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Abstract

Differential evolution (DE) presents a class of evolutionary and meta-heuristic techniques
that have been applied successfully to solve many real-world problems. However, the per-
formance of DE is significantly influenced by its control parameters such as scaling factor
and crossover probability. This paper proposes a new adaptive DE algorithm by greedy
adjustment of the control parameters during the running of DE. The basic idea is to per-
form greedy search for better parameter assignments in successive learning periods in the
whole evolutionary process. Within each learning period, the current parameter assign-
ment and its neighboring assignments are tested (used) in a number of times to acquire a
reliable assessment of their suitability in the stochastic environment with DE operations.
Subsequently the current assignment is updated with the best candidate identified from
the neighborhood and the search then moves on to the next learning period. This greedy
parameter adjustment method has been incorporated into basic DE, leading to a new DE
algorithm termed as Greedy Adaptive Differential Evolution (GADE). GADE has been
tested on 25 benchmark functions in comparison with five other DE variants. The results
of evaluation demonstrate that GADE is strongly competitive: it obtained the best rank
among the counterparts in terms of the summation of relative errors across the benchmark
functions with a high dimensionality.
Keywords: Differential Evolution, Optimization, Parameter Adaptation.

1 Introduction

Evolutionary algorithms (EAs) are biologically
inspired metaheuristics that provide powerful and
robust means to solve complex and high dimen-
sional optimization problems in real world [1]. One
important advantage of EAs over classic optimiza-
tion techniques is that they dont use derivative in-
formation of objective functions such that they can
be widely applied in situations where the problem
space is not differentiable or continuous. Many
variants of EAs have been developed to deal with
real-parameter continuous optimization problems,
including evolution strategies [2], real-coded ge-

netic algorithms [3], memetic algorithms [4], differ-
ential evolution (DE) [5], particle swarm optimiza-
tion [6], and artificial bee colony algorithms [7].

Differential evolution (DE) shares common
concepts of EAs and it also relies on recombina-
tion and mutation operators to produce new indi-
viduals in the population. Nevertheless, DE dif-
fers from other EAs in that mutation in DE is
based on differences of individuals selected from
the population. Thus, the direction and magnitude
of the search is decided by the distribution of so-
lutions rather than a pre-specified probability func-
tion. DE attains increasing popularity due to its at-
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tractive features such as fewer running parameters,
easy in programming, high efficiency, as well as
strong global search ability. In [8] it was indicated
that DE algorithms were more efficient and more
accurate than several other optimization methods,
including controlled random search, simulated an-
nealing and genetic algorithms. Moreover, DE has
achieved quite high rank in the competition held in
the IEEE Congress on Evolutionary Computation
[9]. A comprehensive review of the state-of-the-art
of DE algorithms is given in [10].

Unfortunately, the performance of DE is not al-
ways excellent. It can easily get stuck in a local op-
timum or stop generating progressively better solu-
tions before the population has converged. One rea-
son of such failures can be poorly assigned control
parameters like scaling factor and crossover proba-
bility [11], [12], [13]. It has also been observed that,
when DE explores different regions of the space, it
would require using different parameter values to
maintain the efficiency of search.

On-line adaptation of control parameters for DE
appears a promising research direction that has been
addressed by a number of researchers. The purpose
is to dynamically adjust the parameters of DE us-
ing feedback from the search. Liu and Lampinen
[14] proposed the use of fuzzy logic controllers to
modify the scaling factor and crossover probability
based on progresses in the search. Xue and Sander-
son [15] independently developed a similar method
based on heuristic knowledge in form of fuzzy rules
for parameter adaptation in a multi-objective DE al-
gorithm. However, the fuzzy rule-based heuristic
methods may be over-tailored to a specific problem
without generality to wide applications. The works
published in [16], [17], [18], [19] can be classi-
fied as statistical approaches to parameter adapta-
tion. They rely on certain probability distributions
(such as Gaussian and Cauchy density functions) to
generate scaling factor and crossover rate for indi-
vidual vectors in the population, and those param-
eter values that succeeded in producing trial solu-
tions surviving in the next generation are utilized
to update the locations of the distribution functions
for improved DE performance. But the stochastic
nature of mutation and crossover operators are not
taken into account in these approaches in judging
successful control parameter values.

This paper proposes a new adaptive DE algo-
rithm by greedy adjustment of the control param-
eters (scaling factor and crossover rate) during the
running of DE. The basic idea is to perform greedy
search for better parameter assignments in suc-
cessive learning periods in the whole evolutionary
process. Within each learning period, the current
parameter assignment and its neighboring assign-
ments are tested (used) in a number of times to ac-
quire a reliable assessment of their suitability in the
stochastic environment with DE operations. Sub-
sequently, the current assignment is updated with
the best candidate identified from the neighborhood
and then the search moves on to the next learning
period. As greedy adjustments of parameters are
conducted repeatedly from one period to the next,
we achieve continuous adaptation of DE behavior
along the course of search. The proposed DE algo-
rithm has been examined and compared with other
five DE variants in the experiments. The results
of evaluation on a set of 25 benchmark functions
demonstrate that our method is rather competitive:
it obtained the best rank among the counterparts ac-
cording to the summation of relative errors across
the benchmark functions with high dimensionality.

The rest of the paper is organized as follows.
The relevant works are discussed in Section 2. Sec-
tion 3 introduces the basic DE algorithm, which
is followed by the presentation of the adaptive DE
with greedy parameter adjustment in Section 4. The
results of evaluation are given in Section 5. Finally,
we convey the concluding remarks in Section 6.

2 Relevant Works

It is well known that the performance of DE is
heavily dependent on the setting of control param-
eters such as the mutation factor and the crossover
probability. This section reviews some of the meth-
ods for dynamic adjustment of control parameters
within the most well known adaptive DE algo-
rithms. Although these adaptive algorithms also
include self-adaptive or certain advanced mutation
strategies, this section only focuses on the part of
parameter adaptation for DE.

One of the first adaptive DE algorithms is called
SaDE [16]. It was proposed by Qin and Suganthan
in 2005. This algorithm does not have fixed val-
ues for the scaling factor and crossover probability
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tractive features such as fewer running parameters,
easy in programming, high efficiency, as well as
strong global search ability. In [8] it was indicated
that DE algorithms were more efficient and more
accurate than several other optimization methods,
including controlled random search, simulated an-
nealing and genetic algorithms. Moreover, DE has
achieved quite high rank in the competition held in
the IEEE Congress on Evolutionary Computation
[9]. A comprehensive review of the state-of-the-art
of DE algorithms is given in [10].

Unfortunately, the performance of DE is not al-
ways excellent. It can easily get stuck in a local op-
timum or stop generating progressively better solu-
tions before the population has converged. One rea-
son of such failures can be poorly assigned control
parameters like scaling factor and crossover proba-
bility [11], [12], [13]. It has also been observed that,
when DE explores different regions of the space, it
would require using different parameter values to
maintain the efficiency of search.

On-line adaptation of control parameters for DE
appears a promising research direction that has been
addressed by a number of researchers. The purpose
is to dynamically adjust the parameters of DE us-
ing feedback from the search. Liu and Lampinen
[14] proposed the use of fuzzy logic controllers to
modify the scaling factor and crossover probability
based on progresses in the search. Xue and Sander-
son [15] independently developed a similar method
based on heuristic knowledge in form of fuzzy rules
for parameter adaptation in a multi-objective DE al-
gorithm. However, the fuzzy rule-based heuristic
methods may be over-tailored to a specific problem
without generality to wide applications. The works
published in [16], [17], [18], [19] can be classi-
fied as statistical approaches to parameter adapta-
tion. They rely on certain probability distributions
(such as Gaussian and Cauchy density functions) to
generate scaling factor and crossover rate for indi-
vidual vectors in the population, and those param-
eter values that succeeded in producing trial solu-
tions surviving in the next generation are utilized
to update the locations of the distribution functions
for improved DE performance. But the stochastic
nature of mutation and crossover operators are not
taken into account in these approaches in judging
successful control parameter values.

This paper proposes a new adaptive DE algo-
rithm by greedy adjustment of the control param-
eters (scaling factor and crossover rate) during the
running of DE. The basic idea is to perform greedy
search for better parameter assignments in suc-
cessive learning periods in the whole evolutionary
process. Within each learning period, the current
parameter assignment and its neighboring assign-
ments are tested (used) in a number of times to ac-
quire a reliable assessment of their suitability in the
stochastic environment with DE operations. Sub-
sequently, the current assignment is updated with
the best candidate identified from the neighborhood
and then the search moves on to the next learning
period. As greedy adjustments of parameters are
conducted repeatedly from one period to the next,
we achieve continuous adaptation of DE behavior
along the course of search. The proposed DE algo-
rithm has been examined and compared with other
five DE variants in the experiments. The results
of evaluation on a set of 25 benchmark functions
demonstrate that our method is rather competitive:
it obtained the best rank among the counterparts ac-
cording to the summation of relative errors across
the benchmark functions with high dimensionality.

The rest of the paper is organized as follows.
The relevant works are discussed in Section 2. Sec-
tion 3 introduces the basic DE algorithm, which
is followed by the presentation of the adaptive DE
with greedy parameter adjustment in Section 4. The
results of evaluation are given in Section 5. Finally,
we convey the concluding remarks in Section 6.

2 Relevant Works

It is well known that the performance of DE is
heavily dependent on the setting of control param-
eters such as the mutation factor and the crossover
probability. This section reviews some of the meth-
ods for dynamic adjustment of control parameters
within the most well known adaptive DE algo-
rithms. Although these adaptive algorithms also
include self-adaptive or certain advanced mutation
strategies, this section only focuses on the part of
parameter adaptation for DE.

One of the first adaptive DE algorithms is called
SaDE [16]. It was proposed by Qin and Suganthan
in 2005. This algorithm does not have fixed val-
ues for the scaling factor and crossover probability
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during its execution. The scaling factor for every
individual is created following a fixed normal dis-
tribution. The crossover rate (CR) follows a normal
distribution too, but its center is updated using the
median of the successful CR values during last 25
generations.

JADE [17] was proposed by Zhang and Sander-
son in 2009. Similarly to SaDE, JADE creates ran-
dom values for both scaling factor and crossover
rate. The generation of F follows a Cauchy distribu-
tion while CR is created according to a Normal dis-
tribution. The center of the Cauchy distribution is
updated by a weighted sum of the actual value and
the Lehmer mean of the successful F values in the
last generation. Likewise, the center of the Normal
distribution is revised whereas with the arithmetic
mean of the successful CR values.

The method MDE pBX [18], proposed by Min-
zahul Islam et al., is similar to JADE in two aspects.
First, it employs a Cauchy distribution to generate F
values and a Normal distribution to create CR val-
ues. Second, it also actualizes the centers of the
probability distributions after every generation. The
difference between the two algorithms lies in the
way in which the centers are revised: MDE pBX
uses a Power mean rather than a Lehmer mean or
arithmetic mean as in JADE.

SHADE [20] is a success-history based DE al-
gorithm proposed by Tanabe and Fukunaga in 2013.
It maintains two memories, one for scaling factor
and the other crossover rate. The entities in both
memories are randomly selected as the center for
the Cauchy distribution for generating F values and
the center of the Normal distribution for generating
CR values respectively. Further, one entity in each
memory will be replaced by some mean of success-
ful F or CR values after each generation in a cyclical
manner.

3 Basic DE

DE is a stochastic and population based algo-
rithm for optimization. A population in DE consists
of a set of individuals, each of which stands for a
possible solution to the problem. Optimization is
conducted by evolving the population progressively
from one generation to another. Here we use Xi,g to
denote individual i in the population at generation

g, with i = 1, 2, . . . , NP and NP being the population
size (the number of solutions in the population). DE
has three consecutive steps in every iteration: mu-
tation, crossover and selection. The explanation of
these steps is given below:

MUTATION. At each generation g, NP mutated
individuals are generated based on the current par-
ent population. The vector for the mutated solution
is called mutant or donor vector and it is represented
by Vi,g. There are several alternative ways to mutate
an individual in the current population. A muta-
tion strategy is often notated as DE\x\y, where x
stands for the vector to be mutated and y represents
the number of difference vectors used in the muta-
tion. The following are three basic mutation strate-
gies frequently used in the literature:

– DE/rand/1:

Vi,g = Xr1,g +F × (Xr2,g −Xr3,g) (1)

– DE/best/1:

Vi,g = Xbest,g +F × (Xr1,g −Xr2,g) (2)

– DE/current-to-best/1

Vi,g = Xi,g +F1 × (Xbest,g −Xi,g)+
+F2 × (Xr1,g −Xr2,g)

(3)

where r1,r2,r3 are mutually exclusive integers ran-
domly selected from 1 to NP, The scaling factor F
is a real positive control parameter which lies in the
interval (0,2]. Xbest,g represents the best solution
from the population at generation g. Other muta-
tion strategies and their performance are discussed
in [21].

As can be seen from above, the values in the
mutant vector may violate predefined boundary
constraints. To solve this issue we repair Vi,g ac-
cording to Equation 4.

Vi,g[ j] =

{
(Low[ j] if Vi,g[ j]< Low[ j],
(U pper[ j] if Vi,g[ j]>U pper[ j].

(4)

where Xi,g[ j] denotes the jth component of vector
Xi,g and Vi,g[ j] denotes the jth component of the mu-
tant vector Vi,g.

CROSSOVER. In the second step we recom-
bine the set of mutated solutions created in the first
step (mutation) with the set of original members in
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the population to produce trial solutions. The new
trial vector is denoted by Ti,g where i is the index of
the corresponding parent member. Every parameter
in the trial vector is derived according to Equation
5 if the binomial crossover method is used.

Ti,g[ j] =





Vi,g[ j] if rand[0,1]<=CR or
j = jrand

Xi,g[ j] otherwise

(5)

where j represents the parameter index in a vector,
CR is the probability of recombination and jrand is
an integer randomly selected from {1,2,. . . , NP} to
ensure that at least one parameter from the mutant
vector is selected.

SELECTION. In this last step we compare a
trial vector with its parent member in the popula-
tion, to choose the stronger one to enter the next
generation. Therefore, if the problem to address is
a minimization problem, each individual in the next
generation is created according to Equation 6.

Xi,g+1 =

{
Ti,g if f (Ti,g)< f (Xi,g)

Xi,g otherwise
(6)

where Xi,g represents a parent individual in the pop-
ulation, Xi,g+1 is the individual in the next gener-
ation, and f (Ti,g) and f (Xi,g) stand for the fitness
values of vectors Ti,g and Xi,g respectively.

4 Adaptive DE with Greedy Pa-
rameter Adjustment

As is known the DE control parameters such as
mutation Factor (F) and Crossover Rate (CR) are
largely problem dependent, i.e. solving different
problems may need different parameter values to
ensure good performance. Further, the proper val-
ues of DE parameters often change with time in
the evolutionary process. Hence it is important to
automatically determine and adjust such parame-
ters for DE when solving a practical problem. To
this end we propose a new adaptive DE algorithm
that dynamically adjusts its control parameters us-
ing greedy (local) search. In this section we shall
first present the greedy scheme for parameter ad-
justment in Subsection 4.1 and then we will discuss
the integration of this scheme within a DE cycle in
Subsection 4.2.

4.1 Greedy Search for Parameter Adapta-
tion

Our basic idea is to perform local greedy search
to adjust the values of control parameters (scaling
factor and crossover probability) of DE to improve
its performance. This means that at every step the
current parameter assignment is compared with its
neighbours and then moves to the best candidate in
the neighbourhood. Nevertheless, the comparison
of different DE parameters is not a trivial task. It is
complicated by the stochastic characteristics of the
mutation and crossover operators such that a good
parameter assignment may also lead to undesired
trial solutions created in the course of search.

It is advocated in the paper that a candidate for
parameter assignment undergoing sufficient tests
for reliable evaluation of its quality. The tests are
made in a learning period comprising a specified
number of generations to see how the candidate was
useful to contribute to the creation of good trial so-
lutions. We desire those parameter assignments that
not only offer a high chance of survival for trial so-
lutions but also enable substantial improvement of
fitness in the next generation. In view of this, the
relative improvement (RI) brought by a candidate
assignment C (for either scaling factor or crossover
probability) in test k is defined as:

RI(C, j) =

{
f (Xk)∗10n − f (V k)∗10n, if f (Xk)≥ f (V k),

0, otherwise
(7)

where Xk and V k represent respectively the parent
and trial solutions in test k, and n is an integer such
that f (Xk) ∗ 10n lies in the interval [1,10] or [-10,-
1]. Further, the progress rate (PR) for C is the av-
erage of the relative improvements from all the m
tests of using C for producing trial solutions. Thus
we can write

PR(C) =
1
N

N

∑
j=1

RI(C, j) (8)

progress rate is used in this paper as the criterion to
evaluate and compare candidates for DE parameter
assignments.

In the greedy search procedure, the current pa-
rameter assignment and its two generated neigh-
bours are randomly selected for being used in pro-
ducing new trial solutions during the learning pe-
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the population to produce trial solutions. The new
trial vector is denoted by Ti,g where i is the index of
the corresponding parent member. Every parameter
in the trial vector is derived according to Equation
5 if the binomial crossover method is used.

Ti,g[ j] =





Vi,g[ j] if rand[0,1]<=CR or
j = jrand

Xi,g[ j] otherwise

(5)

where j represents the parameter index in a vector,
CR is the probability of recombination and jrand is
an integer randomly selected from {1,2,. . . , NP} to
ensure that at least one parameter from the mutant
vector is selected.

SELECTION. In this last step we compare a
trial vector with its parent member in the popula-
tion, to choose the stronger one to enter the next
generation. Therefore, if the problem to address is
a minimization problem, each individual in the next
generation is created according to Equation 6.

Xi,g+1 =

{
Ti,g if f (Ti,g)< f (Xi,g)

Xi,g otherwise
(6)

where Xi,g represents a parent individual in the pop-
ulation, Xi,g+1 is the individual in the next gener-
ation, and f (Ti,g) and f (Xi,g) stand for the fitness
values of vectors Ti,g and Xi,g respectively.

4 Adaptive DE with Greedy Pa-
rameter Adjustment

As is known the DE control parameters such as
mutation Factor (F) and Crossover Rate (CR) are
largely problem dependent, i.e. solving different
problems may need different parameter values to
ensure good performance. Further, the proper val-
ues of DE parameters often change with time in
the evolutionary process. Hence it is important to
automatically determine and adjust such parame-
ters for DE when solving a practical problem. To
this end we propose a new adaptive DE algorithm
that dynamically adjusts its control parameters us-
ing greedy (local) search. In this section we shall
first present the greedy scheme for parameter ad-
justment in Subsection 4.1 and then we will discuss
the integration of this scheme within a DE cycle in
Subsection 4.2.

4.1 Greedy Search for Parameter Adapta-
tion

Our basic idea is to perform local greedy search
to adjust the values of control parameters (scaling
factor and crossover probability) of DE to improve
its performance. This means that at every step the
current parameter assignment is compared with its
neighbours and then moves to the best candidate in
the neighbourhood. Nevertheless, the comparison
of different DE parameters is not a trivial task. It is
complicated by the stochastic characteristics of the
mutation and crossover operators such that a good
parameter assignment may also lead to undesired
trial solutions created in the course of search.

It is advocated in the paper that a candidate for
parameter assignment undergoing sufficient tests
for reliable evaluation of its quality. The tests are
made in a learning period comprising a specified
number of generations to see how the candidate was
useful to contribute to the creation of good trial so-
lutions. We desire those parameter assignments that
not only offer a high chance of survival for trial so-
lutions but also enable substantial improvement of
fitness in the next generation. In view of this, the
relative improvement (RI) brought by a candidate
assignment C (for either scaling factor or crossover
probability) in test k is defined as:

RI(C, j) =

{
f (Xk)∗10n − f (V k)∗10n, if f (Xk)≥ f (V k),

0, otherwise
(7)

where Xk and V k represent respectively the parent
and trial solutions in test k, and n is an integer such
that f (Xk) ∗ 10n lies in the interval [1,10] or [-10,-
1]. Further, the progress rate (PR) for C is the av-
erage of the relative improvements from all the m
tests of using C for producing trial solutions. Thus
we can write

PR(C) =
1
N

N

∑
j=1

RI(C, j) (8)

progress rate is used in this paper as the criterion to
evaluate and compare candidates for DE parameter
assignments.

In the greedy search procedure, the current pa-
rameter assignment and its two generated neigh-
bours are randomly selected for being used in pro-
ducing new trial solutions during the learning pe-
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riod. The best of them is then identified using the
metric of progress rate as defined in 8. As proper
values of control parameters can change over time,
we perform life-long search from one learning pe-
riod to the next to achieve continuous adjustment of
parameters in the course of optimization. An algo-
rithmic description of the greedy scheme for param-
eter adjustment is given in the following:

The greedy search for parameter adjustment:

1. F0 ← initial assignment for scaling factor.

2. P0 ← initial assignment for crossover probabil-
ity.

3. Expand F0: Creating its two neighbours F1 and
F2.

4. Expand P0: Creating its two neighbours P1 and
P2.

5. count(x)=0, count(y)=0, sum(x)=0 and
sum(y)=0 for all x ∈ {F0,F1,F2},y ∈ {P0,P1,P2}

6. i = 0

7. while (i ≤ LP×NP) % LP is the number of gen-
erations in the learning period

8. Randomly select x∗ f rom{F0,F1,F2}

9. Randomly select y∗ f rom{P0,P1,P2}

10 Perform mutation and crossover using x∗ and y∗.

11. Derive RI(x∗) and RI(y∗) upon the trial and par-
ent solutions

12. count(x∗) = count(x∗)+1 and count(y∗) =
count(y∗)+1

13. sum(x∗) = sum(x∗) + RI(x∗) and sum(y∗) =
sum(y∗) + RI(y∗)

14. i = i + 1;

15. end while

16. PR(x)=sum(x)/count(x) for all x ∈ {F0,F1,F2}

17. PR(y)=sum(y)/count(y) for all y ∈ {P0,P1,P2}

18. F0 = arg max
x∈{F0,F1,F2}

PR(x);

19. P0 = arg max
y∈{P0,P1,P2}

PR(y);

20. Go to step 3

4.2 Greedy Adaptive DE Algorithm

The Greedy Adaptive Differential Evolution
(GADE) algorithm is developed by incorporation
of the greedy search mechanism into the basic DE
algorithm. The whole evolutionary process is di-
vided into a sequence of learning periods and every
learning period consists of a fixed number of gen-
erations. The greedy search is performed in suc-
cessive learning periods to facilitate continuous and
dynamic adjustment of F and CR values during the
execution of the algorithm.

The initial candidate for mutation factor is set
as F = 0.5, and its two neighbors are F + d1 and
F − d1 respectively, where d1 is a user specified
small positive number. The initial candidate for
crossover rate is a Cauchy distribution with its cen-
ter CRm = 0.5 and its scale parameter equal to 0.2.
The two neighbors of this current distribution are
the shifted Cauchy distributions with their centers
being located at CRm + d2 and CRm − d2 respec-
tively, where d2 is a small positive number speci-
fied by user. Every current and neighboring can-
didate (for both mutation factor and crossover rate)
receives a probability of 1/3 to be associated with an
individual vector in the population in order to get a
sufficient number of usages in the learning period.
At the end of the learning period, a neighboring can-
didate may replace the current one according to the
assessed progress rates.

A more detailed description of our GADE al-
gorithm is given in the pseudocode of Algorithm
1. Although the simple random mutation strategy
is used in the present version of the algorithm, the
principle and mechanism proposed in this paper is
generic and can be easily applied with other muta-
tion strategies as well.

Algorithm 1: GADE

1. Set CRm = 0.5,F = 0.5,LP = 20,d1 = d2 =
0.01;

2. ZF = {F −d1,F,F +d1};

3. ZCR = {CRm −d2,CRm,CRm +d2};

4. g = 1;

5. Initialize the population (X1,1,X2,1, . . . ,XNp,1)
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6. WHILE The termination condition is not satis-
fied

7. FOR i = 1 NP

8. Set Fi by randomly selecting one element from
ZF .

9. Set µCR by randomly selecting one element from
ZCR.

10. CRi =Cauchy(µCR,0.2).

11. Create the mutant vector using the random mu-
tation strategy by:
Vi,g = Xr1,g +F × (Xr2,g −Xr3,g)

12. Repair the mutant vector if it has values outside
the boundaries:

Vi,G[ j] =

{
(Low[ j] if Vi,g[ j]< Low[ j],
(U pper[ j] if Vi,g[ j]>U pper[ j].

13. Create the trial vector:

Ti,G[ j] =

{
Vi,g[ j] if rand[0,1]≤CR or j = jrand

Xi,g[ j] otherwise

14. IF f (Ti,g)< f (Xi,g)

15. Xi,g+1 = Ti,g

16. ELSE

17. Xi,g+1 = Xi,g

18. ENDIF

19. ENDFOR

20. /* Update F*/

21. IF G%LP == 0

22. F = argmax
x∈ZF

PR(x);

23. ZF = {F −d1,F,F +d1};

24. CRm = arg max
y∈ZCR

PR(y);

25. ZCR = {CRm −d2,CRm,CRm +d2};

26. ENDIF

27. g = g+1;

28. ENDWHILE

5 Experiments and Evaluation

This section examines the adaptation capability
of our GADE algorithm in comparison with other
relevant algorithms. The tests were made on 25
benchmark functions from [22] and [23] with di-
mension (D) 10 and 30. A complete description
of these functions is given in Table I, where Func-
tions f1-f7 and Functions f14-f18 are unimodal, and
Functions f8-f13 and Functions f19-f25 are multi-
modal. In D10, only Functions f14-f25 were used
while in D30 experiments were made on all the 25
functions.

5.1 Experimental Settings

Beside GADE, the basic DE (DE/rand/1) and
the methods from four other DE variants: SaDE,
JADE, SHADE and MDE pBX were also tested
in the experiments for comparison. As our pur-
pose was to compare different parameter adaptation
methods, mutation strategy adaptation was not im-
plemented in our experiments. Here we use the suf-
fix ”-P” to denote the parameter adaptation method
from the original adaptive DE algorithm that was
incorporated into the basic DE. All the algorithms
in comparison employed the binomial crossover op-
erator and the rand/1 mutation strategy. The settings
of these algorithms are listed below:

– DE/rand/1: population size NP = 60, F = 0.9 and
CR = 0.9

– SaDE-P: population size NP = 60, initial CRm =
0.5 and length of learning period LP = 20

– JADE-P: population size NP = 60, initial µF =
0.5, initial µCR = 0.5 and c = 0.01

– SHADE-P: population size NP = 60, memory
size H = 60, initial MF = { 0.5,. . . ,0.5} and ini-
tial MCR = { 0.5,. . . ,0.5}

– MDE pBX-P: population size NP = 60, initial Fm

= 0.5 and initial CRm = 0.6

– GADE: population size NP = 60, initial F = 0.5,
initial CRm = 0.5, d1 = d2 = 0.01, and length of
the learning period LPF = LPCR = 20
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6. WHILE The termination condition is not satis-
fied

7. FOR i = 1 NP

8. Set Fi by randomly selecting one element from
ZF .

9. Set µCR by randomly selecting one element from
ZCR.

10. CRi =Cauchy(µCR,0.2).

11. Create the mutant vector using the random mu-
tation strategy by:
Vi,g = Xr1,g +F × (Xr2,g −Xr3,g)

12. Repair the mutant vector if it has values outside
the boundaries:

Vi,G[ j] =

{
(Low[ j] if Vi,g[ j]< Low[ j],
(U pper[ j] if Vi,g[ j]>U pper[ j].

13. Create the trial vector:

Ti,G[ j] =

{
Vi,g[ j] if rand[0,1]≤CR or j = jrand

Xi,g[ j] otherwise

14. IF f (Ti,g)< f (Xi,g)

15. Xi,g+1 = Ti,g

16. ELSE

17. Xi,g+1 = Xi,g

18. ENDIF

19. ENDFOR

20. /* Update F*/

21. IF G%LP == 0

22. F = argmax
x∈ZF

PR(x);

23. ZF = {F −d1,F,F +d1};

24. CRm = arg max
y∈ZCR

PR(y);

25. ZCR = {CRm −d2,CRm,CRm +d2};

26. ENDIF

27. g = g+1;

28. ENDWHILE

5 Experiments and Evaluation

This section examines the adaptation capability
of our GADE algorithm in comparison with other
relevant algorithms. The tests were made on 25
benchmark functions from [22] and [23] with di-
mension (D) 10 and 30. A complete description
of these functions is given in Table I, where Func-
tions f1-f7 and Functions f14-f18 are unimodal, and
Functions f8-f13 and Functions f19-f25 are multi-
modal. In D10, only Functions f14-f25 were used
while in D30 experiments were made on all the 25
functions.

5.1 Experimental Settings

Beside GADE, the basic DE (DE/rand/1) and
the methods from four other DE variants: SaDE,
JADE, SHADE and MDE pBX were also tested
in the experiments for comparison. As our pur-
pose was to compare different parameter adaptation
methods, mutation strategy adaptation was not im-
plemented in our experiments. Here we use the suf-
fix ”-P” to denote the parameter adaptation method
from the original adaptive DE algorithm that was
incorporated into the basic DE. All the algorithms
in comparison employed the binomial crossover op-
erator and the rand/1 mutation strategy. The settings
of these algorithms are listed below:

– DE/rand/1: population size NP = 60, F = 0.9 and
CR = 0.9

– SaDE-P: population size NP = 60, initial CRm =
0.5 and length of learning period LP = 20

– JADE-P: population size NP = 60, initial µF =
0.5, initial µCR = 0.5 and c = 0.01

– SHADE-P: population size NP = 60, memory
size H = 60, initial MF = { 0.5,. . . ,0.5} and ini-
tial MCR = { 0.5,. . . ,0.5}

– MDE pBX-P: population size NP = 60, initial Fm

= 0.5 and initial CRm = 0.6

– GADE: population size NP = 60, initial F = 0.5,
initial CRm = 0.5, d1 = d2 = 0.01, and length of
the learning period LPF = LPCR = 20
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Table 1. The 25 benchmark functions used in the experiments

FUNCTION NAME
f1(x) = ∑n

i=1 x2
i Sphere

f2(x) = ∑n
i=1 |xi|+∏n

i=1 |xi| Schwefel 2.22
f3(x) = ∑n

i=1(∑
i
j=1 x j)

2 Schwefel 1.2
f4(x) = maxi{|xi|,1 ≤ i ≤ n} Schewefel 2,21
f5(x) = ∑n−1

i=1 [100× (xi+1 − x2
i )

2 +(xi −1)2] rosenbrock
f6(x) = ∑n

i=1 ∗(xi +0.5)2 step
f7(x) = ∑n

i=1 i× x4
i + random[0,1) Noisy Quartic

f8(x) = ∑n
i=1−xi × sin(

√
|xi|) Schwefel 2.26

f9(x) = ∑n
i=1[x

2
i −10× cos(2×π× xi)+10] Rastrigin

f10(x) = −20× exp(−0.2×
√

1
n ×∑n

i=1 x2
i )− exp( 1

n ×∑n
i=1 cos(2πxi))+20+ e Ackley

f11(x) = 1
4000 ×∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
)+1 Griewank

f12(x) = π
n ×{10sin2(πyi)+∑n−1

i=1 ((yi −1)2[1+10sin2(πyi+1)])+(yn −1)2}+
+∑n

i=1 u(xi,10,100,4), where yi = 1+ 1
4 (xi +1)

u(xi,a,k,m) =




k(xi −a)m, xi > a
0, −a ≤ xi ≤ a
k(xi −a)m, xi <−a

f13(x) = 0.1×{sin2(3πx1)+∑n−1
i=1 ((xi −1)2[1+ sin2(3πxi+1)])+

+(xn −1)[1+ sin(2πxn)
2]}+∑n

i=1 u(xi,5,100,4)
f14(x) = ∑n

i=1 z2
i ;z = x−o Shifted Sphere

f15(x) = ∑n
i=1(∑

i
j=1 z j)

2;z = x−o Shifted Schwefel 1.2

f16(x) = ∑n
i=1 (106)

i−1
n−1 z2

i ;z = (x−o)∗M Shifted Rotated High Conditioned
Elliptic

f17(x) = (∑n
i=1(∑

i
j=1 z j)

2)× (1+0.4|N(0,1)|);z = x−o Shifted Schwefel 1.2 with Noise in
Fitness

f18(x) = max{Aix−Bi}; *check [23] Shifted Schwefel 2.6 with global
optimum on Bounds

f19(x) = ∑n−1
i=1 [100× (−zi+1 + z2

i )
2 +(zi −1)2];z = x−o+1 Shifted Rosenbrock

f20(x) = 1
4000 ×∑n

i=1 z2
i −∏n

i=1 cos( zi√
i
)+;z = (x−o)∗M Shifted Rotated Griewank without

bounds

f21(x) = −20× exp(−0.2×
√

1
n ×∑n

i=1 z2
i )− exp( 1

n ×∑n
i=1 cos(2πzi))+20+ e Shifted Rotated Ackley with global

optimum on bounds
z = (x−o)∗M

f22(x) = ∑n
i=1[z

2
i −10× cos(2×π× zi)+10];z = x−o Shifted Rastrigin

f23(x) = ∑n
i=1[z

2
i −10× cos(2×π× zi)+10];z = (x−o)∗M Shifted Rotated Rastrigin

f24(x) = ∑n
i=1 (∑

Kmax
k=0 [akcos(2πbk(xi +0.5))])−N ∑kmax

k=0 [a
kcos(2πbk ×0.5)] Shifted Rotated Weierstrss

where a = 0.5,b = 3,Kmax = 20;z = (x−o)∗M
f25(x) = ∑n

j=1 (Ai −Bi(x))2 *check [23] Schwefel 2.13
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All the algorithms were tested on the bench-
mark functions in Table 1 for comparative evalua-
tion of their performance. Every algorithm was ex-
ecuted 30 times on each test function to acquire a
fair and reliable result for comparison. The termi-
nation condition is that the fitness evaluation num-
ber has exceeded 10,000 x D or the error of the best
solution found is below 10E-08 with respect to the
true global optimum.

5.2 Comparison of GADE with other algo-
rithms on dimension 10

This subsection aims to evaluate GADE with re-
spect to other algorithms on problems with dimen-
sion 10. Since all the algorithms performed perfect
on functions f1-f13 under this low dimension, we
focus on comparing the performance of them in the
remaining functions (f14-f25) with the results being
indicated in Table 2, where the values in boldface
represent the mean errors of solutions found by the
algorithms and the values in brackets are the stan-
dard deviations.

We can observe from Table 2 that GADE ob-
tained the best results on 4 unimodal functions
(f14, f15, f17, f18) and it was the third best on
unimodal function f16. In the multimodal case
SHADE-P outperformed the others in 3 of the 7
functions, MDE pBX-P was superior in 2 functions
and GADE got the best average performance in
function f25.

Further we do comparison of GADE with every
other algorithm in terms of their errors obtained on
the 12 test functions. The numbers of functions on
which GADE was superior (≻), identical (=) and
inferior (≺) to its counterpart are given in Table
3 respectively. It can be seen from the table that
GADE was superior or identical to SaDE-P, JADE-
P, MDE pBX-P and basic DE in at least 10 of the
12 test functions. Moreover, GADE behaved better
than or identically to SHADE-P in 4 of the 5 uni-
modal functions, whereas its performance was less
good in comparison to SHADE-P in 5 of the 7 mul-
timodal functions.

Table 4 shows a ranking of the algorithms in
terms of the summation of their relative errors
across the 12 test functions. The relative error of an
algorithm on a certain function is defined as the ra-
tio of the (mean) error of the algorithm on that func-

tion to the worst error on the function among all the
algorithms. Here we see that GADE is ranked as the
second best according to its relative performance on
the problems with the low dimensionality.

5.3 Comparison of GADE with other algo-
rithms on dimension 30

Next we study the comparative performance of
GADE in optimizing the benchmark functions f1-
f25 with dimension 30. The average errors of solu-
tions found by GADE and the other algorithms are
given in Table 5. We can observe from this table
that GADE overall performed the best on the uni-
modal functions since it obtained the best results in
9 of the 12 functions. Moreover, GADE was the
second best on function f18 and the third best on
functions f5 and f7.

Regarding multimodal functions it is revealed
from Table 5 that GADE generally was more attrac-
tive than basic DE and MDE pBX-P, as it was better
than basic DE in 11 of the 13 functions and better
than MDE pBX-P in 9 of the 13 functions. GADE
was better than SaDE-P in 5 of the 13 functions,
while in Functions f8-f13 both algorithms produced
equal results. Moreover, GADE appeared compet-
itive to JADE-P in the sense that GADE outper-
formed JADE-P in 3 functions (f19, f20 and f25)
while JADE-P was superior to GADE in Functions
f23 and f24. Although SHADE-P was slightly bet-
ter than GADE in 5 of the 13 multimodal functions,
GADE was much better than SHADE-P on Func-
tion f25.

Table 6 summarizes the results of pairwise
comparisons of GADE against the other algo-
rithms on all the benchmark functions (both uni-
modal and multimodal). The table shows that
GADE outperformed basic DE, SaDE-P, JADE-P
and MDE pBX-P in at least 12 functions (which
is almost 50% of all the functions used for tests),
and this number is much larger than the number
of functions on which GADE was dominated by
any one of them. When compared with SHADE-
P, GADE exhibited its superiority on 7 functions,
while SHADE-P outperformed GADE on the other
7 functions.

The total ranking of algorithms is now made ac-
cording to their relative errors across the 25 bench-
mark functions with dimension 30. As is indicated
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All the algorithms were tested on the bench-
mark functions in Table 1 for comparative evalua-
tion of their performance. Every algorithm was ex-
ecuted 30 times on each test function to acquire a
fair and reliable result for comparison. The termi-
nation condition is that the fitness evaluation num-
ber has exceeded 10,000 x D or the error of the best
solution found is below 10E-08 with respect to the
true global optimum.

5.2 Comparison of GADE with other algo-
rithms on dimension 10

This subsection aims to evaluate GADE with re-
spect to other algorithms on problems with dimen-
sion 10. Since all the algorithms performed perfect
on functions f1-f13 under this low dimension, we
focus on comparing the performance of them in the
remaining functions (f14-f25) with the results being
indicated in Table 2, where the values in boldface
represent the mean errors of solutions found by the
algorithms and the values in brackets are the stan-
dard deviations.

We can observe from Table 2 that GADE ob-
tained the best results on 4 unimodal functions
(f14, f15, f17, f18) and it was the third best on
unimodal function f16. In the multimodal case
SHADE-P outperformed the others in 3 of the 7
functions, MDE pBX-P was superior in 2 functions
and GADE got the best average performance in
function f25.

Further we do comparison of GADE with every
other algorithm in terms of their errors obtained on
the 12 test functions. The numbers of functions on
which GADE was superior (≻), identical (=) and
inferior (≺) to its counterpart are given in Table
3 respectively. It can be seen from the table that
GADE was superior or identical to SaDE-P, JADE-
P, MDE pBX-P and basic DE in at least 10 of the
12 test functions. Moreover, GADE behaved better
than or identically to SHADE-P in 4 of the 5 uni-
modal functions, whereas its performance was less
good in comparison to SHADE-P in 5 of the 7 mul-
timodal functions.

Table 4 shows a ranking of the algorithms in
terms of the summation of their relative errors
across the 12 test functions. The relative error of an
algorithm on a certain function is defined as the ra-
tio of the (mean) error of the algorithm on that func-

tion to the worst error on the function among all the
algorithms. Here we see that GADE is ranked as the
second best according to its relative performance on
the problems with the low dimensionality.

5.3 Comparison of GADE with other algo-
rithms on dimension 30

Next we study the comparative performance of
GADE in optimizing the benchmark functions f1-
f25 with dimension 30. The average errors of solu-
tions found by GADE and the other algorithms are
given in Table 5. We can observe from this table
that GADE overall performed the best on the uni-
modal functions since it obtained the best results in
9 of the 12 functions. Moreover, GADE was the
second best on function f18 and the third best on
functions f5 and f7.

Regarding multimodal functions it is revealed
from Table 5 that GADE generally was more attrac-
tive than basic DE and MDE pBX-P, as it was better
than basic DE in 11 of the 13 functions and better
than MDE pBX-P in 9 of the 13 functions. GADE
was better than SaDE-P in 5 of the 13 functions,
while in Functions f8-f13 both algorithms produced
equal results. Moreover, GADE appeared compet-
itive to JADE-P in the sense that GADE outper-
formed JADE-P in 3 functions (f19, f20 and f25)
while JADE-P was superior to GADE in Functions
f23 and f24. Although SHADE-P was slightly bet-
ter than GADE in 5 of the 13 multimodal functions,
GADE was much better than SHADE-P on Func-
tion f25.

Table 6 summarizes the results of pairwise
comparisons of GADE against the other algo-
rithms on all the benchmark functions (both uni-
modal and multimodal). The table shows that
GADE outperformed basic DE, SaDE-P, JADE-P
and MDE pBX-P in at least 12 functions (which
is almost 50% of all the functions used for tests),
and this number is much larger than the number
of functions on which GADE was dominated by
any one of them. When compared with SHADE-
P, GADE exhibited its superiority on 7 functions,
while SHADE-P outperformed GADE on the other
7 functions.

The total ranking of algorithms is now made ac-
cording to their relative errors across the 25 bench-
mark functions with dimension 30. As is indicated
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Table 2. Average errors of solutions found by the algorithms in dimension 10
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Table 3. Comparison of GADE with every other algorithm (D10)

ALGORITHM UNIMODAL FUNCTIONS MULTIMODAL FUNCTIONS OVERALL
≻ = ≺ ≻ = ≺ ≻ = ≺

SaDE-P 3 2 0 4 1 2 7 3 2
JADE-P 4 1 0 5 1 1 9 2 1
SHADE-P 1 3 1 1 1 5 2 4 6
MDE pBX-P 3 2 0 4 1 2 7 3 2
DE/rand/1 0 4 1 6 0 1 6 4 2

Table 4. Ranking of the algorithms (D10)

ALGORITHM RANK SUM OF RELATIVE ERRORS
GADE 2 3,23
SaDE-P 4 4,08
JADE-P 6 7,93
SHADE-P 1 2,53
MDE pBX-P 3 3,29
DE/rand/1 5 5,13

in Table 7, GADE is ranked as the best in over-
all performance and the sum of its relative errors
is much smaller than that of the others.

5.4 Overall Remarks and Discussion

Based on comparison of GADE against the
other six DE variants in benchmark functions with
dimensions 10 and 30, we would like to make the
overall remarks and discussion as follows: No algo-
rithm in comparison was better than any others on
all the benchmark functions. This is not surprising
and it is consistent with the No Free Lunch Theo-
rems for optimization [24], [25], which imply that
every optimization algorithm can be more compe-
tent than others in a specific class of problems.

Generally GADE outperformed the four algo-
rithms: basic DE, SaDE-P, JADE-P, and MDE-
pBX-P in problems of dimensions 10 and 30. This
is reflected by the fact that GADE obtained better
results than its counterparts on the majority of the
functions used for comparison. Further, considering
the sum of relative errors, the superiority of GADE
seemed substantially enhanced when the problem
dimension was increased from 10 to 30.

The comparative performance of GADE against
SHADE-P depends on the problem dimension. In
problems with dimension 10, GADE was consid-
ered inferior in terms of both the sum of relative
errors and the number of functions on which one
dominates the other. However, when dimension is
scaled to 30, GADE turned to be strongly competi-

tive and it was ranked prior to SHADE-P in view of
accumulated relative errors.

The current results of experiments leave us with
a sense that GADE would be particularly power-
ful in improving the performance of optimization
in high dimensional problems. We conjecture this
based on the evidences of the enhanced superiority
of GADE against basic DE, SaDE-P, JADE-P and
MDE-pBX-P, as well as the switch of the ranked
positions between GADE and SHADE-P, when the
dimension of problems scaled up from 10 to 30.

GADE could improve problem solving in uni-
modal problems by accelerating the speed of con-
vergence, which is exemplified by Figure 1 (a)
showing the evolution processes with various algo-
rithms on function f16. On multimodal functions,
GADE has shown its strength to help avoiding lo-
cal optima, as demonstrated in Figure 1 (b) for the
example on function f25.

Figures 2 and 3 illustrate how the scaling factor
and the location parameter for the crossover proba-
bility were adapted in GADE on several benchmark
functions. It is seen that both parameters were mod-
ified on-line with small and smooth variations. This
is consistent with the nature of the local (parame-
ter) adjustment scheme used by GADE during the
evolutionary process. Perhaps there is some room
for enhancement of our adaptation method to ac-
celerate reaching suitable parameter settings, which
would be an open interesting issue for further inves-
tigation.
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Table 3. Comparison of GADE with every other algorithm (D10)

ALGORITHM UNIMODAL FUNCTIONS MULTIMODAL FUNCTIONS OVERALL
≻ = ≺ ≻ = ≺ ≻ = ≺

SaDE-P 3 2 0 4 1 2 7 3 2
JADE-P 4 1 0 5 1 1 9 2 1
SHADE-P 1 3 1 1 1 5 2 4 6
MDE pBX-P 3 2 0 4 1 2 7 3 2
DE/rand/1 0 4 1 6 0 1 6 4 2

Table 4. Ranking of the algorithms (D10)

ALGORITHM RANK SUM OF RELATIVE ERRORS
GADE 2 3,23
SaDE-P 4 4,08
JADE-P 6 7,93
SHADE-P 1 2,53
MDE pBX-P 3 3,29
DE/rand/1 5 5,13

in Table 7, GADE is ranked as the best in over-
all performance and the sum of its relative errors
is much smaller than that of the others.

5.4 Overall Remarks and Discussion

Based on comparison of GADE against the
other six DE variants in benchmark functions with
dimensions 10 and 30, we would like to make the
overall remarks and discussion as follows: No algo-
rithm in comparison was better than any others on
all the benchmark functions. This is not surprising
and it is consistent with the No Free Lunch Theo-
rems for optimization [24], [25], which imply that
every optimization algorithm can be more compe-
tent than others in a specific class of problems.

Generally GADE outperformed the four algo-
rithms: basic DE, SaDE-P, JADE-P, and MDE-
pBX-P in problems of dimensions 10 and 30. This
is reflected by the fact that GADE obtained better
results than its counterparts on the majority of the
functions used for comparison. Further, considering
the sum of relative errors, the superiority of GADE
seemed substantially enhanced when the problem
dimension was increased from 10 to 30.

The comparative performance of GADE against
SHADE-P depends on the problem dimension. In
problems with dimension 10, GADE was consid-
ered inferior in terms of both the sum of relative
errors and the number of functions on which one
dominates the other. However, when dimension is
scaled to 30, GADE turned to be strongly competi-

tive and it was ranked prior to SHADE-P in view of
accumulated relative errors.

The current results of experiments leave us with
a sense that GADE would be particularly power-
ful in improving the performance of optimization
in high dimensional problems. We conjecture this
based on the evidences of the enhanced superiority
of GADE against basic DE, SaDE-P, JADE-P and
MDE-pBX-P, as well as the switch of the ranked
positions between GADE and SHADE-P, when the
dimension of problems scaled up from 10 to 30.

GADE could improve problem solving in uni-
modal problems by accelerating the speed of con-
vergence, which is exemplified by Figure 1 (a)
showing the evolution processes with various algo-
rithms on function f16. On multimodal functions,
GADE has shown its strength to help avoiding lo-
cal optima, as demonstrated in Figure 1 (b) for the
example on function f25.

Figures 2 and 3 illustrate how the scaling factor
and the location parameter for the crossover proba-
bility were adapted in GADE on several benchmark
functions. It is seen that both parameters were mod-
ified on-line with small and smooth variations. This
is consistent with the nature of the local (parame-
ter) adjustment scheme used by GADE during the
evolutionary process. Perhaps there is some room
for enhancement of our adaptation method to ac-
celerate reaching suitable parameter settings, which
would be an open interesting issue for further inves-
tigation.
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Table 5. Average errors of solutions found by the algorithms in dimension 30
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Table 6. Comparison of GADE with every other algorithm (D30)

ALGORITHM UNIMODAL FUNCTIONS MULTIMODAL FUNCTIONS OVERALL
≻ = ≺ ≻ = ≺ ≻ = ≺

SaDE-P 8 4 0 5 6 2 13 10 2
JADE-P 8 4 0 4 8 3 12 10 3
SHADE-P 6 4 2 1 7 5 7 11 7
MDE pBX-P 7 4 1 9 2 2 16 6 3
DE/rand/1 8 3 1 11 1 1 19 4 2

Table 7. Ranking of all algorithms (D30)

ALGORITHM RANK SUM OF RELATIVE ERRORS
GADE 1 3,65
SaDE-P 3 6,33
JADE-P 4 10,2
SHADE-P 2 4,73
MDE pBX-P 5 11,2
DE/rand/1 6 14,3

Figure 1. Median convergence characteristics of DE, GADE, SaDE-P, JADE-P, SHADE-P and
MDE pBX-P with dimension 30

(a) f16 (b) f25

Figure 1: Median convergence characteristics of DE, GADE, SaDE-P, JADE-P, SHADE-P and MDE pBX-P
with dimension 30

6 Conclusion

In this paper, we propose GADE (greedy adaptive
differential evolution) as a new adaptive DE algo-
rithm, which adjusts two of its control parameters
(scaling factor and crossover rate) during the pro-
cess of running the algorithm. Greedy search is per-
formed in GADE in order to progressively find bet-
ter parameter assignments in the neighbourhood of
the current assignment. We seek the parameter as-
signments that not only offer high chances for trial
solutions to survive but also facilitate fast fitness im-
provement in the next generation.. GADE was tested
on 25 benchmark functions (with dimensions 10
and 30), in comparison with other five DE variants.
The results of evaluation demonstrate that GADE is
strongly competitive: it obtains the best rank in the
high dimensional problems and the second best rank
in the low dimensional problems among all the algo-
rithms in comparison.

In future we plan to enhance GADE with a new
mutation strategy or mutation strategy adaptation
method. Also we intend to include some local search

strategies such as [26], to develop a memetic adap-
tive DE algorithm that takes advantage of the best
features from each of the techniques. Moreover,
GADE will be tested and possibly further improved
in real industrial scenarios.
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Figure 2. Self Adaptation of the scaling factor in GADE on functions with dimension 30
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Figure 2: Self Adaptation of the scaling factor in GADE on functions with dimension 30

15



116 Miguel Leon, Ning Xiong

Figure 3. Self Adaptation of the location parameter for crossover probability in GADE on functions with
dimension 30

(a) f15 (b) f16

(c) f17 (d) f18

(e) f21 (f) f23

(g) f24 (h) f25

Figure 3: Self Adaptation of the location parameter for crossover probability in GADE on functions with
dimension 30
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Figure 3. Self Adaptation of the location parameter for crossover probability in GADE on functions with
dimension 30

ADAPTING DIFFERENTIAL EVOLUTION ALGORITHMS FOR . . .

6 Conclusion

In this paper, we propose GADE (greedy adap-
tive differential evolution) as a new adaptive DE al-
gorithm, which adjusts two of its control parame-
ters (scaling factor and crossover rate) during the
process of running the algorithm. Greedy search is
performed in GADE in order to progressively find
better parameter assignments in the neighbourhood
of the current assignment. We seek the parameter
assignments that not only offer high chances for
trial solutions to survive but also facilitate fast fit-
ness improvement in the next generation. GADE
was tested on 25 benchmark functions (with dimen-
sions 10 and 30), in comparison with other five
DE variants. The results of evaluation demonstrate
that GADE is strongly competitive: it obtains the
best rank in the high dimensional problems and the
second best rank in the low dimensional problems
among all the algorithms in comparison.

In future we plan to enhance GADE with a
new mutation strategy or mutation strategy adapta-
tion method. Also we intend to include some local
search strategies such as [26], to develop a memetic
adaptive DE algorithm that takes advantage of the
best features from each of the techniques. More-
over, GADE will be tested and possibly further im-
proved in real industrial scenarios.

Acknowledgment

The work is funded by the Swedish Knowledge
Foundation (KKS) grant (project no 16317). The
authors are also grateful to ABB FACTS, PREVAS
and VOITH for their co-financing of the project.

References
[1] N. Xiong, D. Molina, M. Leon, and F. Herrera, A

walk into metaheuristics for engineering optimiza-
tion: Principles, methods, and recent trends, In-
ternational Journal of Computational Intelligence
Systems, vol. 8, no. 4, pp. 606–636, 2015.

[2] N. Hansen and A. Ostermeier, Completely de-
randomized self-adaptation in evolution strategies,
Evolutionary Computation, vol. 9, no. 2, pp. 159–
195, 2001.

[3] F. Herrera and M. Lozano, Two-loop real-coded
genetic algorithms with adaptive control of muta-

tion step size, Applied Intelligence, vol. 13, pp.
187–204, 2000.

[4] D. Molina, M. Lozano, A. M. Sanchez, and
F. Herrera, Memetic algorithms based on local
search chains for large scale continuous optimiza-
tion problems: Ma-ssw-chains, Soft Computing,
vol. 15, pp. 2201–2220, 2011.

[5] R. Storn and K. Price, Differential evolution - a
simple and efficient heuristic for global optimiza-
tion over continuous spaces, Journal of Global Op-
timization, vol. 11, no. 4, pp. 341 – 359, 1997.

[6] J. Kenedy and R. C. Eberhart, Particle swarm op-
timization, in In Proc. IEEE Conference on Neural
Networks, 1995, pp. 1942–1948.

[7] D. Karaboga, B. Gorkemli, C.Ozturk, and
N. Karaboga, A comprehensive survey: artificial
bee colony (abc) algorithm and applications, Arti-
ficial Intelligence Review, vol. 42, no. 1, pp. 21–57,
2012.

[8] M. Ali and A. Torn, Population set based global
optimization algorithms: Some modifications and
numerical studies, Computers and Operations Re-
search, vol. 31, pp. 1703–1725, 2004.

[9] S. Garcia, D. Molina, M. Lozano, and F. Herrera, A
study on the use of non-parametric tests for analyz-
ing the evolutionary algorithmss behaviour: A case
study on the cec2005special session on real param-
eter optimization, Journal of Heuristics, vol. 15,
no. 6, pp. 617–644, 2009.

[10] S. Das and N. Suganthan, Differential evolution: A
survey of the state-of-the-art, in IEEE Transactions
on Evolutionary Computation, vol. 15, no. 1, 2011,
pp. 4–31.

[11] R. Gamperle, S. D. Muller, and P. Koumoutsakos,
A parameter study for differential evolution, in Ad-
vances in intelligent systems, fuzzy systems, evo-
lutionary computation, vol. 10, 2002, pp. 293–298.

[12] K. Zielinski, P. Weitkemper, R. Laur, and K. D.
Kammeyer, Parameter study for differential evolu-
tion using a power allocation problem including in-
terference cancellation, in IEEE Congress on Evo-
lutionary Computation, 2006, pp. 1857–1864.

[13] J. Zhang and A. C. Sanderson, An approxi-
mate gaussian model of differential evolution with
spherical fitness functions, in Proc. IEEE Congress
on Evolutionary Computation, 2007, pp. 2220–
2228.

[14] J. Liu and J. Lampinen, A fuzzy adaptive differ-
ential evolution algorithm, Soft Computing, vol. 9,
no. 6, pp. 448–462, 2005.



118 Miguel Leon, Ning Xiong

[15] F. Xue, A. C. Sanderson, P. P. Bonissone, and R. J.
Graves, Fuzzy logic controlled multiobjective dif-
ferential evolution, in Proc. IEEE Conference on
Fuzzy Systems, 2005, pp. 720–725.

[16] A. Qin and P. Suganthan, Self-adaptive differen-
tial evolution algorithm for numerical optimiza-
tion, The 2005 IEEE Congress on Evolutionary
Computation, vol. 2, pp. 1785–1791, 2005.

[17] J. Zhang and A. Sanderson, Jade: Adaptive dif-
ferential evolution with optional external archive,
IEEE Transactions on Evolutionary Computation,
vol. 13, pp. 945–958, 2009.

[18] S. M. Islam, S. Das, S. Ghoshand, S. Roy, and P. N.
Suganthan, An adaptive differential evolution algo-
rithm with novel mutation and crossover strategies
for global numerical optimization, Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on, vol. 42, no. 2, pp. 482–500, 2012.

[19] Z. Yang, K. Tang, and X. Yao, Scability of general-
ized adaptive differential evolution for large-scale
continuous optimization, Soft Computing, vol. 15,
no. 11, pp. 2141–2155, 2001.

[20] R. Tanabe and A. Fukinga, Success-history based
parameter adaptation for differential evolution, in
2013 IEEE Congress on Evolutionary Computa-
tion (CEC), Cancun, Mexico, 2013, pp. 71–78.

[21] M. Leon and N. Xiong, Investigation of muta-
tion strategies in differential evolution for solving

global optimization problems, in Artificial Intelli-
gence and Soft Computing. springer, June 2014,
pp. 372–383.

[22] X. Yao, Y. Liu, and G. Lin, Evolutionary program-
ming made faster, in Proc. IEEE Transactions on
Evolutionary Computation, vol. 3, no. 2, 1999, pp.
82–102.

[23] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb,
Y. P. Chen, A. Auger, and S. Tiwari, Problem defi-
nitions and evaluation criteria for the cec 2005 spe-
cial session on real-parameter optimization, Tech-
nical Report, Nanyang Technological University,
Singapore And KanGAL Report Number 2005005
(Kanpur Genetic Algorithms Laboratory, IIT Kan-
pur), Tech. Rep., May 2005.

[24] D. Wolpert and W. Macready, No free lunch theo-
rems for optimization, IEEE Transactions on Evo-
lutionary Computation, vol. 1, no. 1, pp. 67–82,
1997.

[25] D. Whitley and J. Rowe, Focused no free lunch the-
orems, in Proc. Conf. Genetic Evolutionary Com-
puting, 2008, pp. 811–818.

[26] M. Leon and N. Xiong, Using random local search
helps in avoiding local optimum in diefferential
evolution, in Proc. Artificial Intelligence and Ap-
plications, AIA2014, Innsbruck, Austria, 2014, pp.
413–420.

Miguel Leon received the B.S. and 
M.S. degree in Computer Science from 
Granada University, Spain in 2011 and 
2013, respectively. He has been worked 
toward the Ph.D. degree in the School 
of Innovation, Design and Engineer-
ing, Mälardalen University, Sweden 
since 2013. His research interests in-
clude evolutionary algorithms, differ-

ential evolution, and applications of evolutionary algorithms.

Ning Xiong is associate professor at 
Mälardalen University, Sweden. He 
obtained the Ph.D from the University 
of Kaiserslautern (Germany) with out-
standing distinction. His research in-
terests include: machine learning, evo-
lutionary computation, fuzzy systems, 
management of uncertainty, as well as 
multi-sensor data fusion. He is serving 

as editorial board member for four international journals. He 
was program chair for the International Conference on Natu-
ral Computation 2014. He also has been program committee 
member for a number of conferences and invited referee for 
many leading international journals.


