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Abstract

This article presents short-term predictions using neural networks tuned by energy asso-
ciated to series based-predictor filter for complete and incomplete datasets. A benchmark
of high roughness time series from Mackay Glass (MG), Logistic (LOG), Henon (HEN)
and some univariate series chosen from NN3 Forecasting Competition are used. An av-
erage smoothing technique is assumed to complete the data missing in the dataset. The
Hurst parameter estimated through wavelets is used to estimate the roughness of the real
and forecasted series. The validation and horizon of the time series is presented by the
15 values ahead. The performance of the proposed filter shows that even a short dataset
is incomplete, besides a linear smoothing technique employed; the prediction is almost
fair by means of SMAPE index. Although the major result shows that the predictor sys-
tem based on energy associated to series has an optimal performance from several chaotic
time series, in particular, this method among other provides a good estimation when the
short-term series are taken from one point observations.

Keywords: short time series, forecasting, missing data, energy associated to series, com-

plete and incomplete datasets

1 Introduction

Despite advances in missing data imputation tech-
niques over the last three decades, the problem of
missing data remains largely unsolved [1]. The
problem of incomplete data poses a difficulty to
time series analysis and decision making processes
[2] which depend on this data, requiring methods
of estimation more accurate and efficient for pre-
diction systems [3]. Various techniques exist as a
solution to this problem, ranging from data deletion
[4] to methods employing statistical [5, 6] and ar-
tificial intelligence techniques [7, 8] to impute for
missing variables.

In [9] the authors assessed the impact of miss-
ing data on general circulation statistics by system-
atically decreasing the amount of available training
data. They determined that the ratio of the Root
Mean Square Error (RMSE) in the monthly mean to
the daily standard deviation was two to three times
higher when the missing data was spaced randomly
compared to space equally, and RMSE increased by
up to a factor of two when the missing data occurred
in one block.

In [10] found that highly correlated neighbor
stations can be used to interpolate missing data in
Canadian temperature datasets.
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However, some methods, like average smooth-
ing technique [11] can simplify the likelihood of
producing biased estimates or make assumptions
about the data that may not be true and can be
used as a good estimator for the quality of decisions
made based on this data. Replacing missing data
with time series within the range of known data is
crucial [12] for more accurate design proposals and
performance evaluation.

In the statistical literature, missing data are usu-
ally imputed using maximum likelihood estimators
corresponding to a specific underlying model. Very
often, these estimators are not efficiently computed,
which motivates the use of Expectation Maximiza-
tion (EM) algorithms [13].

More recently, several data mining techniques
for Computational Intelligence [41] have been pro-
posed for short-term time series forecasting (ST-
TSF). Examples applied to ST-TSF include: Arti-
ficial Neural Networks (ANN) [40, 43, 44, 45, 47],
evolutionary computation [53], Support Vector Ma-
chines (SVM) [49], fuzzy techniques [51], or their
combinations [42, 46, 50, 52].

The motivation of this work arises out of the
forecasting problem with incomplete and missing
information [14], which is applicable to a large
class of learning algorithms [15, 16] including
ANNSs. One major advantage of the proposed so-
lution is that the complexity does not increase with
an increasing number of missing inputs. The solu-
tions can be generalized to the problem of uncertain
(noisy) inputs [17].

The estimation of incomplete data in vector ele-
ments in real time processing applications requires
a system that possesses the knowledge of certain
characteristics such as correlations between vari-
ables, which are inherent in the input space [18].
The benchmark to construct chaotic time series is
chosen from Mackay-Glass (MG), Logistic (LOG)
and Henon (HEN) equations, whose forecast is sim-
ulated by a Monte Carlo approach employing ANN.

The main contribution here is the forecast sys-
tem based on energy associated to series (EAS)
[19] for tuning the neural networks to predict short
time series. The filter parameter is put in function
of the roughness of the short time series, between
its smoothness. A one-layered feed-forward neu-
ral network, trained by the Levenberg-Marquardt

algorithm is implemented in order to give the next
15 values [20]. In order to show experimental re-
sults, a comparison with other techniques are pro-
posed, such as neural network-based predictor mod-
ified (NNMod.) in the learning process [48] and
ARMA [28]. The article is organized as follows:
Section 2 describes the overall overview of energy
associated tuning method and the assumption that
the series behaviors are such a fractional Brown-
ian motion path measured by the so-called Hurst
parameter. The methodology and data used from
benchmark short time series are derived to show the
performance of the propose filter. In Section 3 nu-
merical results of complete and incomplete series
are presented, where EAS, NNMod. and ARMA
models are used to forecast. Section 4 for give some
interpretation of the results where is emphasized
that the TSF methods proposed can build relation-
ship among the nonlinear handling the irregularity
and uncertainty of real data concerning missing or
deletion of data in time series forecasting problems.
Experimental results are concluded in Section 5.
Lastly, some discussion are mentioned for drawing
conclusions.

2 Methodology and Data

Analysis of data sets with missing values is a per-
vasive problem for which standard methods are of
limited value. The nature of data can determine
what forecasting method can be used. For instance,
it is impossible to use ARIMA forecasting tech-
niques [21] if sufficient sample data are unavailable;
it is also unnecessary to use a complicated nonlin-
ear technique to forecast a simple linear time series
[22]. For that reason, this research points out that
simply models can outperform [23], for particular
nonlinear time series, predictions with little infor-
mation and incomplete datasets [24].

2.1 Overview on fractional Brownian mo-
tion

The so-called Hurst’s parameter is used by this re-
search in the learning process to modify on-line
the number of patterns, the number of iterations,
and the number of filter’s inputs and is defined its
stochastic representation [25] as follows
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and O0<H<1 is called the Hurst parameter. The inte-
grator B is a stochastic process, ordinary Brownian
motion. Note, that B is recovered by taking H=1/2
in (1). Here, it is assumed that B is defined on some
probability space (€2, F, P), where Q, F and P are the
sample space, the sigma algebra (event space) and
the probability measure respectively. Thus, an fBm
[26] is a time continuous Gaussian process depend-
ing on the so-called Hurst parameter 0<H<1. The
ordinary Brownian motion is generalized to H=0.5,
and whose derivative is the white noise.

The fBm is self-similar in distribution and the vari-
ance of the increments is defined by

Var (By(t)—By(s)) =vi—s*,  (3)

where v is a positive constant.

2.2 Overview on energy associated tuning
method

During the learning process of the proposed ap-
proach, the primitives of the time series are calcu-
lated as a new entrance to the ANN [19], in which
the prediction attempts to even the area of the fore-
casted area to the primitive real area predicted. Af-
ter each pass stage, the number of inputs of the non-
linear filter is tuned —that is the length of input-
delay line, according to the following heuristic cri-
terion. The hypothesis follows that both sequences,
the real and the forecasted one, should have the
same H parameter. The error between the smooth-
ness of the time series data and the forecasted data
(energy associated of series) modifies the number
of the filter parameters.

The startup of the algorithm [27] achieves the
long term stochastic dependence of the Hurst pa-
rameter in order to make more precisely the predic-
tion. The forecasted time series area is set as a new
entrance to the NN and serve to be compared with
the real area of the time series.

2.3 Benchmark chaotic time series

Despite the series being short (ranging from 51 to
69 observations), the last 15 observations of each
time series was separated for performance assess-
ment (the test set) aiming at preserving statistical
dependence from the parameter estimation process
[28].

Simulations are performed on three common
benchmarks. The first one is Primitives of time
series from sampling the Mackay-Glass (MG) [29]
equations defined by

ax(t—1)

((t) = ————= — bx(t 4
W)= e @
with a,b,c, T setting parameters shown in Table 1.
The second one is the logistic series (LOG) [30] de-
fined by

x(t+1)=ax(t)[1—x(1))]. ®)

When a=4, the iterates of Eq. 2 form a chaotic time
series. The third one is the Henon equation [31]
which has a simple format described by

x(t4+1)=b—ax* (1), (6)

which generates chaotic time series, where the con-
stants are taken tobe a = 1.3, b =0.22, x(0) =0 and
x(1)=0.

The construction and selection of the bench-
mark series parameters are shown in Table 1, Table
2 and Table 3, respectively. 50 samples are for the
selected short series, the first 35 values are used for
training and the remaining 15 values are kept for
validation and test data.

The short-term behavior changes thoroughly by
changing the initial conditions to obtain the stochas-
tic dependence of the deterministic time series ac-
cording to its roughness assessed by the H parame-
ter.

Table 1. Parameters to generate short MG time

series
Series H
B la |c |t
No. Complete | Incomplete
MGI1.6| 1.6 | 30 | 10 | 100| 0.26 0.095

MGI1.8| 1.8 | 30 | 10 | 100| 0.54 0.15
MGI17 | 02| 0.1 | 10 | 17 | 0.98 0.94
MG30 | 02| 0.1 | 10 | 30 | 1 0.98
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Table 2. Parameters to generate short HEN time

Table 4. H Parameter measured from NN3 reduced
time series.

series
Series H
a b
No. Complete Incomplete
HENO1 | 1.4 | 0.3 0.39 0.21
HENO2 | 1.3 | 0.22 | 0.83 0.7

Series No. H

Complete Incomplete
NN3_.007 0.19 0.086
NN3_008 0.10 0.099

Table 3. Parameters to generate short LOG time

series
Seri H
€ries N a XO
No. Complete | Incomplete
LOG402| 50 | 4 0.2 | 0.14 019
LOG404| 50 | 4 04 |03 0.12
This H serves to have an idea of roughness of

a signal [32] and the time series are considered as
a trace of an fBm depending on the so-called Hurst
parameter O<H<1 [33].

We select some time series data from the NN3
competition [34]. The complete dataset of 111
time series of the NN3 dataset was chosen contain-
ing between 68 and 144 observations. The dataset
consists of a representative set of long and short,
monthly time series drawn from a homogeneous
population of empirical business time series.

Two out of the 111 series were selected since
they represent the two most common types of be-
havior found: annual repetition and financial behav-
ior. These correspond to the 17th and 33rd series
from the 111-series. These time series contain both
seasonal and non-seasonal patterns, with only mi-
nor trends and different time series lengths.
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Figure 1. NN3 Competition reduced series chosen;
a) NN3_007, b) NN3_008.

2.4 Missing Data Mechanisms

In [1] Little and Rubin distinguish between three
missing data mechanisms: missing at random,
missing completely at random and missing not at
random. In this research Missing not at random
implies that the missing data mechanism is related
to the missing values. It is also referred to as the
non-ignorable case [35, 36] as the missing observa-
tion is dependent on the outcome of interest. Thus,
the methodology of this research follows the miss-
ing not a random mechanism and contribute with an
ANN technique for missing data imputation.

2.5 Average smoothing technique

The main issue when forecasting a time series is
how to retrieve the maximum of information from
the available data. In order to predict one step
ahead, an average smoothing approach is assumed.
It is proposed to fill these empty values by divid-
ing the dataset into subsets of 12. Then a matrix is
formed by 12 columns and the number of the rows
will depend on the dataset size. To complete the
missing information, the prior and posterior data is
used for the average smoothing technique as fol-
lows: four dataset are built, the first one is an in-
complete dataset with xlabeled in red color. The
second one is completed with zeros, the third one
is using the same ensemble of the row above and
below in order for averaging the prior and posterior
row as shown in Figure 2.

The same analogy is used to construct benchmark
series.

xel1 2345|6780 ]10]n|12
Lo|ar |ea | 2 | > | & | % |2 xe |2 |-Xs | X6 |Xa2
2 Xpp | Xps | Xis | Xygs | Xj7 X o Xz2o | Xz2p | X22 | X230 | X4
3 X2s | Xzo | X0 | Xag | Xoo | Xgo | Xap | Xa2 | Xz | Xy | Xas | Xis
-l X3~ | Xag | Xiw X X X Xyzg | Xy | Xys | Xug | Xyg7 | Xug
S5 | x| X

Figure 2. Average smoothing technique: missing
data marked in red.
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Figure 3. Average smoothing technique: infilled
with zeros in red.

Xp|l1 |23 | 45|67 |89 |10]11](12
1 | x| x| O[O O |x6| x| x| x| 6| x6 X2
2 | xm | xn | xas [ xes [ xrm | O | O | xe | x| X2 | X | X
3 | xas | Xos | Xn | Xow | Xoe | Xae | Xar | Xz | Xas | Xaw | Xas | s
4 x| xse | O] O | O | X | Xue | Xus | Xus | Xur | Xus
S Xyw Xsn

Figure 4. Average smoothing technique:
completed with the prior and posterior row.

3 Experimental results

3.1 Error Metrics

For each time series, the last 15 observations are
used as out-of-sample to compare and evaluate the
accuracy of forecasting model. For each out-of-
sample observation, its previous data are used as
training samples to set the forecasting model for
making one-step-ahead forecast.

In order to test the proposed design procedure
of the ANN-based nonlinear predictor, the perfor-
mance given for predicting the chaotic time series is
evaluated using the Symmetric Mean Absolute Per-
cent Error (SMAPE) proposed in the most of metric
evaluation [37], defined by

¢ X —F
SMAPEs = -y X — F|

e 100, (D)
n S (Xl +IE]) /2

where f is the observation time, 7 is the size of the
test set, s is each time series, X; and F; are the actual
and the forecasted time series values at time ¢ re-
spectively. The SMAPE of each series s calculates
the symmetric absolute error in percent between the
actual X; and its corresponding forecast value Fy,
across all observations 7 of the test set of size n for
each time series s [38]. SMAPE index self-limits
to an error rate of 200%. It has both a lower bound
and an upper bound that provides a result between
0% and 200%.

3.2 Numerical results on chaotic time se-
ries

In this subsection, the objective of the experi-
ment is the comparison to evaluate the forecasting
performances of energy associated tuning method
for time series forecasting. Numerical experiments
have thus been conducted based on each type of
data series, respectively. For producing the horizon
forecasts, the same methodology used in section 2.5
was applied to all series with the difference that the
15 last data observations reserved as test set before
were implemented in MG, LOG and HEN series in-
cluded in the modeling data as validation set. How-
ever, the last 18 observations were used in NN3 re-
duced series. 10 time series are used in total for
performance comparisons of univariate forecasting
energy associated tuning technique, which consist
of 50 samples.

The comparison results for each type of series
are described as follows: each time series is com-
posed by samples of MG, HEN, LOG and NN3
competition series. The average smoothing tech-
nique construction is depicted by means of Figure
10 up to Figure 13 for NN3_008 series. Three
classes of datasets are used. The first one is the
original time series used by the algorithm to train
the predictor filter, which comprises 64 values. The
second one is the primitive obtained by integrating
the original time series data. The last one is used to
compare whether the forecast is acceptable or not,
in which the last 15 observations can be used to val-
idate the performance of the prediction system.
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Figure 5. MG series forecasts; a) MG1.6 with
complete dataset; b) MG1.6 with incomplete
dataset; c) MG1.8 with complete dataset; d)

MG1.8 with incomeplete dataset; e) MG17 with
complete dataset; f) MG17 with incomplete
dataset; g) MG30 with complete dataset; h) MG30
with incomplete dataset.
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Figure 6. NN3_008 series forecasts; a) NN3_008
with complete dataset; b) NN3_008 with
incomplete dataset; a) NN3_007 with complete
dataset; b) NN3_007 with incomplete dataset.

The Monte Carlo method was used to forecast the
horizon of the benchmark series. Such outcomes
are shown from Figure 5 to Figure 8. The valida-
tion set was used for measuring the minimum mean
squared error as training stopping criterion again.
The validation set was also used for improving per-
formance measured by the SMAPE metrics.

Based on the SMAPE metrics measured on the
NN3 validation set, 18 steps ahead, only the sin-
gle best performing combination of architecture and
training algorithm was selected for each series’
training. Each forecasting ensemble was then used
for producing the 15 forecasts for its series. The
median forecast of each ensemble was then com-
pared to the test data set of their respective series.

Table 5. Comparison of the proposed approach by

SMAPE Index
. SMAPE EAS

Series No.

Complete Incomplete

Dataset Dataset
MG1.6 0.090 0.287
MG1.8 0.159 0.489
MG17 0.054 0.148
MG30 0.059 0.146
HENO1 0.022 0.118
HENO2 0.013 0.561
LOG402 0.202 0.430
LOG404 0.548 0.764
NN3_007 20.94 21.23
NN3_008 19.93 23.51

Table 6. Comparison using NNmod predictor filter

by SMAPE Index
. SMAPE NNmod

Series No.

Complete Incomplete

Dataset Dataset
MGI1.6 0.265 0.361
MGI1.8 0.390 0.632
MG17 0.090 0.140
MG30 0.033 0.148
HENO1 0.058 0.072
HENO2 0.037 0.047
LOG402 0.962 1.02
LOG404 0.905 1.11
NN3_.007 22.17 24.63
NN3_008 16.48 26.36
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Table 7. Comparison using linear ARMA
predictor filter by SMAPE Index

. SMAPE ARMA

Series No.

Complete Incomplete

Dataset Dataset
MG1.6 0.288 0.450
MG1.8 0.394 0.812
MG17 0.112 0.263
MG30 0.042 0.195
HENO1 0.025 0.118
HENO02 0.451 0.092
LOG402 0.072 0.067
LOG404 0.23 1.82
NN3_007 36.72 38.70
NN3_.008 36.58 40.23

4 Interpretation of the results

The results presented show the forecast error mea-
sures selected from the known data separated into
validation and test sets, as described in the previ-
ous Section. The measurable results on these se-
ries are presented in Table 4, Table 5 and Table 6
which show the performance of the system accord-
ing to SMAPE metrics [37, 38] applied to each se-
ries validation and test sets, averaged across short
and long forecast horizons, for time series catego-
rized as long and short [34] using different forecast-
ing methods, such as EAS, NNMod. and ARMA.

It can be observed that on short time series, the
EAS predictor filter has the smallest SMAPE for
medium to long horizons, and over forecast lead
time, 1-18. The performance of method reflects an
advantage of both sorts of series, chaotic and finan-
cial. The availability of sufficient data for training is
particularly important where the time series is short.

For short series, the size of the training and
validation set from using complete and incomplete
datasets, results in better training of the proposed
approach network and as the results suggest, im-
proved forecast accuracy. When sufficient data is
available for training and validation, the increase in
the SMAPE index is shown particularly from com-
plete datasets. As expected, the financial series has
much worse performance than the chaotic time se-
ries.

The forecast of series NN3_008 is much better
than that of series NN3_007. Despite not revealed
on a series basis, the competition results measured
a 16.87% SMAPE for this approach.

5 Discussion

The evaluation of the results across the ten analyzed
cases was performed by the same initial parameters
for each predictor filters. The parameters and the
structure of the filters are tuned by considering their
stochastic dependency.

It can be noted that in Figure 9 the SMAPE in-
dex is computed between the complete time series
horizon (it includes the series validation and test
horizon) and the incomplete series horizon, as in-
dicates the Eq. (7) for each series, performed by the
three filters. Note that there is no improvement of
the forecast for any given time series, which results
from the use of a stochastic characteristic to gen-
erate a deterministic result, such as using complete
and incomplete datasets for short-term prediction.

In addition, a comparison was performed by
other predictor filters proposed such as NNmod.
[28] and ARMA [48] in term of error metrics. The
result highlights that the energy associated predic-
tor filter (EAS) supplied to short time series has an
optimal performance from several chaotic time se-
ries, in particular to time series whose H parameter
has a high roughness of signal, which is evaluated
by H parameter, respectively. This fact encourages
us to apply the proposed approach to meteorologi-
cal and financial time series when the observations
are taken from a linear statistical point.
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Figure 7. The SMAPE index applied over the 10
time series.
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x| 1 2 3 4 5 6 7 8 9 10 | 11 | 12

1|8300|7400|7800|9000|7200|6800|8300)|5500|5400| 7200|5000 6800

2 18400|7500|5500|5900|6100|6600|7200|6400|6300|5800|4600|6300

6600|5300|5300|6400|5300|5200|5600|5000|6800|4900|8000|5100

6500\ 8100|6700\ 6100|5000 6400|4500)|4400|6400|4500|5200|6800

n | &~ | W

5300152006500

Figure 8. Original NN3_008 time series, data marked in red color are selected to construct the proposed
average technique.

x,| 1 2 3 4 5 6 7 8 9 10 | 11 | 12

1|8300(7400| 0 0 0 |6800|8300)|5500|5400)|7200|5000|6800

2 |8400|7500|5500|5900|6100| 0 0 0 |6300|5800|4600|6300

316600|5300|5300|6400|5300|5200|5600|5000|6800|4900|8000|5100

416500\810016700| 0 0 0 [4500(4400|6400|4500|5200| 6800

5(5300|5200)|6500

Figure 9. NN3_008 infilled with zeros marked in red color.

x| 1 2 3 4 5 6 7 8 9 10 | 11 | 12

18300(7400)\2750|2950|3050|6800|8300)|5500|5400)|7200|5000|6800

2 18400|7500|5500|5900|6100|6000|6950|5250|6300|5800|4600|6300

316600|5300|5300|6400|5300|5200|5600|5000|6800|4900|8000|5100

4 16500|\8100|6700|3200|2650|2600|4500|4400|6400|4500|5200|6800

5(5300|5200)|6500

Figure 10. NN3_008 completed with average between prior and posterior row data marked in red color.
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x| 1 2 3 4 5

1 44001 5200|4500 5500|3900 |4000|4900\|4400|5100|6200| 6800|4800

2 (3700|5100|5200|4300|5700|3200

Figure 11. NN3_008 test data

6 Conclusion

In this work a feedforward neural networks-based
on nonlinear autoregression (NAR) filter by means
of energy associated to series (EAS) tuning ap-
proach for forecasting time series has been pre-
sented. The difficulties in forecasting short-term
series are attributable to the missing information in
the dataset relative to the limited number of sam-
ples. The smoothing technique proposed is adopted
to complete the data. In contrast, we emphasized
the importance of inferences based on one-step
ahead forecasting performances in the practically
more relevant context of missing data [38]. We il-
lustrate the proposed approach by deriving closed-
form solutions for a selection of benchmark time
series used in the literature. Then we compare
performances with NNMod. and ARMA predic-
tor filters one-step ahead based on a selection of
simulated as well as practical time series by the
SMAPE index. Our empirical findings confirm that
the smallest forecast errors for a given forecast arise
from the corresponding EAS method shown in Fig-
ure. 9 for complete and incomplete datasets. Even
though a linear rule is used to complete the miss-
ing data, the finally proposed model to short term
forecast with minimum least squared errors in ad-
dressing whether missing data necessarily needs to
be imputed using complicated techniques, this work
found that a imputations using linear smoothing ap-
proach are fairly acceptable.

The learning rule proposed to adjust the neural
net weights is based on the Levenberg-Marquardt
method. The parameters estimated in the modeling
stage were then in function of the long and short
term stochastic dependence of the time series, eval-
uated by the Hurst parameter H, to update the neural
net topology, number of input taps, and the number
of patterns and iterations at each time stage. Fu-

ture work may focus on applications of the model in
some relevant fields and real-life problems. We are
interested in addressing more complex forecasting
problems such as computation of concurrent trend
or seasonal-adjustment filters in univariate and mul-
tivariate frameworks, of particular interest to time-
series data with concept drift or with high levels of
noise.
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