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Abstract

Traditionally, the volatility of daily returns in financial markets is modeled autoregres-
sively using a time-series of lagged information. These autoregressive models exploit
stylised empirical properties of volatility such as strong persistence, mean reversion and
asymmetric dependence on lagged returns. While these methods can produce good fore-
casts, the approach is in essence atheoretical as it provides no insight into the nature of
the causal factors and how they affect volatility. Many plausible explanatory variables re-
lating market conditions and volatility have been identified in various studies but despite
the volume of research, we lack a clear theoretical framework that links these factors to-
gether. This setting of a theory-weak environment suggests a useful role for powerful
model induction methodologies such as Genetic Programming (GP). This study forecasts
one-day ahead realised volatility (RV) using a GP methodology that incorporates infor-
mation on market conditions including trading volume, number of transactions, bid-ask
spread, average trading duration (waiting time between trades) and implied volatility. The
forecasting performance from the evolved GP models is found to be significantly better
than those numbers of benchmark forecasting models drawn from the finance literature,
namely, the heterogeneous autoregressive (HAR) model, the generalized autoregressive
conditional heteroscedasticity (GARCH) model, and a stepwise linear regression model
(SR). Given the practical importance of improved forecasting performance for realised
volatility this result is of significance for practitioners in financial markets.
Keywords: Realised Volatility, Genetic Programming, High Frequency Data

1 Introduction

Volatility is an important concept in finance and has
different implications depending on the perspective
of the user. From an investment perspective, volatil-
ity is a measure of the degree to which returns
tend to fluctuate. Traders would like to capture
the volatility caused by positive returns, whereas in
contrast, risk management is more concerned about
the volatility caused by negative returns. Volatil-
ity is a key element in the pricing of derivatives,
is a key input in determining portfolio weights in a

portfolio optimisation model and is also a key input
in the calculation of regulatory capital requirements
under the Basel II accords.1 Hence, many stake-
holders have an interest in being able to model and
predict volatility.

In a conventional volatility model, volatility
is a latent variable that is often estimated para-
metrically from historical daily returns using dis-
crete time GARCH models [1] or continuous time
Stochastic Volatility models [2]. The term realised
volatility can be broadly defined as the sum of in-

1Basel II are recommendations on banking laws and regulations issued by the Basel Committee on Banking Supervision.
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traday squared returns, measured at short intervals
[3]. Such a non-parametric volatility estimator has
been shown to provide an accurate estimate of the
latent process that defines volatility [5] and there-
fore, through realised volatility estimation, the la-
tent volatility process is theoretically observable
from historical intraday returns.

Genetic Programming (GP) is a powerful model
induction methodology which has been widely ap-
plied for symbolic regression [6, 7]. A number of
studies have previously applied GP for volatility
modeling [9, 11, 12, 13, 15] but there are still some
important questions which have not been addressed.

In particular, market conditions have been doc-
umented in the finance literature as having a high
correlation with volatility in a variety of settings. A
sample of these studies include [16] which exam-
ined the relationship between trading volume and
volatility, [17] which examined the relationship be-
tween the number of transactions and volatility, [18]
examined the relationship between price range and
volatility, [39] examined the relationship between
interest rates and volatility, [20] examined the re-
lationship between implied volatility and volatility
and [21] which examined the relationship between
the bid-ask spread and volatility. This study extends
previous works by identifying a range of metrics
on market conditions and allowing GP to use these
as inputs in modeling volatility. The calculated re-
alised volatility is modeled directly using GP and
the one-day-ahead RV is forecasted. Forecasting re-
sults from GP are compared with those from bench-
mark models drawn from the finance literature.

1.1 Structure of Paper

The remainder of this contribution is organised as
follows. Section 2 provides some background on
volatility modeling and provides the motivation for
applying the GP methodology to RV forecasting.
Section 3 describes the data used in this study. The
forecasting results are provided in Section 4 and fi-
nally, conclusions and opportunities for future work
are discussed in Section 5.

2 Overview of Volatility Modelling

In this Section we overview three key items. Ini-
tially, we provide an introduction to the concept of

realised volatility. Then we briefly introduce cur-
rent state-of-the-art approaches for the forecasting
of realised volatility. Finally, we provide the mo-
tivation for the GP methodology adopted in this
study.

2.1 Realised Volatility

Under the concept of RV, returns are assumed to
be generated by the stochastic differential equation
(Equation 1), which is a continuous-time stochas-
tic process over a given time period. The time pe-
riod is divided into i equally-spaced adjacent inter-
vals and the quadratic variation is defined as the
limit of the sum of squared returns over these inter-
vals, as the length of the sampling intervals goes to
zero, where ti and ti−1 are adjacent intervals (Equa-
tion 2). This limit is well-defined in the case of
the logarithm price process p(t), which is a semi-
martingale. In the general semi-martingale case,
assuming some (mild) restrictions on the types of
leverage, the quadratic variation is an unbiased es-
timator of the integrated variance,

∫ T
0 σ2(t)dt, and

the square root of the quadratic variation is called
realised volatility.

d p(t) = σ(t)dW (t) (1)

lim
i−→∞

(∑
i
(p(ti)− p(ti−1))

2) (2)

Realised volatility can be used to measure the
interdaily volatility by summing up the intraday
squared returns at short intervals, such as five
or fifteen-minute intervals [24]. This concept is
very important to volatility modeling. It has been
pointed out in [23] that the standard volatility mod-
els used for forecasting at the daily level cannot
readily accommodate the information in intraday
data. The models specified directly for intraday
data generally fail to capture the longer interdaily
volatility movements sufficiently well. In contrast,
using RV allows us to model volatility using rel-
atively high frequency data, and also permits cap-
ture of stylised facts concerning interday volatility
[23, 24].

In an ideal world, the quadratic variation from
shorter intervals (as per Equation 2) is always closer
to the integrated volatility than the one calculated
using longer intervals. However, returns measured
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tion 2). This limit is well-defined in the case of
the logarithm price process p(t), which is a semi-
martingale. In the general semi-martingale case,
assuming some (mild) restrictions on the types of
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(p(ti)− p(ti−1))
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Realised volatility can be used to measure the
interdaily volatility by summing up the intraday
squared returns at short intervals, such as five
or fifteen-minute intervals [24]. This concept is
very important to volatility modeling. It has been
pointed out in [23] that the standard volatility mod-
els used for forecasting at the daily level cannot
readily accommodate the information in intraday
data. The models specified directly for intraday
data generally fail to capture the longer interdaily
volatility movements sufficiently well. In contrast,
using RV allows us to model volatility using rel-
atively high frequency data, and also permits cap-
ture of stylised facts concerning interday volatility
[23, 24].

In an ideal world, the quadratic variation from
shorter intervals (as per Equation 2) is always closer
to the integrated volatility than the one calculated
using longer intervals. However, returns measured
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at intervals shorter than five minutes are plagued by
spurious serial correlation caused by various mar-
ket microstructure effects including asynchronous
trading, discrete price observations, and the bid-ask
bounce [5].

There are different sampling schemes to esti-
mate the realised volatility as reviewed in [22]. In
this study, the RV estimation approach in [25] is fol-
lowed as we use the same futures index data, FTSE
100 prices. It is also noted that the RV estimated
using this method [25] successfully captured the
stylised long-memory effect inherent in volatility.

2.2 Conventional RV Forecasting Models

It is well documented in the finance literature that
realised volatility is a highly persistent process
which has a long memory. Conventional meth-
ods used in modeling RV include ARFIMA (Au-
toregressive Fractionally Integrated Moving Aver-
age) [23, 26], HAR (Heterogeneous Autoregres-
sive) proposed by [27], the simple AR (Autore-
gressive) type model [28, 29], and SV (Stochas-
tic Volatility) with volatility treated as observable
[29]. Recently there have also been HAR-type ex-
tended models including the HAR-GARCH model
proposed by [30], and HAR with a jump process as
proposed by [31].

A broad series of empirical work [29, 30, 32]
has sought to compare the performance of various
RV forecasting models.

In [30], ARFIMA, HAR and HAR-GARCH are
compared based on tick-by-tick transaction prices
from S&P 500 index futures data (1985-2004) with
HAR-GARCH producing the best forecasting per-
formance in terms of several metrics including R2,
RMSE (Root Mean Squared Error), MAE (Mean
Absolute Error) and RMSPE (Root Mean Squared
Percentage Error). In [32], AR, ARFIMA and HAR
are compared and HAR gives the best result in
terms of RMSE, MAE and R2. This conclusion
is drawn on a dataset consisting of tick-by-tick se-
ries for USDCHF (1989 to 2003), S&P 500 Fu-
tures (1990-2007) and 30-year US Treasury Bond
Futures (1990-2003). In [29], simple AR, SV and
HAR are compared and HAR gives the best fore-
casting performance in terms of RMSE, MAE and
other measures on a dataset of equity market indices
of SPX and DJIA (1997-2011) and two exchange

rates CADUSD and USDGBP (1998-2011). The
ARFIMA has been reported in [30] and [32] to give
a similar performance as HAR, however, its estima-
tion procedure is more complex.

2.3 Motivation for Applying GP to RV
Modelling

RV transfers intraday return information to an ob-
servable volatility, and therefore allows volatility to
be modeled directly. While traditional methods of
RV modeling rely solely on lagged values of RV
(see Section 2.2), it has been documented that trad-
ing volume, number of transactions, price range (in-
cluding the range of open and close, high and low),
bid-ask spread and implied volatility have predica-
tive information / explanatory power for volatility.

It has been noted in [33] that different market
information is likely to capture distinct subtle as-
pects of the volatility process, the relative promi-
nence of which may vary over time. Also different
market information may suffer to greater or lesser
extents from market microstructure biases. A study
by [33] indicates that using a combination of the
outputs from a series of GARCH models, with dif-
ferent volatility predictors, could reduce the fore-
cast errors in a range of examined stocks.

In prior works, most studies [34, 35, 36, 37,
38, 39, 33, 40] used market information to explain
/ forecast conditional volatility in a GARCH type
framework. The market information was added in
the conditional variance equation as an explanatory
factor but the underlying model was linear. The
nonlinear Granger causality test conducted in [41]
shows there is extensive evidence of bidirectional
feedback between volume and volatility which such
approaches cannot capture.

In summary, while we have some knowledge
of the likely set of explanatory variables (based on
market conditions) from prior literature, we still
lack a clear theoretical framework as to which of
these variables are most important and how they
should link together to form a quality model for
forecasting of RV. This setting of a theory-weak
environment suggests a useful role for powerful
model induction methodologies such as GP [6, 8].

In this study, GP is used to select from a set of
plausible explanatory variables as identified in the
finance literature, and then link them to RV by si-
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multaneously evolving a suitable functional form.
The functional form returned from training is then
used to forecast a one-day-ahead RV. The model
is re-trained each day using most recent informa-
tion as no assumption is made in the modeling pro-
cess that the relative importance of each explana-
tory variable remains unchanged over time. The
performance of the GP models is compared with
a HAR model which only uses RV lagged infor-
mation as inputs, a GARCH model, which models
RV and its volatility together and a linear regres-
sion model, which uses the same explanatory fac-
tors that are used to train the GP model. It should
be noted that given the importance of volatility fore-
casts across a range of investment decisions, even
small improvements in forecast accuracy can have
significant practical implications.

3 Data and Methodology

3.1 Background

The dataset used in this paper consists of the com-
plete records for all quotes and trades of European-
style FTSE 100 index option contracts and FTSE
100 index futures contracts in 2004 from Euronext-
Liffe. The London International Financial Futures
and Options Exchange (Liffe) was established in
1982 and was taken over by Euronext in January
2002 to form a market called Euronext-Liffe. Since
2000, all trading in financial contracts on Liffe takes
place on an electronic limit order book system,
called the Liffe Connect platform.

The datasets used in this study are large, ‘ultra
high frequency data’ [10], consisting of 75,755,106
records in the case of the index option dataset
(41,794,081 records relating to call options and
33,961,025 records relating to put options). The in-
dex futures dataset consists of 26,271,084 observa-
tions. All of this data is time stamped.

The futures traded price data was used for RV
estimation and both the trade and quote information
was used to calculate intraday metrics including
trading volume, bid-ask information, price range
and the number of transactions. FTSE 100 index
options data is used for the implied volatility cal-
culation. Interest rate information, specifically, LI-
BOR rates (overnight, one-week and six-month) for
2004, were collected from Datastream.

The estimated RV is illustrated in Figure 1 (re-
fer to Section 3.1.1 for estimation details for this
data). The first six months of the data is used for ini-
tial in-sample training with the out-of-sample test-
ing taking place during the final six months (129
trading days) of the year. Each day’s forecast of
RV is determined using all data available up to and
including the previous day. For the first day’s out-
of-sample forecast (commencing on the first day of
July), data from January 9th to June 30th is used.
For the last day’s forecast (the last day of Decem-
ber), data from January 9th to December 30th is
used. The first five trading days in January are ex-
cluded as lagged information is required in the mod-
eling process.

Figure 1: Annualised Daily Realised Volatility

3.1.1 Realised Volatility Estimation

FTSE 100 index futures traded from 8:00 am to
5:30 pm in 2004 and therefore there are 114 five-
minute intraday returns each day in our dataset,
which are calculated from the latest prices before
each five-minute mark in Equation 3, where ln(pt, j)
is the log price for the j− th five-minute interval on
day t and rt, j is the j− th intraday return on day t
with j = 1,2 . . . ,114.

rt, j = ln(pt, j)− ln(pt, j−1) (3)

Let rt, j, 0≤j≤n, represent a set of n+1 intraday re-
turns for day t, so that j = 0 represents the closed-
market period from the close on day t − 1 until the
open on day t, j = 1 represents the first five-minute
on day t,. . . concluding with j = n representing the
final five-minute period on day t.

The realised volatility is used to measure the in-
traday return volatility. The realised variance for
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performance of the GP models is compared with
a HAR model which only uses RV lagged infor-
mation as inputs, a GARCH model, which models
RV and its volatility together and a linear regres-
sion model, which uses the same explanatory fac-
tors that are used to train the GP model. It should
be noted that given the importance of volatility fore-
casts across a range of investment decisions, even
small improvements in forecast accuracy can have
significant practical implications.

3 Data and Methodology

3.1 Background

The dataset used in this paper consists of the com-
plete records for all quotes and trades of European-
style FTSE 100 index option contracts and FTSE
100 index futures contracts in 2004 from Euronext-
Liffe. The London International Financial Futures
and Options Exchange (Liffe) was established in
1982 and was taken over by Euronext in January
2002 to form a market called Euronext-Liffe. Since
2000, all trading in financial contracts on Liffe takes
place on an electronic limit order book system,
called the Liffe Connect platform.

The datasets used in this study are large, ‘ultra
high frequency data’ [10], consisting of 75,755,106
records in the case of the index option dataset
(41,794,081 records relating to call options and
33,961,025 records relating to put options). The in-
dex futures dataset consists of 26,271,084 observa-
tions. All of this data is time stamped.

The futures traded price data was used for RV
estimation and both the trade and quote information
was used to calculate intraday metrics including
trading volume, bid-ask information, price range
and the number of transactions. FTSE 100 index
options data is used for the implied volatility cal-
culation. Interest rate information, specifically, LI-
BOR rates (overnight, one-week and six-month) for
2004, were collected from Datastream.

The estimated RV is illustrated in Figure 1 (re-
fer to Section 3.1.1 for estimation details for this
data). The first six months of the data is used for ini-
tial in-sample training with the out-of-sample test-
ing taking place during the final six months (129
trading days) of the year. Each day’s forecast of
RV is determined using all data available up to and
including the previous day. For the first day’s out-
of-sample forecast (commencing on the first day of
July), data from January 9th to June 30th is used.
For the last day’s forecast (the last day of Decem-
ber), data from January 9th to December 30th is
used. The first five trading days in January are ex-
cluded as lagged information is required in the mod-
eling process.

Figure 1: Annualised Daily Realised Volatility

3.1.1 Realised Volatility Estimation
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5:30 pm in 2004 and therefore there are 114 five-
minute intraday returns each day in our dataset,
which are calculated from the latest prices before
each five-minute mark in Equation 3, where ln(pt, j)
is the log price for the j− th five-minute interval on
day t and rt, j is the j− th intraday return on day t
with j = 1,2 . . . ,114.
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Let rt, j, 0≤j≤n, represent a set of n+1 intraday re-
turns for day t, so that j = 0 represents the closed-
market period from the close on day t − 1 until the
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on day t,. . . concluding with j = n representing the
final five-minute period on day t.

The realised volatility is used to measure the in-
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trading day t, from the close on day t − 1 to the
close on day t, is estimated by weighting the intra-
day squared returns as in Equation 4.

σ̂2
t =

n

∑
j=0

ω jr2
t, j (4)

To ensure conditionally unbiased estimates
when intraday returns are uncorrelated, so that
E[σ̂2

t |σ2
t ] = σ2

t , it is necessary to apply the con-
straint ∑n

j=0 λ jω j = 1 [25]. The λ j is the proportion
of a trading day’s total return variance that is at-
tributed to period j and is assumed to be the same
for all days t in the sample. To satisfy this con-
straint, ω is estimated as in Equation 5 and λ is
estimated as in Equation 6.

ω j =

{
1

(1−λ̂0)nk̂ j
,1 ≤ j ≤ n

0, j = 0
(5)

λ̂ j =
∑t r2

t, j

∑t ∑n
i=0 r2

t,i

k̂ j =
∑t r2

t, j

∑t ∑n
i=1 r2

t,i

(6)

The average annualised volatility from the esti-
mated RV (in Figure 1.) is 10.37 percent, which is
very close to the annualised daily return standard
deviation, 10.26 percent, therefore, any potential
bias caused by autocorrelation among intraday re-
turns is small. The distribution of ln(σ) is almost
symmetric and approximately Gaussian. Applying
the augmented Dickey-Fuller test indicated that the
realised volatility process does not contain a unit
root as expected given the high degree of mean re-
version in volatility. The low decline in the auto-
correlations of the realised volatility series suggests
a long memory process, another well documented
stylised volatility fact.

3.2 Predictive Market Information

The relation between volatility and other exoge-
nous market information has received increasing at-
tention from academic researchers and a selection
of the most commonly proposed explanatory vari-
ables are summarised in Table 1.

Based on this, the potential explanatory vari-
ables related to market conditions used in this study
include price range, bid-ask spread, trading vol-
ume, number of transactions, corresponding im-

plied volatility and interest rates. The lagged infor-
mation in Table 2 is also used in the RV modeling
process.

3.2.1 Implied Volatility

The implied volatility of at-the-money (ATM)
one-month options is calculated from a volatility
surface, which is fitted using all available trading in-
formation for FTSE 100 Index Options on the pre-
vious day. It is shown in Figure 2., and exhibits
similar patterns as RV including long memory and
persistence. However it should be noted that the im-
plied volatility measure is an annualised estimate of
the square root of the integrated variance over the
subsequent one-month horizon and is significantly
higher than the realised volatility estimates which
is a single day measure of volatility even though
this realised volatility value is also annualised. The
difference between the implied volatility and the re-
alised volatility is often referred to as the volatility
risk premium. Thus the one-month ATM implied
volatility may contain important information on the
future path of the volatility so is a potentially use-
ful explanatory variable to include in the modeling
of realised volatility. Therefore lags of one to five
periods of the implied volatility are included as ex-
planatory variables in the modeling process.

3.2.2 Price Range

There are two daily information variables cre-
ated for the price range category including the ab-
solute difference of open price and close price and
the absolute difference of the days highest price and
the days lowest price. The squared daily return is
also used as an explanatory variable. It is a proxy
for the absolute price range from the close of adja-
cent days. The price range information is shown in
Figure 5 and Figure 6. The squared daily returns
are illustrated in Figure 7. These figures display the
typical volatility clustering patterns often observed
in financial time series with periods of market tur-
bulence inter-dispersed with periods of tranquillity.

3.2.3 Trading Volume

There are two variables created for trading vol-
ume using the available data, namely total trad-
ing volume per day and average five-minute trading
volume. The number of daily total transactions and
the average trading duration (waiting time between
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Table 1: Market/Economic Condition Variables Used in Volatility Forecasting

Volatility Forecasting Study Predictive Variables Considered

[43] Daily high-low range
[33] Realised range, realised power variation

Realised bipower variant and volume
[44] Trading volume and implied volatility
[45] 5 Categories (38 variables) tested
[50] [49] [48] [47] [20] [46] Implied volatility
[41] Volume

This table gives market/economic information variables used in volatility forecasting in different

studies besides the lagged volatility and return information.

Figure 2: Implied Volatility of ATM Option Expiry in One Month
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trades) are also used. These variables are illustrated
in Figures 8 to 11. It is clear that the spikes in
trading volume tend to coincide with higher volatil-
ity periods as shown in the daily price range and
squared return figures, although the trading vol-
ume/transaction figures show that large jumps de-
cay away more slowly than the daily price range and
squared return values. Furthermore when volatility
is high the average trading duration is low as the
number of trades tend to increase in these higher
volatility periods.

3.2.4 Bid-Ask Spread

For bid-ask spread metrics, two variables are
created using the available data, namely the daily
average bid-ask spread, and the maximum bid-ask
spread. These are illustrated in Figure 12. and Fig-
ure 13. As expected the maximum bid-ask spread is
more volatile than the average bid-ask spread vary-
ing between 0.2 and 0.13 index points1 whereas the
average bid-ask spread is approximately 0.06 of an
index point. It should be noted that the average in-
dex value over this period was approximately 4,523
thus the average bid-ask spread on the futures con-
tracts in a proportionate sense is approximately 0.13
basis points (where one basis point is one hundredth
of one percent) emphasising the high liquidity and
low trading costs of FTSE 100 futures contracts.

3.2.5 Other Explanatory Variables

The squared RV is included as explanatory vari-
able as squared RV is related to the RV’s volatility,
that is, the volatility of volatility itself. Overnight
Libor, one week and six-month Libor are used as
the nominal interest rate proxies and are illustrated
in Figures 14-16.

Comparing all the figures, the implied volatil-
ity series (in Figure 2), the absolute difference of
the daily highest and lowest price (in Figure 6) and
daily total transaction number (in Figure 10) seem
to be highly associated with the annualised RV (in
Figure 1). However, these market variables are all
related one to another. In general, when the volatil-
ity is high, the price range tends to be high, the
transaction volume tends to be high, the trading du-
ration tends to be small, the bid-ask spread tends to

be small and the interest rate tends to be low. The
relationships invert when volatility is low.

3.3 GP Approach

In this study we employ GP for symbolic regres-
sion. The target variable is realised volatility and
the evaluation of an individual GP tree is therefore
an RV forecast. The available GP terminal set is
outlined in Table 2 and the available function set is
described in Table 3. Potential included variables
in the GP trees include, five lagged values of RV,
average daily trading (duration how often a trade
occurs in a day), and Implied Volatility (IV) (esti-
mated from the FTSE 100 index options data). The
factors in Table 2 are from the previous day’s infor-
mation if no explicit lag indication given.

Each GP individual has a fitness value which in-
dicates how well it performs when tested in-sample
on the training dataset. The fitness function in
this application is the mean squared error as de-
fined in Equation 7, where RVtarget is the target
RV value, RVind is the evaluation of the individual,
and NumberDays is the number of data points in the
training dataset.

Fitness =

√
∑(RVtarget −RVind)2

NumberDays
(7)

In the experiments, all results are reported av-
eraged across 10 runs and each GP run consists
of 50,000 individuals evolved over 50 generations.
The operation of the GP system is illustrated in Fig-
ure 3. In order to reduce the chance of over-fitting,
the maximum tree depth is set to six, based on ini-
tial experimentation. The training process is sum-
marized in Figure 4.

3.4 Benchmark Models

Below we briefly outline the three benchmark
models against which we compare the evolved GP
models. The models are drawn from extant studies
which forecast RV and include the Heterogeneous
Autoregressive model (HAR), a generalised au-
toregressive conditional heteroscedastic (GARCH)
model, and a stepwise regression (SR) model.

1Each futures contract is worth 10 times the index when the futures contract expires so a bid-ask spread of 1 point in the futures
contract is equivalent to a bid-ask spread of 0.1 point in the underlying index.
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Table 2: Potential Explanatory Factors Used in GP

RV Lagged Information (one to five days lag)
Absolute Difference of Day Open and Close Price
Absolute Difference of Day Highest and Lowest Price
Daily Total Trading Volume
Average Five-minute Trading Volume
Daily Number of Transactions
Average Daily Absolute Difference of Bid and Ask Price
Maximum Daily Absolute Difference of Bid and Ask Price
Implied Volatility(IV) of a 1 Month at the Money Option
Average Daily Trading Duration in Seconds
Squared Daily Return
Squared RV
IV Lagged Information (two to five days lag)
Daily Libor
Weekly Libor
Six-month Libor
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Figure 4: Overview of GP application for RV Forecasting

3.4.1 HAR model

In the Heterogeneous Autoregressive model (HAR)
[32], RV is modeled using lagged information, in-
cluding RV one day before, average RV in the last
week and average RV in the last month. This model
is provided in Equation 8, where c, α, β and γ are
constant coefficients.

RVt = c+αRVt−1 +βRVw + γRVm

RVw = 1
5 ∑5

i=1 RVt−i,

RVm = 1
21 ∑21

i=1 RVt−i

(8)

The model coefficients are re-trained for each fore-
casted day.

3.4.2 GARCH Model

In the generalised autoregressive conditional
heteroscedastic (GARCH) model, RV and its
volatility (υ) are modeled jointly in Eqs. 9, in which
Equation 9a is the mean equation and Equation 9c
is the conditional variance equation. zt in Equation
9b is a white noise process. c, αi, βi, k, ϕi and ηi are
constant coefficients, and εt−i are independent iden-
tically distributed random variables sampled from a
standard normal distribution.

RVt = c+
p

∑
i=1

αiRVt−i +
q

∑
i=1

βiεt−i +νt (9a)

νt = υt zt (9b)

υ2
t = k+

p

∑
i=1

ϕiυ2
t−i +

q

∑
i=1

ηiε2
t−i (9c)

3.5 SR Model

Stepwise regression (SR) is a systematic
method for adding and removing potential explana-
tory variables from a multilinear model based on
their statistical significance. The method begins
with an initial model and then compares the ex-
planatory power of incrementally larger and smaller
models. At each step, the p value of an F-statistic is
computed to test models with and without a poten-
tial factor. If a factor is not currently in the model,
the null hypothesis is that the factor would have a
zero coefficient if added to the model. If there is
sufficient evidence to reject the null hypothesis, the
factor is added to the model. Conversely, if a fac-
tor is currently in the model, the null hypothesis is
that the factor has a zero coefficient. If there is in-
sufficient evidence to reject the null hypothesis, the
factor is removed from the model.

In this stepwise regression model, all market in-
formation variables in Table 2 are considered as po-
tential explanatory variables. The stepwise regres-
sion model is fitted for each day’s RV forecast based
on the in-sample training dataset, which is from the
starting day until one day before the day to be fore-
casted and this is the same as GP model’s training
dataset as explained in Section 3.3. As shown in
Equation 10 the factors in each day’s forecasting
model may vary in the stepwise selected linear re-
gression model. By default there is always a con-
stant intercept c.
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Table 3: Function Set Available to GP

Addition
Subtraction
Multiplication
Division
Cumulative Distribution Function of Normal Distribution
Exponential Function
Nature Logarithm Function
Square Root
Cube Root
Sine Function
Cosine Function

RVt = c+α1Var1 +α2Var2 · · ·+αiVari (10)

4 Results

The out-of-sample results from our experiments are
reported in this Section. Initially, we report the fore-
cast errors for each modeling methodology, then we
present a statistical analysis of these results. Fi-
nally, we report the results from a series of infor-
mation encompassing tests.

4.1 Forecast Errors

The forecast errors are presented in Table 4. In
this table, three measures of forecast error (MAE,
MAPE and RMSE) are presented for GP and the
benchmark models. The final column in the table
presents the R2 from the linear regression which re-
gresses the actual RV against the predicted values
from each method.

The results indicate that using the average of the
GP models’ predictions produces a smaller MAE,
MAPE and RMSE and also a notably higher corre-
lation in terms of R2 than is the case for the three
benchmark models.

Comparing the three benchmark models
amongst themselves, the SR model performs
slightly better than the HAR model and the GARCH
model in terms of MAE and MAPE error metrics.
Using RMSE as the error metric, we note that
the HAR model performs slightly better than the
GARCH model and SR models. Considering R2,
HAR produces an R2 of 30.4% as against 25.4% for

the SR model, despite the SR model using the same
market condition variables as per the GP approach
whereas the HAR model only uses lagged volatility
information as inputs. The GARCH model pro-
duces an R2 of 29.71%, close to that of the HAR
model.

4.2 Statistical Analysis

A series of statistical tests were undertaken to deter-
mine the significance of the results including three
Diebold-Mariano tests introduced by [4] to test the
equality of forecast accuracy between two mod-
els. The tests relate prediction error to some very
general loss function and analyse the loss differen-
tial derived from errors produced by two compet-
ing models. The three tests include an asymptotic
test that corrects for series correlation and two ex-
act finite sample tests based on the sign test and the
Wilcoxon signed-rank test. The last two sign-based
tests in, particular, works well for small samples.

In this application, the differential loss is de-
fined as the difference of the squared forecast er-
rors from two competing models. The differential
loss series (di) are calculated in Equation 11, where
Predicteda

i is the predicted value by model a and
Predictedb

i is the one from model b for the ith RV
observation (i = 1, · · · ,T ). Under the null hypoth-
esis, the two competing models give equally accu-
rate results. The alternative hypothesis is that two
prediction models do not give equally accurate re-
sults. Three test statistics are shown in [4] to follow
a standard normal distribution. The null hypothesis
will be rejected at the 5 percent significant level if
|S|> 1.96.
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Table 4: Out-of-sample Forecast Error Measure

Model MAE MAPE RMSE R2

HAR 0.014306 0.158370 0.017351 30.42%
GARCH 0.014411 0.160022 0.017442 29.71%

SR 0.014189 0.154038 0.017488 25.39%
GP-avg 0.013060 0.142854 0.016081 39.32%

Relative Change (GP vs HAR) -8.71% -9.80% -7.32% 29.26%
Relative Change (GP vs GARCH) -9.37% -10.73% -7.80% 32.35%

Relative Change (GP vs SR) -7.96% -7.26% -8.05% 54.86%

di = (RVi −Predicteda
i )

2 − (RVi −Predictedb
i )

2

(11)

– The Asymptotic Test: According to the Central
Limit Theorem, when the sample size is large,
the sample mean of the loss differential approx-
imately follows a normal distribution with con-
stant mean and variance. d is the sample mean
and �avard is the estimate of the asymptotic long-
run variance of

√
T d̄. In this application the

forecast is only one step ahead, therefore no cor-
relation adjustment is needed and �avard is cal-
culated as the variance of loss differential series.
The statistic test is as per Equation 12.

S1 =
d√
�avard

T

∼A N(0,1) (12)

– The Sign Test: When the sample size is small,
a finite sample test such as the sign test can be
conducted. The sign test statistic is constructed
in Equation 13, where I(di) is one for di > 0 and
otherwise zero.

S2 =
∑T

i=1[I(di)]−0.5T√
0.25T

∼A N(0,1) (13)

– Wilcoxon’s Signed Test: The test statistic is as
per Equation 14, where rank(|di|) is the rank of
the absolute values of loss differential series.

S3 =
∑T

i=1[I(di)∗ rank(|di|)]−0.5T√
0.25T

∼A N(0,1)

(14)

Diebold-Mariano tests undertaken on a pair-
wise basis for the three competing models on the
full out-of-sample time period are in Table 4. The

resulting statistics are provided in Table 5. The null
hypothesis, that two models give equal results in
terms of forecasting accuracy, will be rejected at a
5 percent level if the relevant reported test statistic
|X |> 1.96.

4.2.1 Summary of Statistical Results

The results from all three statistical tests give
consistent results, that the prediction from GP is
significantly different, from that produced by the
HAR, GARCH and SR model, and as already seen
in Table 4, the GP forecasts produced lowest er-
ror measures (and highest R2) among the compet-
ing models. The null hypothesis of no difference
in the predictive accuracy between the methods, is
rejected by three Diebold-Mariano tests at a 5 per-
cent level for GP model against the HAR, GARCH
and SR model. All three statistical tests also con-
sistently confirm that there is no statistical differ-
ence in the predictions from three benchmark mod-
els although one model is better than the other in
the tested error measures.

4.3 Information Encompassing Tests

These tests are used to determine whether one of
a pair of forecasts contains all the useful informa-
tion for a forecast, or conversely, does one forecast
contain additional information not captured by the
other. In this case, use of a combination of the fore-
casts can produce a better forecast than either alone.

The forecast information encompassing tests
are performed using regression analysis on the full
out-of-sample time period and the results are dis-
played in Table 6.

RV = α+βPredicted (15)
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Table 5: Diebold-Mariano Tests

HAR GARCH SR GP-avg
X1 HAR -0.4731 -0.3303 3.3858
X2 -0.0880 0.7924 2.5533
X3 -0.5559 0.2809 3.4519
X1 GARCH -0.4731 -0.1054 3.4055
X2 -0.0880 0.7924 3.6098
X3 -0.5559 0.8545 3.6776
X1 SR -0.3303 -0.1054 4.1235
X2 0.7924 0.7924 2.7294
X3 0.2809 0.8545 3.3744
X1 GP-avg 3.3858 3.4055 4.1235
X2 2.5533 3.6098 2.7294
X3 3.4519 3.6776 3.3744

This table gives D-M tests including the asymptotic test (X1), sign test (X2) and Wilcoxon’s signed

test (X3) on the full out-of-sample period. The null hypothesis that two models give equal accuracy

results will be rejected at 5 percent significant level if |X |> 1.96.

Initially, a single factor analysis is performed
for each model, where RV is the dependent variable
and the prediction from each model is the explana-
tory variable as in Equation 15. The results from
this are reported in Table 6. In evaluating these re-
sults it is important to distinguish between bias and
predictive accuracy. In this single factor analysis,
the prediction is unbiased only if α = 0 and β = 1.
The predictive power is indicated by R2. A higher
R2 means higher predictive power. Ideally, we seek
a forecast with low residual error and high R2 [5].
While it might appear that bias is always undesir-
able, a biased forecast can still have predictive util-
ity and conversely an unbiased forecast is of little
use if the forecast errors produced by it are large.

The coefficients fitted in the single factor re-
gression analysis in Table 6 shows that forecast re-
sults from the benchmark models (HAR, GARCH
and SR) are closer to an unbiased prediction than
those produced by GP. The intercept α are very
close to zero and the coefficient for the model pre-
diction, β are closer to one in the HAR model. In
the case of GP, α is significant as it is not zero at the
5 percent level and the β value of 1.2813 is signif-
icantly higher than one. However, indicated by R2

the predictive power from GP is much higher than
that of the other models and hence it has significant
utility despite its bias.

The second group of Information Encompass-
ing Tests adds an extra prediction result from an-
other model to the right-hand side of Equation 15
as a second regressor. An increased adjusted R2 in-
dicates that the first model can not subsume the sec-
ond model and therefore that the second model pro-
vides extra predictive power. In other words, we are
testing whether adding the prediction result from a
second model as an extra explanatory factor can fur-
ther improve the prediction result.

The adjusted R2 from the regression of RV
against the prediction from GP is found to be
38.84%, higher than the values for HAR, GARCH
and SR. The adjusted R2 values for the regression
when both GP and one of the benchmark models,
HAR / GARCH / SR forecasting results are used as
regressors for RV increase to 40.20%, 39.24%, and
44.38% respectively. This indicates that the predic-
tion from GP does not fully subsume the predic-
tion from the benchmark models and suggests that
a joint forecast from a hybrid of GP and the bench-
mark HAR, GARCH and SR models could poten-
tially produce a higher predictive power.

From the empirical results, GP produces better
forecasts than the benchmark models. There are
two plausible reasons for this. First, GP takes ac-
count of market conditions (as inputs) in forecasting
RV. Second, GP permits the use of non-linear func-
tional forms between the RV and market conditions.
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Table 6: Out-of-sample Forecast Information Encompassing Test

HAR GARCH SR GP-avg
α -0.0048 -0.0132 0.0028 -0.0302

p-Value 0.7302 0.3863 0.8471 0.0346
β 1.0043 1.0876 0.9545 1.2813

p-Value 0.0000 0.0000 0.0000 0.0000
R2 30.42% 29.71% 25.39% 39.32%

Adj-R2 29.87% 29.16% 24.80% 38.84%
Adj-R2 HAR GARCH SR GP-avg
HAR 29.35% 29.33% 40.20%

GARCH 29.35% 28.69% 39.24%
SR 29.33% 28.69% 44.38%

GP-avg 40.20% 39.24% 44.38%

The above two tables provides forecast Information Encompassing Test results on the out-of-sample

time period. The first table gives a regression fitting result when regressing the RV on the predicted

value from each of five models as shown in Equation 15. The second table gives the adjusted R2

when extra predictive results from another model is added in to the right-hand side of the Equation

15 as a second regressor. An increased adjusted R2 indicates that the first model can not subsume

the second model and the second model provides extra predictive power.

It is found from analysis of the form of GP gener-
ated solutions that some variables including lagged
values of RV, and average trading duration occurred
frequently. The relationship between these factors
and RV seem robust over time.

5 Conclusions

Forecasting daily returns volatility is crucial in fi-
nance. Traditionally, volatility is modeled using a
time-series of lagged information only, an approach
which is in essence atheoretical. Although the re-
lationship of market conditions and volatility has
been studied for decades, we still lack a clear the-
oretical framework to allow us to forecast volatil-
ity, despite having many plausible explanatory vari-
ables. This setting of a theory-weak environment
suggests a useful role for powerful model induc-
tion methodologies such as Genetic Programming.
This study forecasts one-day ahead realised volatil-
ity (RV) using a GP methodology that incorporates
information on market conditions including trad-
ing volume, number of transactions, bid-ask spread,
average trade duration and implied volatility. The
forecasting result from GP is significantly better
than that produced by the heterogeneous autore-
gressive model (HAR), the generalized autoregres-

sive conditional heteroscedasticity (GARCH) and a
linear stepwise regression (SR) model. Further, the
regression-based Information Encompassing Tests
show that the forecasts from benchmark models
contain information not captured by GP, which indi-
cates that a combination forecast from GP and con-
ventional models could potentially improve forecast
performance further. This is left for future work.
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Figure 5: Absolute Difference of Open to Close

Figure 6: Absolute Difference of High to Low

Figure 7: Daily Squared Return

Figure 8: Total of Trading Volume

Figure 9: Average 5-minute Trading Volume

Figure 10: Transaction Number
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Figure 5: Absolute Difference of Open to Close

Figure 6: Absolute Difference of High to Low

Figure 7: Daily Squared Return

Figure 8: Total of Trading Volume

Figure 9: Average 5-minute Trading Volume

Figure 10: Transaction Number
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Figure 11: Average Trading Duration

Figure 12: Average Bid-Ask Spread

Figure 13: Max Bid-Ask Spread

Figure 14: Daily Overnight LIBOR

Figure 15: Daily 1-week LIBOR

Figure 16: Daily Six-month LIBOR
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