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Abstract

This work proposes a deep neural net (DNN) that accomplishes the reliable visual recog-

nition of a chosen object captured with a webcam and moving in a 3D space. Autoencod-
ing and substitutional reality are used to train a shallow net until it achieves zero tracking
error in a discrete ambient. This trained individual is set to work in a real world closed
loop system where images coming from a webcam produce displacement information
for a moving region of interest (ROI) inside the own image. This loop gives rise to an
emergent tracking behavior which creates a self-maintain flow of compressed space-time
data. Next, short term memory elements are set to play a key role by creating new repre-
sentations in terms of a space-time matrix. The obtained representations are delivery as
input to a second shallow network which acts as recognizer”. A noise balanced learning
method is used to fast train the recognizer with real-world images, giving rise to a simple
and yet powerful robotic eye, with a slender neural processor that vigorously tracks and
recognizes the chosen object. The system has been tested with real images in real time.

Keywords: deep architectures, deep learning, artificial vision.

1 Introduction

In the computer vision world the reliable recog-
nition of a chosen object is a primary necessity
and several deep neural nets (DNN) solutions have
been lately presented. In [1] the authors use an
algorithm based on bayesian optimization that se-
quentially proposes candidates regions for an object
bounding box and a structured loss that explicitly
penalize location inaccuracy. In [2] a formulation
which is capable of predicting the bounding boxes
of multiple objects in a given image is presented. In
[3] the authors propose various combinations of ar-
chitectures with 1 or 2 stages of feature extraction,
random, unsupervised and supervised. All these
mentioned approaches utilize feed-forward struc-

tures where memory elements are not considered.
However in nature, short term memory elements
play a key role in the processing of visual cognitive
tasks [4,5]. This work develops a methodology to
train a DNN, whose functioning includes short term
memory elements, making possible the definition
of a space-time matrix where other neural structure
can detect space time features of one chosen ob-
ject. The matrix contains highly compressed data
orderly released in a first-in / first-out mode, com-
ing from a pre trained autoencoder trained with big
unlabeled data. The outcome is a novel 2D repre-
sentation of the chosen object. We prove that these
new representations convey significant amounts of
space time features and that a second shallow net-
work can be quickly trained to separate the chosen
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object from white noise. Noise injection in ANN
training has been proposed with different points of
view in [6, 7]. We use the method described in [8,
9, 10] where, during real world training, represen-
tations of the chosen object are shown as examples
and noise as counter examples. We also prove that
this later training strategy provides enough “’foreign
element” immunity as to rapidly separate the cho-
sen object from uncountable many other real world
images. Thanks to the utilized highly compressed
data, the resulting six layers neural processor has a
slender structure that rapidly learns from real world
images to vigorously track and recognize the cho-
sen object. Our final testing ground comprises a
physical 3D space, a regular webcam and the cap-
tioning of images in real time.

Deep Network

The early components of our methodology were
first discussed in [8]. Our new developments take
these ideas further and use them to build a robotic
eye with the capacity to track and recognize a cho-
sen object captioned with a regular webcam. Our
design is oriented toward a “first front” processor,
fast, simple, reliable and devoted to the proficient
tracking and recognition of one single object that
might play a key role in performance and/or sur-
vival. The network utilizes six layers of non-linear
neurons organized as two independent “shallow”
networks with three layers each. In the middle of
these networks there exists an intermediate matrix
of short term memory elements that actively par-
ticipates in recognition tasks. Our processor thus
stacks a total of six operative cascaded layers with
a middle matrix of short term memory elements.
(Figure 1).

The first shallow network, called N;, is exten-
sively trained by using substitutional reality and an
original autoencoding scheme, where the net be-
ing trained achieves zero tracking error capacity for
one chosen object, in a discrete tracking ambient.
This skilled individual, with a highly specialized
hidden neurons weight structures, is set to work in-
side a real world closed loop control system, where
images coming from a webcam produce displace-
ment information for a moving region of interest
(ROI) inside the own image. The resulting real time
loop gives rise to an emergent tracking behavior
which, with the support of short term memory ele-
ments, creates new feature and data representations,

in terms of compressed information. It turns out
that the obtained compressed representations con-
vey plenty of space time features that make possible
for others downstream processors to rapidly learn to
detect the presence of the chosen object.

A subsequent shallow network N, acts as a "rec-
ognizer agent” and is trained with real world images
as examples and white noise as counter examples,
until it recognizes the chosen object. As a second
contribution we prove that the extensive pre train-
ing and the resulting highly compressed data, favor
learning in the real world and that only few images
of the chosen object and white noise are enough to
awaken solid recognition capacities. The stacking
of Ny and N, completes six operative layers that
sustain high data compression and work around a
matrix of short term memory elements. Operating
with real world images the resulting neural machin-
ery behaves as a simple and yet powerful robotic
eye controller. To develop our methodology a heli-
pad figure is chosen as object of study. This item is
often used in artificial vision and automatic landing
processes [11, 12]. The tracking-recognition prob-
lem is divided into two lower level problems in a
hierarchical manner, by using independent agents
where the quality of being and agent implies the ca-
pacity to perform a useful job without external in-
tervention and satisfying the four weak conditions
of [13]: Autonomy, Social ability, Reactivity and
Pro-activeness.

2 Nj: The offset tracking autoen-
coder

In classical DNN theory an autoencoder is de-
fined as a ANN where the output layer has equally
many nodes as the input layer, and instead of train-
ing it to predict some target value y given inputs x,
an autoencoder is trained to reconstruct its own in-
puts x [14]. The training algorithm can be summa-
rized as: Unlabeled data is provided as input and the
output of the network tries to reconstruct the input.

For the purposes of this work we define an off-
set tracking autoencoder (OT Autoencoder) as a
shallow (three layers) ANN where the output neu-
rons reproduce, as classifiers, the estimated tracking
offset between the center of a moving region of in-
terest (ROI) and the center of the image of one cho-
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Figure 1. Our deep architecture. A shallow network Ny, pre trained as autoencoder with big data, gains
control of a moving region of interest (ROI) inside a bigger image. This incidental loop awakes an
emergent tracker agent that produces a spontaneous flow of compressed data. The compressed data is
orderly released in a matrix of short term memory elements, creating new 2D representations of one chosen
object. This new information is delivery as input to a second shallow network, specialized in cognitive
labors and trained with a noise balanced method to distinguish the chosen object representation from the
white noise representation. Due to the involved high compressed data the actual net structure has a slender
outline that in turn favors low cost and fast processing.

sen object (Figure 2). Notice that net is set to track
the existing offset and not the object itself. Since
the number of output neurons is finite and they act
as classifiers, the measurable offset is discrete and,
for this paper, measured in pixels. After training
the network will calculate how far is the ROI center
from the current image center, regardless of what
kind of image is being processed.

The OT autoencoder structure

Figure 1 shows the scheme of the used N; au-
toencoder. For our methodology neurons gain and
learning coefficient require specific settings. In this
regard output neurons, which behave as on-off clas-
sifiers, are assigned a strong 2.5 gain that produces
steeply neurons behavior. In contrast hidden neu-
rons, which behave as multi value encoders, are
assigned a conservative 0.1 gain. Notice the rela-
tion 25/1 in gain setting. To sustain a long learn-
ing journey, where millions of unlabeled data ele-
ments participate, the learning coefficient was set
to a minute 0.01. All biasing elements are assigned
a zero value. The net parameters that follow were
chosen for convenience and after some trial and er-
ror. We maintain that all of them can be freely
adapted to other resolutions and hardware capaci-
ties.

In the three layers network N; the input com-
prises a ROI retina of 100x100 pixels, with values
obtained by applying canny border detection to the
original webcam image previously converted from
color to gray. This ROI becomes mobile by pairing
it to an openCV ROI whose middle coordinates x,,
v, can be varied under programming control. The
hidden layer contains 100 neurons with gain set to
0.1. The output layer contains 22 neurons with gain
set to 0.9, grouped into two clusters Cx, Cy with
11 neurons each. Clusters behave as independent
classifiers and indicate the net estimation about the
offset between x,,y, and the helipad center, where
the estimation is done with 5 pixels of variation.
In normal feed forward operation for each image
captured by the webcam the net produces 22 ana-
log values between 0.0 and 1.0. A winner takes all
criterion which is applied so that in each cluster the
neuron with the highest output is taken as winner.
Once found, the two winners point to the estimated
Ax,, Ay, tracking offsets in pixels. Pixels inside the
ROI take the binary analog values 0.1, 0.9 obtained
by applying the threshold value 0.5 to the received
canny image.
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Figure 2. The offset tracking autoencoder Nj.
Sigmoidal neurons are organized as a three layers
network, where the input vector comprises a
two-dimensional region of interest (ROI) of
100x100 pixels moving under programing control
inside a bigger 320x240 image. The network
outputs act as classifiers and try to calculate the
existing tracking offset Ax,, Ay, between the center
of the ROI and the center of the image, in our case
a helipad.

Training of the OT Autoencoder

The training objective is to predict for each
training image the tracking offset Ax,, Ay, between
the ROI center and that helipad center by using the
coding principles described in Figure 3. Here the
helipad stays fixed and the ROI is displaced in the x
and y axis according to two random generated off-
set values (dx,dy) whose maximal possible values,
for the current example, are +5 pixels, that is each
displacement can assume the values: -5,-4,-3,-2,-
1,0,1,2,3,4,5. When (dx,dy) take the values (0,0)
the ROI center and the helipad center coincide and
the 22 targets are settled by raising (set to 0.9) the
equivalent cero displacement targets in each axis
while setting to 0.1 all other targets (Figure 3-b).
For other values the ROI moves off center and the
targets assume the corresponding matching values
(Figure 3-c to 3-d). The combined offset space has
a total of 11x11= 121 elements. As a first training
stage the helipad image stays fixed in rotation and
scale and only the ROI positon changes. For opera-
tive purposes the tracking error is defined as

m m

eg = ;(i[Tx] — jloutx])* +;(i[Ty] — jlouty])?,
(D

where:

e, = global error,

i[T;] = pointer to the only target set to 0.9 in the
X axis,

Jlout,] = pointer to the winner in the x axis,

i[T,] = pointer to the only target set to 0.9 in the
y axis,

Jjlouty] = pointer to the winner in the x axis,

m = number of outputs.

In pseudo code:
Begin

Place helipad about the center of the image.
Place ROI over helipad
Do
generate random offset dx,dy in the range
- 5+5;
set target(x), target(y) according
to generated offset
move the ROI to the generated offset;
forward;
backpropagation;

until mean error=0 for more than 100 cycles;
end do;

end;

As shown in Figure 4, for this first training
stage the error decays rapidly and a perfect scored
is reached in about 1000 backpro cycles (about 1
minute in common laptop).

Extended training stages

As it will be shown, the operative value of an
OT autoencoder depends in its capacity to support
wide invariances in position, rotation and scale in
the images of the chosen object. To attain this ca-
pacity we developed a method where the trainee
network interacts with images of the chosen object
for a long period using substitutional reality [15]
[16], where many different images of the chosen
object are computer generated and participate in the
training. In harmony with this principle the diffi-
culty of the process to be learned will be made to
slowly increase, starting with a fixed object and then
adding step by step visual complexities such as gyro
and scale changes. This allows time for carefully
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Figure 3. The OT autoencoding strategy. The helipad stays fixed and the ROI is displaced in the x and y
axis according to two random generated offset values dx,dy. a) Map of maximal possible offset
displacements. b) The generated offset is (0, 0). The ROI center and the helipad center coincide. Targets
are settled by raising (set to 0.9) the equivalent cero offset target in each axis. C) The generated offset is (5,
5). The ROI center moves 5 pixels to the right and 5 pixels down. Targets are raised at the matching
locations. d) Offset are -5,-5. ROI center moves up and left. Targets are raised accordingly. e) Offsets are
3,-2. ROI center moves right and up. Targets are raised accordingly.

adjust learning weights, until a minimal long range
global error is reached. Our training thus requires a
controlled environment where the following condi-
tions are satisfied:
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Figure 4. Average tracking error during the
extended training stages. Training is done with
unlabeled data taken from substitutional reality and
during million of backpropagation cycles. For a
fixed helipad the error decays rapidly. Given
enough time and increasing the problem difficulty
by stages the tracking capacity reach the maximum
allowed plateau (error =0) and remains there in a
stable condition. At this point, at the micro level,
no matter what example of the substitutional reality
is showed, the tracking error is always zero and
supports extensive changes in rotation and scale.

1. There exists a substitutional reality background
which generates large data set of unlabeled im-
ages of the chosen object (helipad). Images can

be handled under programming control and dur-
ing a prolonged training journey.

2. The degree of difficulty of the training problem
increases in successive stages and each stage is
completed by using backpropagation.

3. Each stage will be assumed to be completed
when a defined tracking error reaches and main-
tains a zero value during a prolonged period.

This later self-controlled strategy makes pos-
sible a long range, unsupervised learning process
that automatically advances to upper levels until a
highly trained individual is obtained.

Once the Stage 1 above described (fixed heli-
pad) is completed the next following stages are:

Stage 2: Rotation invariance. The helipad does
a continuous rotation, one degree per cycle (Fig-
ure 5-b).

Stage 3: Scale invariance from 4:3. The heli-
pads changes in scale from 4 (about the size of
the ROI) to 3 in 0.01 steps (Figure 5-c).

Stage 4: Scale invariance from 4:2 in 0.01 steps
(Figure 5-d).

Stage 5: Scale invariance from 4:1 in 0.01 steps
(Figure 5-e).
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Notice that during the extended training journey
the combined number of possible training images is
given by 121 x 360 x 300 = 13.068.000
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Figure 5. Detailed average tracking error during
extended training. a) First stage with helipad fix,
error decays rapidly in about 1000 cycles. b)
Second stage with rotating helipad, complex cyclic
response appears, with peaks caused by gyro c)
Error becomes small. d) Stage six, helipad changes
in rotation and scale 4:1. Error becomes small and
sporadic after millions of backpropagation cycles
e) Tracking error disappears.

As shown in Figure 6, after the extended train-
ing is completed the hidden neurons weight struc-
tures become highly specialized display a harmonic
behavior and provide high spatial compression rate:
10.000/22 or 445/1 with a fast two levels operation.
These structures have not known helipad recogni-
tion capacity by itself and they show no traces of
the used helipad.

3 The emergent tracking agent

The trained OT autoencoder obtained in Sec-
tion 2 is now set to operate in a real world closed
loop system, where images coming from a webcam
are processed by the autoencoder and used to con-
trol the ROI displacement in the next (future) frame,
ie.

x(n+1) =x.(n) — Ax,(n), (2)

yr(n+1) :yr(n)_Ayr(n)7 3)

where:
x, 1s ROI position in the x axis,

yr is ROI position in the y axis,

Ax, is the x axis offset calculated by the autoen-
coder,

Ay, is the y axis offset calculated by the autoen-
coder.

For operative purposes whenever the ROI bor-
ders overpass any image border, x,r and y,r will be
reset to zero.

In the virtual world and with the trained OT au-
toencoder in command the calculated Ax and Ay are
always error free and as result the system can use
this information to move the ROI center to exactly
match the helipad center, as long as the current de-
viations are equal or less than +5 pixels. In other
words if the trained OT autoencoder assumes the
ROI movement control, then the moving ROI can
perform a zero error tracking job over the helipad.
We call this close loop dynamic system a proactive
ROI or pROL

Real world behavior

When the above pROI is brought to the real
world and confronted with never seen complex im-
age the resulting behavior is also complex and con-
densed in the following record:

a Pixel Cluster: When confronted with a never
seen dense pixel region (Figure 7-a) the pROI
orbits around it in an equilibrium condition. If
the dense region moves slowly enough (£5 pix-
els/frame) the pROI executes a dynamic, spon-
taneous tracking,

b Unstable region: for some imagery situation,
the pROI moves around a complex route (show
graph of route) and never settles down,

¢ Look Alike Element: The pROI proactively cen-
ters any image that may look as a helipad. The
tracking capacity increases,

d Helipad Image: the pROI centers and tracks the
image. The tracking capacity improves.

In resume when handling complex real world
images, with uncountable many variations the
pROI, driven by a trained autoencoder, behaves as
an independent agent whose main behavior rules
are:

— With a complex image as input the pROI moves
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Figure 6. Highly specialized hidden neurons weights structures obtained with the OT autoencoder after

extended training. The processing weights distribution assumes harmonic patterns. The system contains

100 of these patterns, none of them equal to each other and none of them showing traces of the original

helipad. Output neurons with high gain behave as ideal binary elements (left). Hidden neurons with low
gain behave as multi valued coding elements (right).

to an equilibrium point, where a specific cluster
of pixels remains centered (trapped),

— After equilibrium the pROI tracks anything that
has been trapped, with certain preferences for
specific cluster of pixels,

— With white noise and other complex scenario as
input the pROI moves randomly with complex
trajectories,

— With the helipad as input the pROI improves its
tracking capacity.

When handling complex images the pROI gen-
erates a self-sustain, continuous flow of compressed
information where hidden neurons operate in a mul-
tivalued coding mode. The local data compression
rate is 10000/22 or 445/1.

The decompressed space time representation

The self-sustained flow of compressed informa-
tion produced in the previous session has an embed-
ded helipad nature. The following question is: Can
the helipad be detected by just watching the com-
pressed output? As an early trial we intended this
solution and obtained poor results. This situation
was greatly improved by creating a space decom-
pression zone where short term memory elements
are organized as a first in first out (FIFO) matrix M
given by:

€1,1,€1,1 €1,9,€1,10
M= | @

€2.1,€22,1 €229,€22,10

where: ¢;; is the output value of neuron i in time j.

Notice that 10 time slot have been chosen for
this particular case.
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Figure 9. The recognizer network N, and the
space-time matrix representations for three
different elements: a) White noise, b) Typical
random selected real world image, ¢) The helipad.
These representations are delivered as input to the
shallow network N, whose duty is to recognize
when the helipad is present in the received images.
Due to the utilized highly compressed data, N, has
a slender structure with 220 input, 37 hidden and
three outputs. The central output xg will indicate
the helipad presence. The other two outputs xn are
used to generate complementary error values
during training.

For each received image frame the calculated
output vector enters in the left most columns of
the matrix, while all others stored vector values are
shifted to the right following a FIFO strategy. The
right most stored vector valued is discarded. The
obtained space-time matrix is shown in Figure 8.
This novel representation will be delivered as in-
put to other trainable network that will act as rec-
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Figure 7. The emergent tracker behavior of the pROI when confronted with never seen real world objects
and backgrounds. a) The pROI moves toward a cluster of pixels (face) and orbits around it. If cluster
moves slowly enough the pROI executes a dynamic, spontaneous tracking. b) For some complex images
the pROI moves around a complex route and never settles down. ¢) For a look alike element the pROI
centers the image and becomes stable. d) For the helipad pROI centers the image and becomes stable.
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Figure 8. New space-time data representation. A matrix of 22x10 short term memory elements expands in
space the compressed data produced by the emergent tracker. Using a common laptop (IS5, 3.6 Giga) the
system runs at 30 frames/second. This new matrix representation will be fed as input to other participant

recognizer network.



A NOVEL DEEP NEURAL NETWORK THAT . ..

133

ognizer. This matrix changes for each processed
frame, in a common laptop (I5, 3.6 Giga) the system
runs at about 30 frames/second so the whole matrix
content is refreshed each 1/3 of a second.

Table 1. Results: Experiment 1

Number of | False Heli-
Samples pads

Accordion 20 0
Airplanes 20 0
Anchor 20 0
Ant 17 0
Background 22 0
google

Barrel 20 0
Bass 20 0
Beaver 20 0
Binocularr 20 0
Bonsai 21 0
Brain 12 0
Bronstosaurus 18 0
Buddha 17 0
Buterfly 25 0
Chandelier 20 0
Helicopter 15 0
Pizza 22 0
Soccer ball 17 0
Starfish 20 0
Umbrella 19 0
Warch 20 0
Wheelchair 10 0

The recognizer network N, The matrix represen-
tation in Figure 8 is used to train a second shallow
network which utilizes the matrix as example and
noise as counter example. The idea is to create an
indirect method that quickly and reliably detects the
presence of the chosen object. The use of white
noise as counterexample allows a speedy training
in the real world by just watching a few images of
the helipad. The recognizer network N, has 220 in-
puts, 37 hidden and three outputs (Figure 9). The
learning coefficient is set to a global 0.25 while all
Gains are set to 0.5.

4 The noise balanced training

Our next goal is to train the recognizer N> so
that its central output neuron learns to fire when-
ever helipad images are captured by the webcam
and not to fire for any other real world image. To
achieve a quick training real world helipad images
are used as examples and noise as counter exam-
ples (Figure 10). We prove that since all space-time
matrix representation of the helipad look alike, a
few examples of any helipad images are enough to
rapidly awaken a large inference capacity about he-
lipads. This is so because the helipad knowledge
comes pre-assembled in the highly specialized hid-
den neurons weight structures shown in Figure 6,
and the real world training only adapts the system
to possible environmental variations such as used
webcam, computer speed, etc.

5 Results

The obtained six layer neural processor has a
slender deep structure with data compressions rates
of 10000 /22 in Ny and 220/1 in N,. After pre train-
ing the autoencoder N, for about 6 hours, the typical
real time training of NV, occurs in about 8 repetitions
of (50+50) cycles of backpropagation, which for a
common laptop represents about 12 seconds. The
noise balanced training of N, represents an efficient
way to rapidly put to work the useful processing in-
formation stored in N;, which in turns awakens a
high inference capacity. The overall stem becomes
an acute eye which successfully rejects look-alike
figures such as letters H, P, ©, &, ®.

Experiment 1. The system is set to randomly
explore the Caltech database searching for heli-
pads. Each image is loaded and the pROI moves
freely inside it for about 100 frames. As seen
in Table 1 in about 4 hours of search no false
responses were found.

Experiment 2. The system is set to explore
different images in the real world. It recog-
nizes the chosen helipad under variable vi-
sual conditions while rejecting look-alike el-
ements and uncountable many others objects
and backgrounds. (Figure 11). See the video:
https://www.youtube.com/watch?v=JzV3Szbkt
OM&feature=youtu.be
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Figure 10. The noise balanced training process. a) Rule 1: The helipad space-time representation is
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backpropagation follow.

Figure 11. Experiment 2. Some selected rejection
and detection results.

6 Discussion

Throughout many practical experiments the
only found way to push the OT autoencoder to the
zero error plateau is by using the described pro-
gressive learning method, starting with a fixed size
and releasing rotation and scale variations step by
step. According to the obtained results the proposed
space matrix representation contains enough fea-
ture information as to allow accurate helipad recog-
nition, against dynamic white noise and against
countless many other images of the real world.

The training of the recognizer network N, in-
volves processing real world images with real world
timing, where this later parameter given by the lo-
cal hardware clock. In our experiments any changes

in timing due to hardware characteristics were ab-
sorbed by the training itself.

During its entire learning life the deep network
only sees the chosen object (helipad) as a hyper ex-
ample and noise as counter example. This isolated
condition defines a strong object-network bond that
makes possible a sturdy recognition capacity sup-
porting intricate 3D changes in position tilt and
scale. Also by just watching noise as counter ex-
amples the processor successfully rejects uncount-
able many other images coming from a complex
real world. We prove that a particular factor learned
from configurations of other factors can generalize
well.

7 Conclusion

In this work we propose a novel DNN archi-
tecture for tracking and recognizing a chosen ob-
ject whose image is captured by a regular webcam.
We introduce an offset tracking autoencoder (OT
autoencoder) that is extensively trained with sub-
stitutional reality as to achieve zero tracking error
in a discrete ambient. The trained autoencoder par-
ticipates in a real world vision controlled loop and
produces a self-motivated tracking agent, capable of
predicting locations in never seen images and cod-
ing this information in highly compressed data. We
enrich the deep model by introducing a matrix of
short term memory elements that help to expand the
compressed data in space, creating new space-time
matrix representations. These elements are deliv-
ered as input to a second shallow network which
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acts as “recognizer” and is fast trained with real-
world images and white noise. The final result is
a slender and yet powerful robotic eye controller
that operates with high data compression and vigor-
ously tracks and recognizes the chosen object under
generic situations.
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