogonalized pattern, de-
noted by N ′, becomes twice as the original one, i.e.
N ′ = 2N .

Next, we show a method of pseudo-
orthogonalization by using complex numbers.
The random pattern is assigned to the real part
of the complex values and the masked pattern is
assigned to the imaginary part in the method utilizing
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complex numbers, Thus, the m-th element of the
complex-valued pseudo-orthogonalized pattern is
defined by
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defined by
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wise exclusive not-or (XNOR) operation is applied
between the random pattern and the memory pat-
tern. The pattern to be embedded in the network is
a concatenation of XNORed pattern (masked pat-
tern) and the corresponding random pattern. These
pseudo-orthogonalized patterns have low correla-
tion, thus, they can be embedded by using Hebbian
learning rule without a degradation of storage ca-
pacity. The length of these patterns become double,
however, the embedding process is simple and re-
quires rather low computational cost.

Recently, the applications of complex or hyper-
complex number systems to neural networks have
been studied extensively [5, 6]. The complex-
valued or quaternionic extensions would be suitable
for the pseudo-orthogonalization scheme; the pair
of a pattern can be naturally embedded by utilizing
imaginary part(s). The pseudo-orthogonalization
method has been extended based on complex num-
bers and quaternions [7]. In previous study, the nu-
merical simulation results show that the proposed
method can store the patterns better than the con-
ventional (real-valued) method from the viewpoint
of the loading rate, which is defined as the ra-
tio of the number of embedded memory patterns
to the number of neurons in the network. How-
ever, the performance for embedding correlated pat-
terns has not been investigated in details. In this
paper, the performance for the extended pseudo-
orthogonalization method is examined from the
view point of correlations in memory patterns. We
show that the extended method has stable recall
performance on highly correlated memory patterns
compared to the conventional real-valued method
does.

2 Preliminaries

In this Section, we explain Hebbian learning
rule and the network dynamics for real-valued,
complex-valued, and quaternionic Hopfield neural
networks.

2.1 Real-Valued Hopfield Neural Network

Let (ξµ
1, . . . ,ξ

µ
N), ξµ

m ∈ {+1,−1} be the µ-th
learning pattern. Hebbian learning rule for real-
valued Hopfield neural network (RHNN) is repre-

sented as

wmn =
1
N

P

∑
µ=1

ξµ
mξµ

n, (1)

where wmn is a synaptic weight between m-th and n-
th neurons, which satisfies the conditions wmm = 0
and wmn = wnm for all m and n, and P is the num-
ber of the learning patterns. The dynamics of the
network is given as

xm(t +1) = sgn

(
N

∑
n=1

wmnxn(t)

)
, (2)

where xm(t) ∈ {+1,−1} denotes the output of the
m-th neuron at the time step t and N is the total
number of neurons in the network. The function
sgn(·) is an activation function which is defined by
sgn(u) = 1 when u ≥ 0, and sgn(u) = −1 when
u < 0.

2.2 Complex-Valued Hopfield Neural Net-
work

In complex-valued Hopfield neural net-
work(CHNN), the inputs, output, and synaptic
weights are encoded by complex values [8, 6, 9].
The m-th element of a µ-th complex-valued learn-
ing pattern is given as ξµ

m = ξµ
m
(e)

+ ξµ
m
(i)i, where

ξµ
m
(e)
,ξµ

m
(i) ∈ {+1,−1}. Hebbian learning rule for

CHNN is defined as

wmn =
1

2N

P

∑
µ=1

ξµ
mξµ∗

n , (3)

where synaptic weights satisfy the conditions
wmm ≥ 0 and wmn = w∗

nm. Here, the asterisk denotes
the complex conjugation. The dynamics of the net-
work is given as follows

xm(t +1) = csgn

(
N

∑
n=1

wmnxn(t)

)
. (4)

The function csgn(·) is an activation function
for complex-valued neurons which is defined by
csgn(s) = sgn(s(e))+ sgn(s(i))i.

2.3 Quaternionic Hopfield Neural Net-
work

Quaternions [10] are a class of hypercomplex
numbers that consist of a real number and three



260 Toshifumi Minemoto, Teijiro Isokawa, Haruhiko Nishimura, Nobuyuki Matsui

Figure 3. Reconstruction of original patterns.

Let (ξ1, . . . ,ξN) where ξm ∈ {+1,−1} be the
original memory pattern and (r1, . . . ,rN) where
rm ∈ {+1,−1}) be a random pattern correspond-
ing to the original pattern. The m-th element of the
real-valued pseudo-orthogonalized pattern is gener-
ated by

ηr
m =

{
rn, if m = 2n−1
rnξn, if m = 2n

. (13)

This is the concatenation of the random pattern
and the XNOR masked pattern between the orig-
inal memory pattern and the random pattern (see
Fig. 4(a)). Thus, the element ηm takes either +1
or −1 and the length of the pseudo-orthogonalized
pattern, denoted by N ′, becomes twice as the origi-
nal one, i.e. N ′ = 2N.

Next, we show a method of pseudo-
orthogonalization by using complex numbers. The
random pattern is assigned to the real part of
the complex values and the masked pattern is as-
signed to the imaginary part in the method utilizing
complex numbers, Thus, the m-th element of the
complex-valued pseudo-orthogonalized pattern is
defined by

ηc
m = rm + rmξmi. (14)

Therefore, the original patterns can be recon-
structed by

ξm = ηc(r)
m ηc(i)

m . (15)

In this case, the length of the original and random-
ized patterns are same, i.e. N′ = N (see Fig. 4(b)).

Finally, a method of pseudo-orthogonalization
by using quaternions is described. The m-th el-
ement of the quaternionic pseudo-orthogonalized
pattern is defined by

ηq
m = r2m−1 + r2m−1ξ2m−1i + r2m j + r2mξ2mk.

(16)

That is, odd numbered elements in random patterns
are assigned to the real part and the rest is assigned
to the imaginary part j . Also, odd numbered ele-
ments in masked patterns are assigned to the imagi-
nary part i and the rest is assigned to the imaginary
part k. Therefore, the original patterns can be re-
constructed by

ξm =

{
ηq

n
(e) ηq

n
(i)
, if m = 2n−1

ηq
n
( j) ηq

n
(k)
, if m = 2n

. (17)

N′ = N/2 is obtained in the quaternionic pseudo-
orthogonalization method (see Fig. 4(c)).

Figure 4. Pseudo-orthogonalized patterns
generated from random patterns and masked

patterns utilizing (a) real numbers, (b) complex
numbers, and (c) quaternions.

4 Retrieval Dynamics for
Pseudo-Orthogonalized Patterns

In this Section, we describe the retrieval dynam-
ics for pseudo-orthogonalization.

The recall of the stored patterns in pseudo-
orthogonalization method needs the random
mask patterns that is used in the pseudo-
orthogonalization process. However, there is no
information about the random mask patterns in the
retrieval process, so that the initial state of the net-
work cannot be determined for a cue signal pattern.
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4 Retrieval Dynamics for
Pseudo-Orthogonalized Patterns

In this section, we describe the retrieval dynamics for
pseudo-orthogonalization.

The recall of the stored patterns in pseudo-
orthogonalization method needs the random mask
patterns that is used in the pseudo-orthogonalization
process. However, there is no information about the
random mask patterns in the retrieval process, so that
the initial state of the network cannot be determined
for a cue signal pattern. Therefore, the network dy-
namics are extended for retrieving memory patterns
without random patterns by using a simulated anneal-
ing method [4].

The retrieval dynamics for CHNN has been formu-
lated as following equations [7]:

hm(t)=
N∑
n=1

wmnxn(t)+szm
(
x(i)m (t)+x(e)m (t)i

)
, (18)

Prob(x(∗)m = 1) = 1

1 + exp(−β(t)h(∗)m (t))
,

(∗) ∈ {(e), (i)},
(19)

where zm ∈ {+1,−1} denotes the m-th element in
an input cue pattern, s is the strength of the input
cue signal part, and β(t + 1) = γβ(t) is the inverse
temperature parameter that increases with time step
t. γ with (γ > 1) is the increase rate for β. The states
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Figure 4: Pseudo-orthogonalized patterns generated
from random patterns and masked patterns utiliz-
ing (a) real numbers, (b) complex numbers, and (c)
quaternions.

of the neurons xm(t) are initialized randomly at t = 0
and they evolve stochastically by using Eq. (19) Here,
the real part and the imaginary part of the internal
state hm(t) are separately updated.

Similarly, the retrieval dynamics for QHNN is de-
fined as follows:

hm(t)=
N∑
n=1

wmnxn(t) + sz2m−1
(
x(i)m (t)+x(e)m (t)i

)

+ sz2m
(
x(k)m (t)j+x(j)m (t)k

)
, (20)

Prob(x(∗)m = 1) = 1

1 + exp(−β(t)h(∗)m (t))
,

(∗) ∈ {(e), (i), ( j), (k)}.
(21)
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Pseudo-Orthogonalized Patterns

In this section, we describe the retrieval dynamics for
pseudo-orthogonalization.

The recall of the stored patterns in pseudo-
orthogonalization method needs the random mask
patterns that is used in the pseudo-orthogonalization
process. However, there is no information about the
random mask patterns in the retrieval process, so that
the initial state of the network cannot be determined
for a cue signal pattern. Therefore, the network dy-
namics are extended for retrieving memory patterns
without random patterns by using a simulated anneal-
ing method [4].

The retrieval dynamics for CHNN has been formu-
lated as following equations [7]:

hm(t)=
N∑
n=1

wmnxn(t)+szm
(
x(i)m (t)+x(e)m (t)i

)
, (18)

Prob(x(∗)m = 1) = 1

1 + exp(−β(t)h(∗)m (t))
,

(∗) ∈ {(e), (i)},
(19)

where zm ∈ {+1,−1} denotes the m-th element in
an input cue pattern, s is the strength of the input
cue signal part, and β(t + 1) = γβ(t) is the inverse
temperature parameter that increases with time step
t. γ with (γ > 1) is the increase rate for β. The states
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of the neurons xm(t) are initialized randomly at t = 0
and they evolve stochastically by using Eq. (19) Here,
the real part and the imaginary part of the internal
state hm(t) are separately updated.

Similarly, the retrieval dynamics for QHNN is de-
fined as follows:

hm(t)=
N∑
n=1

wmnxn(t) + sz2m−1
(
x(i)m (t)+x(e)m (t)i

)

+ sz2m
(
x(k)m (t)j+x(j)m (t)k

)
, (20)

Prob(x(∗)m = 1) = 1
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,
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Figure 3. Reconstruction of original patterns.

Let (ξ1, . . . ,ξN) where ξm ∈ {+1,−1} be the
original memory pattern and (r1, . . . ,rN) where
rm ∈ {+1,−1}) be a random pattern correspond-
ing to the original pattern. The m-th element of the
real-valued pseudo-orthogonalized pattern is gener-
ated by

ηr
m =

{
rn, if m = 2n−1
rnξn, if m = 2n

. (13)

This is the concatenation of the random pattern
and the XNOR masked pattern between the orig-
inal memory pattern and the random pattern (see
Fig. 4(a)). Thus, the element ηm takes either +1
or −1 and the length of the pseudo-orthogonalized
pattern, denoted by N ′, becomes twice as the origi-
nal one, i.e. N ′ = 2N.

Next, we show a method of pseudo-
orthogonalization by using complex numbers. The
random pattern is assigned to the real part of
the complex values and the masked pattern is as-
signed to the imaginary part in the method utilizing
complex numbers, Thus, the m-th element of the
complex-valued pseudo-orthogonalized pattern is
defined by

ηc
m = rm + rmξmi. (14)

Therefore, the original patterns can be recon-
structed by

ξm = ηc(r)
m ηc(i)

m . (15)

In this case, the length of the original and random-
ized patterns are same, i.e. N′ = N (see Fig. 4(b)).

Finally, a method of pseudo-orthogonalization
by using quaternions is described. The m-th el-
ement of the quaternionic pseudo-orthogonalized
pattern is defined by

ηq
m = r2m−1 + r2m−1ξ2m−1i + r2m j + r2mξ2mk.

(16)

That is, odd numbered elements in random patterns
are assigned to the real part and the rest is assigned
to the imaginary part j . Also, odd numbered ele-
ments in masked patterns are assigned to the imagi-
nary part i and the rest is assigned to the imaginary
part k. Therefore, the original patterns can be re-
constructed by

ξm =

{
ηq

n
(e) ηq

n
(i)
, if m = 2n−1

ηq
n
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N′ = N/2 is obtained in the quaternionic pseudo-
orthogonalization method (see Fig. 4(c)).
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patterns utilizing (a) real numbers, (b) complex
numbers, and (c) quaternions.

4 Retrieval Dynamics for
Pseudo-Orthogonalized Patterns

In this Section, we describe the retrieval dynam-
ics for pseudo-orthogonalization.

The recall of the stored patterns in pseudo-
orthogonalization method needs the random
mask patterns that is used in the pseudo-
orthogonalization process. However, there is no
information about the random mask patterns in the
retrieval process, so that the initial state of the net-
work cannot be determined for a cue signal pattern.

PSEUDO-ORTHOGONALIZATION OF MEMORY PATTERNS FOR . . .

Therefore, the network dynamics are extended for
retrieving memory patterns without random pat-
terns by using a simulated annealing method [4].

The retrieval dynamics for CHNN has been for-
mulated as following equations [7]

hm(t)=
N

∑
n=1

wmnxn(t)+szm

(
x(i)m (t)+x(e)m (t)i

)
,

(18)

Prob(x(∗)m = 1) =
1

1+ exp(−β(t)h(∗)m (t))
,

(∗) ∈ {(e),(i)},
(19)

where zm ∈ {+1,−1} denotes the m-th element in
an input cue pattern, s is the strength of the input
cue signal part, and β(t + 1) = γβ(t) is the inverse
temperature parameter that increases with time step
t. γ with (γ > 1) is the increase rate for β. The
states of the neurons xm(t) are initialized randomly
at t = 0 and they evolve stochastically by using
Eq. (19) Here, the real part and the imaginary part
of the internal state hm(t) are separately updated.

Similarly, the retrieval dynamics for QHNN is
defined as follows

hm(t)=
N

∑
n=1

wmnxn(t)+ sz2m−1

(
x(i)m (t)+x(e)m (t)i

)

+ sz2m

(
x(k)m (t) j+x( j)

m (t)k
)
, (20)

Prob(x(∗)m = 1) =
1

1+ exp(−β(t)h(∗)m (t))
,

(∗) ∈ {(e),(i),( j),(k)}.
(21)

5 Experiments

In this Section, we investigate the retrieval per-
formance in CHNN and QHNN by using the pro-
posed pseudo-orthogonalization method. For this
experiment, random patterns are used as the origi-
nal memory pattern which are obtained by using the
following probability

Prob(ξm =±1) = (1±
√

bζm)/2, (22)

where ζm is the m-th element in a random pattern
generated according to the uniform probability

Prob(ζm =±1) = 1/2. (23)

b is a correlation parameter for the random patterns
which satisfies E[Corr(ξm,ζm)] = b.

In order to evaluate the stability and retrieval
performance, we define the overlap between the
current network state xi(t) and the memory pattern
ξm. For RHNN, CHNN, and QHNN, we define the
mr,mc and mq, respectively, by

mr(t)=
1
N

N

∑
m=1

ξmxm(t), (24)

mc(t)=
1

2N

N

∑
m=1

(
ξ(e)m x(e)m (t)+ξ(i)m x(i)m (t)

)
, (25)

mq(t)=
1

4N

N

∑
m=1

(
ξ(e)m x(e)m (t)+ξ(i)m x(i)m (t)

+ξ( j)
m x( j)

m (t)+ξ(k)m x(k)m (t)
)
. (26)

First, we investigated how the correlation in the
original memory patterns affects the retrieval per-
formance in RHNNs, CHNNs, and QHNNs. Fig-
ure 5 shows the retrieval success rates with chang-
ing the correlation parameter for original memory
patterns. In this experiments, the length of the
original memory patterns was set to 1000, so that
the number of neurons in RHNNs, CHNNs, and
QHNNs were 2000, 1000, and 500, respectively.
The loading rate, which is the ratio of the number
of the stored patterns P and the number of neurons
N, was fixed to 0.13, and the correlation parameter
was set to 0.1 from 0.0 to 0.5 with a step of 0.05.
The parameters for the recall process were set as
s = 0.9, γ = 1.002, β(0) = 1.0. We obtained the re-
trieval pattern after 1000 iterations of updates and
100 trials were conducted. For each experiment, a
random pattern is used as an initial configuration
of the network, and cue of the embedded original
patterns is used as an external cue signal. The re-
call was considered to be successful when the over-
lap between the retrieved pattern and its true pat-
tern achieved 0.95. From the Figure 4, we find
that the retrieval success rates are decreased with
the increase of the correlation for the original mem-
ory patterns in all types of networks. However, the
success rates in CHNNs and QHNNs are decreased
slower than those in RHNNs.
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Figure 5. Retrieval success rates with changing the
correlation in the original memory patterns.

Next, we show the dependence of the critical
loading rate on the correlation in the memory pat-
terns. The critical loading rate is defined as the
loading rate when the overlaps of the retrieved pat-
tern and its original pattern is lower than a thresh-
old. Figure 6 shows the critical loading rates against
the correlations. The threshold was set to 0.95 in
this result. From this Figure, we find that the crit-
ical loading rates in CHNNs and QHNNs are also
decreased slower than those in RHNNs.

Figure 6. Critical loading rates with changing the
correlation in the original memory patterns.

6 Discussion

We discuss reasons why the retrieval perfor-
mance in pseudo-orthogonalization is maintained
by utilizing complex numbers and quaternions.
We first examined the storage capacity of pseudo-
orthogonalized patterns against correlations in the
original memory patterns. Figure. 7 shows the
changes of critical loading rates with increasing
the correlations for the memory patterns. We per-
formed this experiment under the same conditions

in the previous Section. The overlaps for calcu-
lating the critical loading rate were obtained by
averaging 100 trials in 1000 updates. In each
of these trials, an initial configuration are set to
one of the memory patterns, by using Eqs. (2),(4),
and (12). From the results, the critical loading
rates for RHNNs were decreased with the increase
of the correlations, however the critical loading
rates for CHNNs and QHNNs were not changed
under the same conditions. The memory pat-
terns become more unstable with the increase of
the correlation for the original memory patterns
in RHNNs. In contrast, the memory patterns in
CHNNs and QHNNs are stable when the correla-
tion is increased. The complex-valued and quater-
nionic pseudo-orthogonalization methods can stabi-
lize highly correlated memory patterns better than
conventional real-valued method does. Therefore,
the retrieval performance of CHNNs and QHNNs
are maintained even if the correlation in the mem-
ory patterns is increased.

Figure 7. Effect of the correlation of the original
memory patterns on the stability of stored patterns.

7 Conclusion

In this paper, we have investigated the sta-
bility and retrieval performances for the pseudo-
orthogonalization from the viewpoint of correla-
tions in memory patterns. The extended pseudo-
orthogonalization method based on complex num-
bers and quaternions has been evaluated by chang-
ing the correlation of memory patterns.

The experimental results show that the mem-
ory patterns tend to be more unstable with the
increase of the correlation in the original mem-
ory patterns in conventional real-valued pseudo-

5 Experiments

In this section, we investigate the retrieval perfor-
mance in CHNN and QHNN by using the proposed
pseudo-orthogonalization method. For this experi-
ment, random patterns are used as the original mem-
ory pattern which are obtained by using the following
probability:

Prob(ξm = ±1) = (1 ±
√

b ζm)/2, (22)

where ζm is the m-th element in a random pattern
generated according to the uniform probability:

Prob(ζm = ±1) = 1/2. (23)

b is a correlation parameter for the random patterns
which satisfies E[Corr(ξm, ζm)] = b.

In order to evaluate the stability and retrieval per-
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network state xi(t) and the memory pattern ξm. For
RHNN, CHNN, and QHNN, we define the mr,mc

and mq, respectively, by

mr(t)=
1

N

N∑
m=1

ξmxm(t), (24)

mc(t)=
1

2N

N∑
m=1

(
ξ
(e)
m x(e)m (t) + ξ(i)m x(i)m (t)

)
, (25)

mq(t)=
1

4N

N∑
m=1

(
ξ
(e)
m x(e)m (t) + ξ(i)m x(i)m (t)

+ξ
(j)
m x(j)m (t) + ξ(k)m x(k)m (t)

)
. (26)

First, we investigated how the correlation in the
original memory patterns affects the retrieval perfor-
mance in RHNNs, CHNNs, and QHNNs. Figure 5
shows the retrieval success rates with changing the
correlation parameter for original memory patterns.
In this experiments, the length of the original mem-
ory patterns was set to 1000, so that the number of
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Figure 5: Retrieval success rates with changing the
correlation in the original memory patterns.

neurons in RHNNs, CHNNs, and QHNNs were 2000,
1000, and 500, respectively. The loading rate, which
is the ratio of the number of the stored patterns P
and the number of neurons N , was fixed to 0.13, and
the correlation parameter was set to 0.1 from 0.0 to
0.5 with a step of 0.05. The parameters for the recall
process were set as s = 0.9, γ = 1.002, β(0) = 1.0.
We obtained the retrieval pattern after 1000 iterations
of updates and 100 trials were conducted. For each
experiment, a random pattern is used as an initial
configuration of the network, and cue of the embed-
ded original patterns is used as an external cue signal.
The recall was considered to be successful when the
overlap between the retrieved pattern and its true pat-
tern achieved 0.95. From the figure, we find that the
retrieval success rates are decreased with the increase
of the correlation for the original memory patterns in
all types of networks. However, the success rates in
CHNNs and QHNNs are decreased slower than those
in RHNNs.

Next, we show the dependence of the critical load-
ing rate on the correlation in the memory patterns.
The critical loading rate is defined as the loading rate
when the overlaps of the retrieved pattern and its orig-
inal pattern is lower than a threshold. Figure 6 shows
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Figure 6: Critical loading rates with changing the
correlation in the original memory patterns.

the critical loading rates against the correlations. The
threshold was set to 0.95 in this result. From this fig-
ure, we find that the critical loading rates in CHNNs
and QHNNs are also decreased slower than those in
RHNNs.

6 Discussion

We discuss reasons why the retrieval performance in
pseudo-orthogonalization is maintained by utilizing
complex numbers and quaternions. We first exam-
ined the storage capacity of pseudo-orthogonalized
patterns against correlations in the original memory
patterns. Figure. 7 shows the changes of critical load-
ing rates with increasing the correlations for the mem-
ory patterns. We performed this experiment under the
same conditions in the previous section. The overlaps
for calculating the critical loading rate were obtained
by averaging 100 trials in 1000 updates. In each of
these trials, an initial configuration are set to one of
the memory patterns. by using Eqs. (2),(4), and (12).
From the results, the critical loading rates for RHNNs
were decreased with the increase of the correlations,
however the critical loading rates for CHNNs and
QHNNs were not changed under the same conditions.
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Figure 7: Effect of the correlation of the original
memory patterns on the stability of stored patterns.

The memory patterns become more unstable with the
increase of the correlation for the original memory
patterns in RHNNs. In contrast, the memory patterns
in CHNNs and QHNNs are stable when the correla-
tion is increased. The complex-valued and quater-
nionic pseudo-orthogonalization methods can stabi-
lize highly correlated memory patterns better than
conventional real-valued method does. Therefore,
the retrieval performance of CHNNs and QHNNs
are maintained even if the correlation in the memory
patterns is increased.

7 Conclusion

In this paper, we have investigated the stabil-
ity and retrieval performances for the pseudo-
orthogonalization from the viewpoint of correla-
tions in memory patterns. The extended pseudo-
orthogonalization method based on complex num-
bers and quaternions has been evaluated by changing
the correlation of memory patterns.

The experimental results show that the memory
patterns tend to be more unstable with the increase of
the correlation in the original memory patterns in
conventional real-valued pseudo-orthogonalization
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these trials, an initial configuration are set to one of
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increase of the correlation for the original memory
patterns in RHNNs. In contrast, the memory patterns
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Figure 5. Retrieval success rates with changing the
correlation in the original memory patterns.

Next, we show the dependence of the critical
loading rate on the correlation in the memory pat-
terns. The critical loading rate is defined as the
loading rate when the overlaps of the retrieved pat-
tern and its original pattern is lower than a thresh-
old. Figure 6 shows the critical loading rates against
the correlations. The threshold was set to 0.95 in
this result. From this Figure, we find that the crit-
ical loading rates in CHNNs and QHNNs are also
decreased slower than those in RHNNs.

Figure 6. Critical loading rates with changing the
correlation in the original memory patterns.

6 Discussion

We discuss reasons why the retrieval perfor-
mance in pseudo-orthogonalization is maintained
by utilizing complex numbers and quaternions.
We first examined the storage capacity of pseudo-
orthogonalized patterns against correlations in the
original memory patterns. Figure. 7 shows the
changes of critical loading rates with increasing
the correlations for the memory patterns. We per-
formed this experiment under the same conditions

in the previous Section. The overlaps for calcu-
lating the critical loading rate were obtained by
averaging 100 trials in 1000 updates. In each
of these trials, an initial configuration are set to
one of the memory patterns, by using Eqs. (2),(4),
and (12). From the results, the critical loading
rates for RHNNs were decreased with the increase
of the correlations, however the critical loading
rates for CHNNs and QHNNs were not changed
under the same conditions. The memory pat-
terns become more unstable with the increase of
the correlation for the original memory patterns
in RHNNs. In contrast, the memory patterns in
CHNNs and QHNNs are stable when the correla-
tion is increased. The complex-valued and quater-
nionic pseudo-orthogonalization methods can stabi-
lize highly correlated memory patterns better than
conventional real-valued method does. Therefore,
the retrieval performance of CHNNs and QHNNs
are maintained even if the correlation in the mem-
ory patterns is increased.

Figure 7. Effect of the correlation of the original
memory patterns on the stability of stored patterns.

7 Conclusion

In this paper, we have investigated the sta-
bility and retrieval performances for the pseudo-
orthogonalization from the viewpoint of correla-
tions in memory patterns. The extended pseudo-
orthogonalization method based on complex num-
bers and quaternions has been evaluated by chang-
ing the correlation of memory patterns.

The experimental results show that the mem-
ory patterns tend to be more unstable with the
increase of the correlation in the original mem-
ory patterns in conventional real-valued pseudo-

PSEUDO-ORTHOGONALIZATION OF MEMORY PATTERNS FOR . . .

orthogonalization method. On the other hand, the
memory patterns by using the extended pseudo-
orthogonalization are stable even if the correlation
is increased. Thus, the extended method can stabi-
lize highly correlated memory patterns better than
conventional real-valued one. On retrieving the
stored patterns from a cue input pattern, the per-
formance of the extended pseudo-orthogonalization
method is maintained compared to the real-valued
method under the condition of high loading rate
and strong correlation in the memory patterns. This
is because the memory patterns stored by the pro-
posed method are stable even if the correlation in
memory patterns is increased.

Parameter dependencies for the storing and re-
trieval performances, such as the strength of input
stimuli on the retrieval stage, should be explored
in details. Also, it is important to investigate the
structure on basins of attractors for the complex-
valued and quaternionic networks, as compared to
the real-valued networks. These remain for our fu-
ture work.

References
[1] J. J. Hopfield, Neural networks and physical sys-

tems with emergent collective computational abil-
ities, Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 79, no. 8,
pp. 2554–2558, 1982.

[2] L. Personnaz, I. Guyon, and G. Dreyfus, Collective
computational properties of neural networks: New
learning mechanisms, Physical Review A, vol. 34,
no. 5, p. 4217, 1986.

[3] S. Diederich and M. Opper, Learning of correlated
patterns in spin-glass networks by local learning
rules, Physical Review Letters, vol. 58, pp. 949–952,
1987.

[4] M. Oku, T. Makino, and K. Aihara, Pseudo-
orthogonalization of memory patterns for associa-
tive memory, IEEE Transactions on Neural Net-
works and Learning Systems, vol. 24(11), pp. 1877–
1887, 2013.

[5] A. Hirose, Ed., Complex-valued neural networks:
Advances and applications, Wiley-IEEE Press,
2013.

[6] T. Nitta, Ed., Complex-Valued Neural Networks:
Utilizing High-Dimensional Parameters, Informa-
tion Science Reference, 2009.

[7] T. Minemoto, T. Isokawa, H. Nishimura, and
N.Matsui, Utilizing High-Dimensional Neural Net-
works for Pseudo-orthogonalization of Memory
Patterns, in Proceedings of 21st International
Conference on Neural Information Processing
(ICONIP2014), 2014, pp. 527–534.

[8] S. Jankowski, A. Lozowski, and J. M. Zu-
rada, Complex-Valued Multistate Neural Associa-
tive Memory, IEEE Transactions on Neural Net-
works, vol. 7, no. 6, pp. 1491–1496, 1996.

[9] I. Aizenberg, Complex-valued neural networks with
multi-valued neurons, Springer, 2011.

[10] W. R. Hamilton, Lectures on Quaternions, Hodges
and Smith, 1853.

[11] T. Isokawa, H. Nishimura, N. Kamiura, and
N. Matsui, Associative memory in quaternionic hop-
field neural network, International Journal of Neural
Systems, vol. 18, no. 02, pp. 135–145, 2008.

[12] T. Isokawa, N. Matsui, and H. Nishimura, Quater-
nionic neural networks for associative memories,
in Complex-Valued Neural Networks: Advances
and Applications, A. Hirose, Ed. Wiley-IEEE Press,
2013, ch. 5, pp. 103–132.

[13] T. Minemoto, T. Isokawa, H. Nishimura, and
N. Matsui, Quaternionic multistate Hopfield neu-
ral network with extended projection rule, Artificial
Life and Robotics, vol. 21, no. 1, pp. 106–111, 2016.

Toshifumi Minemoto received his 
B.E. and M.E. degrees in Electrical En-
gineering from University of Hyogo, 
Japan, in 2009 and 2011, respectively. 
He is currently a doctoral student of 
Electrical Engineering and Computer 
Sciences at University of Hyogo. His 
research interests include artificial 
neural networks, digital signal proces-
sing, and machine learning.

Teijiro Isokawa received his B.E. de-
gree (Electronic Engineering), M.E. 
degree (Electronic Engineering), and 
D.E. degree (Doctor of Engineering) 
in 1996, 1999, and 2004, respectively, 
from Himeji Institute of Technology, 
Japan. He is currently an Associate 
Professor of Graduate School of Engi-
neering, University of Hyogo, Japan. 

His research interests include nanocomputing, molecular ro-
botics, hypercomplex-valued neural networks, and cognitive 
models. 



264

Haruhiko Nishimura graduated from 
the Department of Physics, Shizuoka 
University in 1980, and completed 
the doctoral program at Kobe Univer-
sity and received the Ph.D. degree in 
1985. He is currently a Professor in the 
Graduate School of Applied Informat-
ics, University of Hyogo. His research 
field is intelligent systems science by 

several architectures such as neural networks and complex 
systems. He is also presently engaged in research on biomedi-
cal, healthcare, and high confidence sciences. He is a member 
of the IEEE, IEICE, IPSJ, ISCIE, JNNS and others and was 
awarded ISCIE paper prize in 2001 and JSKE paper prize in 
2010.

Nobuyuki Matsui received his B.S. 
degree in physics from the Faculty of 
Science, Kyoto University, Japan, in 
1975, and M.E. and Dr. Eng. degrees in 
nuclear engineering from Kyoto Uni-
versity in 1977 and 1980, respectively. 
He is currently a Professor of Gradu-
ate School of Engineering at Univer-
sity of Hyogo. Dr. Matsui is a member 

of INNS, IEICE, ISCIE, SICE and the Physical Society of 
Japan.

Toshifumi Minemoto, Teijiro Isokawa, Haruhiko Nishimura, Nobuyuki Matsui

Figure 5. Retrieval success rates with changing the
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Next, we show the dependence of the critical
loading rate on the correlation in the memory pat-
terns. The critical loading rate is defined as the
loading rate when the overlaps of the retrieved pat-
tern and its original pattern is lower than a thresh-
old. Figure 6 shows the critical loading rates against
the correlations. The threshold was set to 0.95 in
this result. From this Figure, we find that the crit-
ical loading rates in CHNNs and QHNNs are also
decreased slower than those in RHNNs.

Figure 6. Critical loading rates with changing the
correlation in the original memory patterns.

6 Discussion

We discuss reasons why the retrieval perfor-
mance in pseudo-orthogonalization is maintained
by utilizing complex numbers and quaternions.
We first examined the storage capacity of pseudo-
orthogonalized patterns against correlations in the
original memory patterns. Figure. 7 shows the
changes of critical loading rates with increasing
the correlations for the memory patterns. We per-
formed this experiment under the same conditions

in the previous Section. The overlaps for calcu-
lating the critical loading rate were obtained by
averaging 100 trials in 1000 updates. In each
of these trials, an initial configuration are set to
one of the memory patterns, by using Eqs. (2),(4),
and (12). From the results, the critical loading
rates for RHNNs were decreased with the increase
of the correlations, however the critical loading
rates for CHNNs and QHNNs were not changed
under the same conditions. The memory pat-
terns become more unstable with the increase of
the correlation for the original memory patterns
in RHNNs. In contrast, the memory patterns in
CHNNs and QHNNs are stable when the correla-
tion is increased. The complex-valued and quater-
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Figure 7. Effect of the correlation of the original
memory patterns on the stability of stored patterns.

7 Conclusion

In this paper, we have investigated the sta-
bility and retrieval performances for the pseudo-
orthogonalization from the viewpoint of correla-
tions in memory patterns. The extended pseudo-
orthogonalization method based on complex num-
bers and quaternions has been evaluated by chang-
ing the correlation of memory patterns.

The experimental results show that the mem-
ory patterns tend to be more unstable with the
increase of the correlation in the original mem-
ory patterns in conventional real-valued pseudo-


