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Abstract

We have two motivations. Firstly, semantic gap is a tough problem puzzling almost all
sub-fields of Artificial Intelligence. We think semantic gap is the conflict between the ab-
stractness of high-level symbolic definition and the details, diversities of low-level stim-
ulus. Secondly, in object recognition, a pre-defined prototype of object is crucial and
indispensable for bi-directional perception processing. On the one hand this prototype
was learned from perceptional experience, and on the other hand it should be able to
guide future downward processing. Human can do this very well, so physiological mech-
anism is simulated here. We utilize a mechanism of classical and non-classical receptive
field (nCRF) to design a hierarchical model and form a multi-layer prototype of an object.
This also is a realistic definition of concept, and a representation of denoting semantic.
We regard this model as the most fundamental infrastructure that can ground semantics.
Here a AND-OR tree is constructed to record prototypes of a concept, in which either raw
data at low-level or symbol at high-level is feasible, and explicit production rules are also
available. For the sake of pixel processing, knowledge should be represented in a data
form; for the sake of scene reasoning, knowledge should be represented in a symbolic
form. The physiological mechanism happens to be the bridge that can join them together
seamlessly. This provides a possibility for finding a solution to semantic gap problem,
and prevents discontinuity in low-order structures.
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1 Introduction

1.1 How to ground visual concept seman-
tic?

Figure 1. The problem solving task here is to
match each T-shirt with its appropriate trousers

Figure 1 shows an example of problem solving car-
ried out by kindergarten children. The children
were asked, according to the given picture, to match
a T-shirt with trousers. To accomplish this task, the
children needed to have learned some basic con-
cepts or knowledge about clothes. If this problem
is presented to a computer in the form of a picture,
to obtain an answer requires image understanding
and knowledge-based reasoning. Realizing this in
an artificial intelligence system, however, is quite
difficult. It is not difficult for us to define some con-
cepts and rules in a knowledge base, such as in a
logical expression we define:
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(∃ x)(∃ y) Is Tshirt(x) ∧ Is trousers(y)

∧ Same size(x, y) ∧ Same color(x, y)

∧ Same pattern(x, y) → Match(x,y).

But how can these concepts and rules correlate with
their occurrences in a picture? If this connection
can’t be built, then the computer can’t know what
is x and where is x. So-called high level knowl-
edge defined like this does not settle the problem
of operability, i.e. how to apply these concepts on
a picture is still unclear. Consequently, these sym-
bolic rules will not be triggered successfully. Al-
most all applications of computer vision or image
understanding concerned with knowledge are seri-
ously suffering from semantic gap problem. In ar-
tificial intelligence there is a very famous and con-
ventional hypothesis, which is the discontinuity in
low-order structure. In the past history of AI, this
hypothesis was a kind of compromise between high
computational demand and simple computer. We
think this is the reason of leading semantic gap. The
reason man does not suffer from semantic problem
is because human brain has rich representation lay-
ers and rich process layers. We need to find a so-
lution that can connect abstract symbolic concept
with pixel-level manipulations, on a condition of
this solution submitting to formal paradigm.

In many applications on image retrieval, in ad-
vance, all training pictures were manually labeled
what there are in a picture [1, 2]. And these sym-
bols are regarded as the semantic of picture. This
practice is very popular. For example, a word “car”
was tagged to a picture, but this label did not define
any detail about this concept. So this method is too
simple and too coarse to solve semantic problem.
Because (a) the words and syntax used for labeling
is highly task-depended, and many semantic details
are neglected; (b) these labels can neither be used as
standards to include any other positive case, nor ex-
clude any other negative case; (c) using these labels
cannot differentiate an object from its environment.
In fact, a so-called semantic label is only a brief in-
dex. It is far away from semantic definition.

This solution should have some kind of connec-
tionist infrastructure.

1.2 Two aspects of this solution

Now there are two common senses in computer vi-
sion, saying that (a) an animal’s vision system is
much cleverer than a machine one, and (b) object
recognition needs a help from higher level knowl-
edge. To (a), the advantage of a biological vision
system’s that it has a systematic architecture with
rich knowledge and rich levels of representing and
processing. And some similar strategy has been ap-
plied to represent image semantic [3]. To (b), what
is knowledge needs to be clarified on the base of a
biological representation paradigm. These two as-
pects outline the main parts of our solution.

1.3 How to fulfill a more detailed definition
of an object?

Many concept-representation concerned studies
have been done. Some of them were facing im-
age retrieval, thus the bag-of-words algorithm were
applied[4; 5]. Another more complicated method
is a structural decomposition model. In this model
the shape of an object is described in terms of rel-
atively a few generic components which are joined
by spatial relationships [6, 7, 8, 9, 10, 11, 12, 13].
Region has been proved to be a kind of effective
element to describe image semantic [14]. For ex-
ample, due to region can provide much more ex-
tensive information than pixel, region-based repre-
sentation can facilitate some advanced processing
such as segmentation [15, 16] and tampering detec-
tion [17]. Similar to region, patch-based descriptors
were also popular in semantic definition [18, 19].
And patch can also represent rich information in an
expanded area, so using it can also implement some
semantic-concerned task, such as image inpainting
[20] and image synthesis [21]. For visual concept
application, the representation form [22], topologi-
cal relations among regions [23], template of an ob-
ject [24] is very important. All above works were a
good start on concept acquisition, explicit represen-
tation and top-down effect of visual concept. We
also want to contribute on these themes.

We think a prototype representation of an object
is one of a crucial types of knowledge for object
recognition, especially when neither object nor its
background is highly specific or severely restricted.
That famous example, recognizing a spotted dog
from an environment of swing tree shadow, is a typ-
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ical instance of needing prototype. Theory of pro-
totype can be found in the chapters of perception
and concept acquisition of Cognitive Psychology
[8, 25]. A physiological neuroscience study [26]
shows that semantic is processed in the left inferior
prefrontal cortex. This hints that a procedure of in-
tegration is very necessary, because only higher cor-
tex can collect and process information from exten-
sive area. Here the form of prototype or the materi-
alization of this kind of knowledge is important for
the computer vision (CV), because on the one hand
it was the result of perceptual experience, and on the
other hand it should be able to guide the future prac-
tice of downward processing. We can conclude that
the prototype of an object is the final destination of
learning and also is the source of bi-directional vi-
sual processing. So, the formalization schema of
prototype representation is the key point. But how
to realize this prototype definition is always worth
studying. For the sake of defining the prototype of a
type of object, two things are necessary. The first is
representing the parts of an object, and the second
is describing their topographical relationships. This
schema should be compatible with upward raw-data
input as well as downward pixel-organizing instruc-
tion. This has always been the basic goal of CV, but
its priority has always been delayed.

The psychological experiments on mental im-
age proof that the prototype of an object resembles
the original, and experiments on memory proof that
the prototype is somewhat abstract and declarable.
From a perspective of AI, these are two conflict re-
quirements: the former is pixel-suited and the lat-
ter is symbol-suited. Who can satisfy them simul-
taneously? The answer is neural vision system, a
highly optimal system after a long time of natural
selection. The biological vision is made up of many
processing loops. The middle layers, from ganglion
cell (GC) to V1, are the intersection of bottom-up
data and top-down concept. We think these mid-
dle layers are very important for producing seman-
tic and grounding semantic, or here are the key lo-
cations of semantic emerging. This paper focuses
on a kind of non-classical receptive field (nCRF)
mechanism, and uses it to form a prototype repre-
sentation. Perhaps that is the basic tool for brain to
bridge low-level stimulus and high-level semantics.

Here we use Figure 2 to highlight our funda-
mental motivation and technical solution.

The second section of this paper is about neural
mechanism of nCRF. The third section is a bio-
inspired model designing as an infrastructure of
forming representation. The forth section is about a
nCRF-based Delaunary triangulation strategy to ob-
tain many small normal triangles. The fifth section
is about how to combine these candidates to some
expanded polygons and similarity comparison be-
tween two polygons. The sixth section describes an
explicit concept representation through a tree struc-
ture and also discusses how product rules can re-
flect direct connections from high-level knowledge
to low-level pixel manipulations. The last two sec-
tions are about how this bio-inspired infrastructure
might ground semantic.

2 Non-classical receptive field
mechanism

2.1 Bio-inspired design is a good option

Why brain can protect against the problem of se-
mantic gap should be concerned with its physiolog-
ical structure. The biological system is worth sim-
ulating because it had been evolved for hundreds
of thousands of years. We believe that its structure
and function had been tested thoroughly and should
have been highly optimized. So a bio-inspired prin-
ciple should be much more rational for algorithm
design. Now let’s see a fundamental mechanism.

2.2 The neural mechanism of nCRF

Ganglion cells (GC) are the most important cells
in retina. They locate at the rear path of informa-
tion transmitting in retina. Since 1960s, many re-
searchers found there was a large region outside the
classical receptive field (CRF). In this region, light
spot stimuli cannot directly cause a reaction of the
cells, while they can modulate the reaction caused
by the CRF. And this modulation can be facili-
tory, inhibitive or disinhibitive [27, 28], and this ex-
panded receptive field is called as non-classical re-
ceptive field (nCRF). Neurophysiologic researches
[29, 30] show a very complex formation of nCRF
constructed by receptor cells (RC), horizontal cells
(HC), bipolar cells (BC) and amacrine cells (AC),
and also by outer and inner plexiform layer. Activ-
ities in the region can inhibit the antagonistic effect
and compensate the loss of low spatial frequency
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ample, due to region can provide much more ex-
tensive information than pixel, region-based repre-
sentation can facilitate some advanced processing
such as segmentation [15, 16] and tampering detec-
tion [17]. Similar to region, patch-based descriptors
were also popular in semantic definition [18, 19].
And patch can also represent rich information in an
expanded area, so using it can also implement some
semantic-concerned task, such as image inpainting
[20] and image synthesis [21]. For visual concept
application, the representation form [22], topologi-
cal relations among regions [23], template of an ob-
ject [24] is very important. All above works were a
good start on concept acquisition, explicit represen-
tation and top-down effect of visual concept. We
also want to contribute on these themes.

We think a prototype representation of an object
is one of a crucial types of knowledge for object
recognition, especially when neither object nor its
background is highly specific or severely restricted.
That famous example, recognizing a spotted dog
from an environment of swing tree shadow, is a typ-
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Figure 2. A whole logic framework of implementing formal representation of prototype

caused by the CRF center-periphery antagonism to
some extent. nCRF plays an important role in rep-
resenting contour [31], shape [32], curvature [33,
34]. nCRF can compensate loss of low spatial fre-
quency to some extent by adding the output from
extra surround area of CRF. Through its nCRF, a
GC expands its information-receiving scope several
times as CRF; undoubtedly this neural basis makes
GC able to integrate image features in a large scale.
Moreover, we think it plays a significant role in sep-
arating figures out of background.

2.3 nCRF can self-adapt its size so as to op-
timize its representational role

From the point of view of an image processing and
understanding, GC and its nCRF mechanism are of
great significance in a feature detection, and every
GC plays a role of feature descriptor. What is sur-
prising is that each GC can adjust its size of nCRF
dynamically in order to make the characteristics oc-
curring in its nCRF monotonous. So, a GC can re-
duce its size of nCRF to represent fine detail oc-
curring in a local area, and also can expand its size
to represent a big block with unitary feature. The
GC and its nCRF are self-adaptable, localized, with
regular shape, autonomous, and parallel. These at-
tributes make it to be an ideal candidate of general
descriptor. In traditional image processing, we note
that GC was ussually used to extract boundary, fil-
ter noise or enhance image. But these are absolutely
not the main functions of it, but somewhat wasting
its talents.

3 A representation schema basing
on nCRF mechanism

3.1 Size changeable nCRF can record
patch, which can be a sub- component
of an object

The research of the neurophysiology has shown,
that according to different brightness, color or ve-
locity of stimuli, the size of receptive field can be
changed dynamically. This self-adaptability satis-
fies following two cases. In a dark environment,
GCs will enlarge the size of receptive fields by
means of reducing the spatial resolution, and ac-
cept much light through spatial summation. While
distinguishing some fine details, the receptive fields
will turn smaller so as to improve the spatial reso-
lution. Each GC can implement this automatically
by a local neural circuit. Besides the CRF, there are
many rings. We call them sub-regions, and they are
made up of nCRF. The maximum size of nCRF is
about 3-6 times than the size of CRF. Figure 3(a) is
a model of nCRF with multiple sub-regions, and (b)
shows several initial RF being covered on an image,
and (c) shows they were resized through increasing
or decreasing sub-regions according to the stimuli
they confronting with.
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not the main functions of it, but somewhat wasting
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3.1 Size changeable nCRF can record
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The research of the neurophysiology has shown,
that according to different brightness, color or ve-
locity of stimuli, the size of receptive field can be
changed dynamically. This self-adaptability satis-
fies following two cases. In a dark environment,
GCs will enlarge the size of receptive fields by
means of reducing the spatial resolution, and ac-
cept much light through spatial summation. While
distinguishing some fine details, the receptive fields
will turn smaller so as to improve the spatial reso-
lution. Each GC can implement this automatically
by a local neural circuit. Besides the CRF, there are
many rings. We call them sub-regions, and they are
made up of nCRF. The maximum size of nCRF is
about 3-6 times than the size of CRF. Figure 3(a) is
a model of nCRF with multiple sub-regions, and (b)
shows several initial RF being covered on an image,
and (c) shows they were resized through increasing
or decreasing sub-regions according to the stimuli
they confronting with.
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Figure 3. A model of RF and how it changes its
size

Then, basing on the structure of neural circuit, we
can design a schema to represent image. An image
is actually the combination of many fine details and
some homogeneous blocks. If we have a matrix of
RFs and assign small size RF to record detail and
assign big size RF to record block, then we may
get an approximation of the original image (Fig-
ures 3(b) and (c)). This motivation is very impor-
tant, because it reveals the basic principle of GC’s
working. GC always makes its role of specialized
representation. For simulating this schema, we con-
struct a matrix of computational units and let them
change their nCRF sizes dynamically to fit the situ-
ation they confront. If a unit happens to cover a fine
detail, then it will shrink its RF so as to record the
detail more accurately. If it happens to cover a piece
of homogeneous texture, then it will expand its RF
to represent a unitary block. The fore-mentioned
multiple sub-regions are for the sake of size chang-
ing. If expanding is necessary, then one or more
sub-regions will be appended, and if shrinking is
necessary, then one or more sub-regions will be
deleted. This mechanism guarantees the feasibil-

ity of this self-adaptation. Now we can see that the
function of GC matrix is to earn a just enough rep-
resentation.

Figure 4. A multi-layer neural architecture and
how a GC adjusts its RF dynamically.

(a) A multiple layers architecture. For clearness
only several GCs and their RF are drawn. A RF

has three parts: positive center, negative surround,
and positive extra-surround. (b) This is a neural
circuit of RF adjusting dynamically, which is a

small functional unit of (a). Dynamic adjustment
of RF due to neuron can change its destination of
projecting output according to changing stimulus.

This can be realized by three relay neurons and
three switch neurons. A switch neuron imposes its

backward control on three relay neurons, and
selectively permits only one relay outputting its

signal upwards to GC. This makes a relay neuron
may have a chance to join one of three different

rings of a RF. In (c)-(d), with the different switch
turning on, the same neuron may exclusively

participate in forming one of rings of a RF. Then a
size-changing RF comes into being. (c) is a big
one, (d) is a middle one, and (e) is a small one.

This GC-based image representation is more com-
pact than pixel-based bitmap, because what a RF
can represent is usually bigger than a pixel, so it is
more efficient. Figure 4 is a hierarchical compu-
tational model of a GC and its inferior RF. At the
highest level, a GCs array will turn a pixel-bitmap
into a block-group. The dimension of block-group
will decrease greatly than that of pixel-bitmap. A
block-grained representation is more meaningful
than pixel-wise representation, and must ease the
emergence of semantic.

(a)

(b)

(c)
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An ideal self-adaptability of GC is it adjusting
its RF to a proper size coinciding with the scale of
main component of stimuli occurring in its RF. This
is done by a sequence of operations that append or
withdraw sub-regions to or from one of three parts
of RF. This causes that a GC can summary the at-
tributes of stimuli in different area. Figure 5 is an al-
gorithm to realize this. A more detailed implemen-
tation of this model can be seen in [35] and [36].

Figure 5. The Dynamic Adjustment of RF

4 4 Prototype emerging from inte-
gration

In image understanding, a visual concept is acti-
vated if and only if thousands of pixels are arranged
properly. So semantic is the result of integrating
pixels in terms of some statistical pattern of distri-
bution. The algorithm in previous section can facil-
itate the emergence of this kind of pattern, and one
or several stable patterns are right to be prototypes
that define a class of object.

4.1 RF mechanism archives a higher effi-
ciency of representation

Here we also use salient object as learning sample
[37]. The left of Figure 6 is an original picture, and
the right is the result of GC-array running on the
picture. The red circles denote the final sizes of RF
after dynamic adjustment. For that bird, its back
and wing possess same color or similar textures, so
we represent them only by a dozen of big size RFs
instead of many unorganized pixels. And its eye and
beak possess tiny details, so we represent them by
some small size RFs. So, a highly efficient repre-
sentation is achieved. A fact that can’t be ignored is
that circle has regular shape and well defined alge-
braic formula, so it is easy for parameterization, and
consequently it is easy to form a symbolic repre-

sentation. And a parameterized representation also
does not prevent original image from being rebuilt
accurately.

Figure 6. Size-changeable RFs bring an efficient
representation

4.2 Set of regular blocks: a compact repre-
sentation of object

Many existing algorithms in computer vision use
the pixel-grid as the underlying representation. The
pixel-grid, however, is not a natural representation
of visual scenes. A good representation schema
would be more natural, and presumably more effi-
cient, to work with perceptually meaningful entities
obtained from a low-level grouping process. Su-
perpixels [38] represent a restricted form of region
segmentation. Turbopixels [39] represent an image
with a lattice-like structure of compact regions by
dilating seeds so as to adapt to local image struc-
ture. The superpixel algorithm should partition an
image into regions that are approximately uniform
in size as: shape (compactness), minimizing region
under segmentation, provided that superpixel size
is comparable to the size of the smallest target re-
gion. Turbopixels achieve this by designing a ge-
ometric flow that dilates an initial set of uniformly
distributed seeds, where each seed corresponds to
one of superpixels. So, it can also be considered as a
compact image representation, each of them should
represent a simply connected set of pixels. Both
of them provided two representation methods in or-
der to achieve computational efficiency, represen-
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tation of this model can be seen in [35] and [36].
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pixels in terms of some statistical pattern of distri-
bution. The algorithm in previous section can facil-
itate the emergence of this kind of pattern, and one
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[37]. The left of Figure 6 is an original picture, and
the right is the result of GC-array running on the
picture. The red circles denote the final sizes of RF
after dynamic adjustment. For that bird, its back
and wing possess same color or similar textures, so
we represent them only by a dozen of big size RFs
instead of many unorganized pixels. And its eye and
beak possess tiny details, so we represent them by
some small size RFs. So, a highly efficient repre-
sentation is achieved. A fact that can’t be ignored is
that circle has regular shape and well defined alge-
braic formula, so it is easy for parameterization, and
consequently it is easy to form a symbolic repre-

sentation. And a parameterized representation also
does not prevent original image from being rebuilt
accurately.

Figure 6. Size-changeable RFs bring an efficient
representation

4.2 Set of regular blocks: a compact repre-
sentation of object

Many existing algorithms in computer vision use
the pixel-grid as the underlying representation. The
pixel-grid, however, is not a natural representation
of visual scenes. A good representation schema
would be more natural, and presumably more effi-
cient, to work with perceptually meaningful entities
obtained from a low-level grouping process. Su-
perpixels [38] represent a restricted form of region
segmentation. Turbopixels [39] represent an image
with a lattice-like structure of compact regions by
dilating seeds so as to adapt to local image struc-
ture. The superpixel algorithm should partition an
image into regions that are approximately uniform
in size as: shape (compactness), minimizing region
under segmentation, provided that superpixel size
is comparable to the size of the smallest target re-
gion. Turbopixels achieve this by designing a ge-
ometric flow that dilates an initial set of uniformly
distributed seeds, where each seed corresponds to
one of superpixels. So, it can also be considered as a
compact image representation, each of them should
represent a simply connected set of pixels. Both
of them provided two representation methods in or-
der to achieve computational efficiency, represen-
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tational efficiency, perceptual meaningfulness and
near-completeness [40]. Our algorithm based on
nCRF can also accomplish the same goals through
using Inscribed polygon and Delaunay Triangula-
tion from nCRF result. The mechanism to generate
them is illustrated in Figure 7.

Figure 7. A superpixel-like effect realized by
nCRF-based algorithm

In order to testify the performance between our al-
gorithm and superpixels, we run programs of super-
pixels, Inscribed Polygon and Delaunay Triangula-
tion schemas on two different image databases. One
is CityplaceBerkeley image database (481×321),
the other is Microsoft Research image database
(640×480). One of results is shown in Figure 8.
It can be seen that the effects in (c) and (d) are sim-
ilar to (a), which indicates that a complete cover-
age by Inscribed Polygons and Delaunay Triangu-
lations can be calculated from RFs. But there still
has a very important difference between algorithms
through RFs and superpixels. Superpixel has an ir-
regular shape, and still in a form of pixel-set instead
of a form of brief vectors. This makes it difficult to
be represented, recorded and operated algebraically.
Due to the irregularity of shape, either the bound-
aries or the vertexes of a superpixel are dot-matrix
data but not vectors. If the vectorization is required,
it must degrade its time and storage consuming fur-
ther. While the RF has a completely regular shape,
circle or triangular, which can be easily represented,
recorded and operated by a symbolic or algebraic
means.

4.3 Run-time comparison

In order to compare the efficiencies of our nCRF-
based Delaunary triangulation algorithm and Super-

pixel algorithm, we randomly selected 100 pictures
with size of 481×321 pixels from Berkley Image
Database. The test computer is with Intel Pentium
Dual CPU E2200, 2.20GHz, 2G RAM. Figure 9
shows that our speed of producing small patches is
much faster than Superpixel algorithm.

Figure 9. Speed comparison between nCRF-based
algorithm and SuperPixel algorithm

5 5 Representing the parts of an
object through polygons

5.1 Combining delaunay triangles into a
polygon

In Figure 8(d), Delaunay triangulations provide a
good start for further processing. So many small
triangles can be regarded as components of an ob-
ject. We can combine them into some polygons,
and use these polygons as modules to construct an
object. Because polygons are good at topograph-
ical and geometrical invariance, so using them to
represent object offers the most stability in defining
prototype.

During the learning period, we can provide
some typical samples, such as clean cows without
background disturbance, to computer, and ask it to
form a prototype for this concept. Once cow images
were uploaded to aforementioned nCRF-based neu-
ral computational system, we can obtain so many
small triangles which covered a sample completely.
Thus the first step of prototype-learning is to com-
bine them appropriately. What we hope is that those
combinations can reflect the structural characteris-
tics possessed by a type of objects. A direct solution
of combining triangles is to apply polygon, which

Every red circle denotes a nCRF and green dots denote inter-
sections of circles. Both Inscribed Polygon (the left) and De-
launay Triangulation (the right) are derived from intersection 
points on neighboring circles.
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Figure 8. The partition results on an Example from Berkeley Image Database. (a) is original picture. (b) is
superpixel result. (c) is RFs coverage on the original image and (d) is the result by Delaunay

Triangulations.

is flexible enough to integrate triangles, and poly-
gon’s representation in analytic geometry is simple
and compact.

In order to obtain a larger polygon from the re-
sult of nCRF algorithm, we design a clockwise spi-
ral coordinate to order those triangles in 2D space.
Then we can expand polygon by appending triangle
one-by-one. Figure 10 demonstrates this expanding
process and an algorithm of producing a polygon
through binding some neighboring triangles. Here
the principle of searching triangles is keeping the
search closest to the periphery of growing-up poly-
gon.

The nCRF-based mechanism provides a basic in-
frastructure to enable and facilitate patch-grained
manipulations on geometrical level greatly. Search-
ing algorithm perhaps is inefficient in pixel-grained
space, but it is feasible in block-grained space.

At the top of Figure 11, there are at lease hun-
dreds of small triangles, we want them to be allo-
cated to different enlarged polygons, and at same
time we hope these polygons happen to be the struc-
tural parts of an object. Tab. 1 is an algorithm to
draw boundaries of polygons on the Delaunay trian-
gulations. The down of Figure 11 is one of results
of this algorithm. And Figure 12 includes two out-
puts after executing polygon-production algorithm. Figure 11. A Delaunay triangulations of a flower

has many small triangles needing to be fitted by
some polygons
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Figure 8. The partition results on an Example from Berkeley Image Database. (a) is original picture. (b) is
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frastructure to enable and facilitate patch-grained
manipulations on geometrical level greatly. Search-
ing algorithm perhaps is inefficient in pixel-grained
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At the top of Figure 11, there are at lease hun-
dreds of small triangles, we want them to be allo-
cated to different enlarged polygons, and at same
time we hope these polygons happen to be the struc-
tural parts of an object. Tab. 1 is an algorithm to
draw boundaries of polygons on the Delaunay trian-
gulations. The down of Figure 11 is one of results
of this algorithm. And Figure 12 includes two out-
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has many small triangles needing to be fitted by
some polygons
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Figure 10. Speed comparison between nCRF-based algorithm and SuperPixel algorithm

Table 1. Algorithm for producing multiple
polygons on Delaunay triangulations

Input data: int Small Tri[id][x1][y1][x2][y2][x3][y3];
//All Delaunay triangles with their vertexes coordi-
nates.

Output data: List Polygon[id]; // A list dimension
recording all polygons and their children triangles.

Temp data: Boolean Neighboring[id][id]; // A matrix
of all neighborhoods between triangles.

1. If the array of Small Tri[id][x1][y1][x2][y2][x3][y3]
is EMPTY Then End;

2. Clustering all vertexes by K-means algorithm, store
all class center into center[K];

3. index=0;

4. For each center[k] do

Finding Small Tri[k] [x1][y1][x2][y2][x3][y3]
whose center of gravity is closest to center[k];

Setting Small Tri[k] [x1][y1][x2][y2][x3][y3] as the
seed of growing Polygon[index];

Calling “Algorithm of forming a polygon along
a clockwise spiral direction”; // Here Neighbor-
ing[id][id] are needed.

According to the order of triangles being expanded,
storing them into a list named Polygon[index];
index=index+1;

5. For each Polygon[i]

For each element in Polygon[i]

Marking Small Tri[element][x1][y1][x2][y2][x3][y3]
by BEEN-DELETED;

6. For each Small Tri[id][x1][y1][x2][y2][x3][y3]

If all three neighboring triangles of
Small Tri[id][x1][y1][x2][y2][x3][y3] were marked
by BEEN-DELETED Then Deleting all three ver-
texes of Small Tri[id][x1][y1][x2][y2][x3][y3];

7. Iterate since 1.

Once this algorithm ends, some enlarged poly-
gons come into being. The triangle is the simplest
shape with edges, and this causes that searching
from one triangle to its neighbors has only two pos-
sible choices. And while K is limited, K-means
clustering algorithm can guarantee the seeds will
not diverge far away from the local centers of topo-
logical components of an object. And what we fo-
cus on polygon, this further reduces the occasional
disturbance of object’s texture.

5.2 Matching between polygons

The core of inductive learning of prototype is to find
the common components from different instances
of a type of object. This is a hard work to do on
pixel-level, or on small triangle-level. But it can
be done easily on polygon-level. Once we divide
an object into several larger polygons, then we can
use famous shape context algorithm [41] to decide
which two polygons corresponds well. Figure 13
shows two polygon-groups produced by previous
algorithms, and they represent two cows respec-
tively. Between two contours, a dozen of corre-
sponding points can be established by a shape con-
text algorithm. Usually, deciding initial points to
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Figure 12. Some polygons have been produced on the base of many small triangles

match is a problem to shape context algorithm, be-
cause some points not belonging to contour might
been selected with high possibility. This will reduce
the accuracy of matching. But in a current situation,
all polygons are represented algebraically, because
they are defined by vertexes and all edges are vec-
tors. Therefore on these edges it is easy to choose
initial points. This algorithm is insensitive to posi-
tion, size and pose, so we can concentrate on shape
similarity.

Another strategy that helps us to establish cor-
respondences between polygons is minimum span-
ning tree algorithm. Firstly, all polygons were
named. Secondly, according to their neighboring
relationships, a connected graph was formed for
each set of polygons in an image. Thirdly, select-
ing a node as tree root and starting Prim minimum
spanning tree algorithm, after that we got a span-
ning tree growing up from a selected polygon. Fig-
ure 14 is the result of this process. We show there
a two cow pictures which were made up by many
named polygons. We selected three pairs of span-
ning trees taking root in A15-C15, A8-C7 and A23-
C20 respectively. It is obvious that every pairs are
very similar, because they really reflect the topolog-
ical structure of an object. Therefore, applying this
strategy we can greatly improve the matching accu-
racy between different cases.

After this step, we find out which polygons are
corresponding in different samples, and they per-

haps are the similar parts of a kind of object. Once
correspondence relationships among parts or com-
ponents are established, then an inductive learning
procedure can be used to discover those inherent
and persistent relationships. Thus, a prototype or
some kind of formal semantic description of this
type of an object can be defined by these relation-
ships.

6 Representing a prototype by
root-tree

6.1 A multi-layer concept-defining tree

In the previous Section, an image representation
schema was developed. Basing on it, we can use
the combination of multiple polygons to represent
an object, and Figure 15 is an example for repre-
senting COW. Firstly, several cases of cow, with dif-
ferent appearances, had been watched, and each of
them is an instance of the concept “cow”. Secondly,
nCRF-based algorithm was applied, and each in-
stance was partitioned by polygons, and topolog-
ical correlations of these polygons are important.
Thirdly, a AND-OR tree was built to record com-
binational relations at polygon level and at compo-
nent level. In Figure 15 from root to leaves, they
respectively describe: a cow might have multiple
instances, and every instance can be divided into
several components, and every component includes
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Figure 12. Some polygons have been produced on the base of many small triangles
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cause some points not belonging to contour might
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they are defined by vertexes and all edges are vec-
tors. Therefore on these edges it is easy to choose
initial points. This algorithm is insensitive to posi-
tion, size and pose, so we can concentrate on shape
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Another strategy that helps us to establish cor-
respondences between polygons is minimum span-
ning tree algorithm. Firstly, all polygons were
named. Secondly, according to their neighboring
relationships, a connected graph was formed for
each set of polygons in an image. Thirdly, select-
ing a node as tree root and starting Prim minimum
spanning tree algorithm, after that we got a span-
ning tree growing up from a selected polygon. Fig-
ure 14 is the result of this process. We show there
a two cow pictures which were made up by many
named polygons. We selected three pairs of span-
ning trees taking root in A15-C15, A8-C7 and A23-
C20 respectively. It is obvious that every pairs are
very similar, because they really reflect the topolog-
ical structure of an object. Therefore, applying this
strategy we can greatly improve the matching accu-
racy between different cases.

After this step, we find out which polygons are
corresponding in different samples, and they per-

haps are the similar parts of a kind of object. Once
correspondence relationships among parts or com-
ponents are established, then an inductive learning
procedure can be used to discover those inherent
and persistent relationships. Thus, a prototype or
some kind of formal semantic description of this
type of an object can be defined by these relation-
ships.

6 Representing a prototype by
root-tree

6.1 A multi-layer concept-defining tree

In the previous Section, an image representation
schema was developed. Basing on it, we can use
the combination of multiple polygons to represent
an object, and Figure 15 is an example for repre-
senting COW. Firstly, several cases of cow, with dif-
ferent appearances, had been watched, and each of
them is an instance of the concept “cow”. Secondly,
nCRF-based algorithm was applied, and each in-
stance was partitioned by polygons, and topolog-
ical correlations of these polygons are important.
Thirdly, a AND-OR tree was built to record com-
binational relations at polygon level and at compo-
nent level. In Figure 15 from root to leaves, they
respectively describe: a cow might have multiple
instances, and every instance can be divided into
several components, and every component includes
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Figure 13. Shape context algorithm can be applied to establish the correspondence between different
polygons
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Figure 14. Spanning tree of connected graph can help establishing correspondence between polygons
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multiple blocks, and every block is made up of sev-
eral polygons, and every polygon has its shape, and
each shape can be defined by its vertexes, and any
vertex can be obtained by several neighboring RFs.
Using a tree-like data structure has been proved to
be a practicable choice [42] to organize regions.
All these calculations can be executed by algebraic
equations of circle, and searching strategy is also
workable [43].

The data at the bottom of Figure 13 are some ver-
texes of polygons, and all coordinates can be re-
located according to a new datum point. Each row
defines a shape, and no shape here is required to be
absolutely fixed. Further more, these shapes can be
zoomed in or out, or be rotated easily because they
are defined by vectors. Using these tables we can
rebuild several prototypes of a concept, and when
a new sample occurring, we can compare it with
those prototypes and identify which class the new
sample belongs to. The concept tree is not absolute
too, because the occurrences of Cow are different
one to another. Fuzzy inference or probabilistic in-
ference, such as Bayesian reasoning [44], or shape
context algorithm [48] is a good tool to use this rep-
resentation.

6.2 Direct manipulation that done to low-
level pixels can be derived from this
multi-layer tree

Now let’s go back to the rules we formalized in Sec-
tion 1. We obtain a concept tree about cow, and
at the root of this tree it is symbolic, and at the
leaf ends it contains many pixel-concerned coor-
dinates. Moving from root to leaves, the concept
definition turns gradually from abstract label to de-
tailed object. This provides us an opportunity to
join high level symbols and low-level BMP opera-
tions (such as searching pixel) together. Now let’s
define some production rules to show this practical
method again. For explaining what is a cow:

IF Is Cow(x) THEN Has leg1(x) ∧ Has leg2(x) ∧
Has leg3(x) ∧ Has leg4(x) ∧. . .∧ Has body(x);
IF Has leg1(x) THEN Contain area like(x, Block1);
IF Verify(Block1) THEN Search pixel in(Set(Block1));

For deciding which pixels combine a cow:

IF RF distribution similar(x, Block5) THEN
Is leg3(x);
IF Verify(RF distribution similar(y)) THEN
Decide a region defined by(y);
IF Verify(Similar(x, y)) THEN
Search pixel in x according to y(x, y);

The predicates like Search pixel in( ) and Con-
tain area like( ) are totally operable at pixel level.
Up to now, we show a feasible method, basing on
an elaborate multi-level representation, which can
ground semantic and apply them in image under-
standing.

6.3 Why this tree can work?

Now a new problem arose. We know that tree,
as a kind of data structure, is not new, and it was
used extensively. For example, some knowledge for
animals or plants classification is defined by tree,
and some searching spaces are also defined by tree.
What, then, makes tree work in grounding semantic
this time? The most important reason is that GC-
array and their RFs provide several gradual or tran-
sitional representation layers to ease the span be-
tween symbols and pixels. Another reason is that
no information, whatever level or abstractness it is,
is neglected, and on the contrary a realistic unit is
assigned to represent it. That is to say we prevent
our model from the famous and conventional hy-
pothesis of discontinuity in low-order structures.

In Cognitive Psychology, cognitive modeling
asks three key steps: (1) the stimulus must be trans-
lated into an internal representation, (2) the repre-
sentation is manipulated by cognitive processes to
derive new internal representations, and (3) these
are in turn retranslated back into action [45]. Our
methods of applying multi-layer representation and
keeping intermediate links go along the same way,
so a dense definition of semantic can be reached.

7 A semantic-grounding neural in-
frastructure

Perhaps we may suspect how so many rules can
work efficiently. An alternative implementation
way is doing this by a neural network. We know
that production rules, including fuzzy rules and un-
certain rules, can be realized equivalently by a neu-
ral network.
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Figure 15. A definition of COW by a concept tree

An important motivation of this paper is to con-
struct an infrastructure for semantic-grounding. We
think GC array provide a powerful base for this
goal. Figure 16 is a neural structure [46] which
can achieve semantic representation. Layer 2 is
GC array, and each of them has a nCRF on pho-
toreceptor layer. These two layers had described
in fore-sections. And in layer 3, we design some
feature recording units to produce semantic. We di-
vided units in layer 2 and 3 into many small groups
(three examples were drawn in each layer), and let
them match one-by-one. The famous Bidirectional
Associative Memory (BAM) algorithm was applied
between each pair of groups. The BAM is uncon-
ditionally stable, and it is a heteroassociative net-
work and indeed capable of error correction. Then
two groups in a pair can feed each other upwards
or downwards. The number of stable states in a
BAM network is limited, but there are so many
pairs, and the combinational number of states of
different BAM networks is very huge. If we de-
fine units in layer 3 by some symbols and define
units in layer 2 by image features, then layer 2 acts
as explainer to ground semantic. When some more
complicated network is built in layer 3, then a more

flexible representation is possible [47]. This net-
work fulfills the decomposition and integration of
semantics with a fine span.

Figure 16. A Multi-layer Structure for
Semantic-grounding

8 Conclusion

When eye receiving an image as input, the retina
in it will decide which information is significant
and needs to be transmitted to central brain. A
good heuristic rule is retaining variance and dis-
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carding redundancy. This task turns to be very dif-
ficult when scene keeps changing, and processing
should be done in real time and the result should
be in accordance with diverse upcoming tasks. This
means a general and no task-specific schema should
be sought. In this paper, we simulated a biologi-
cal mechanism, using many receptive fields, for im-
age representation, and based on it several impor-
tant image processing tasks, such as segmentation
and integration can be improved through some pre-
defined production rules. Once a neuron-bounded
representation is formed, the semantic-grounding
turns to be practicable.

Semantic is crucial for computer vision (CV)
and natural language understanding (NLU). In CV,
possessing semantic means a program knows what
a pile of pixels is; and in NLU, means a program
knows how to apply rich relationships between con-
cepts flexibly. A hierarchical structure can provide
dense, continuous representations and rich linkages
between them, from high-level concepts to low-
level instances. This will greatly benefit knowledge
applying in CV and NLU.
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