
JAISCR, 2014, Vol. 4, No. 3, pp. 167

GPFIS-CONTROL: A GENETIC FUZZY SYSTEM FOR
CONTROL TASKS

Adriano S. Koshiyama, Marley M. B. R. Vellasco and Ricardo Tanscheit

Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro Rua Marqus de So Vicente,
225, Gvea – Rio de Janeiro, RJ, Brazil

Abstract

This work presents a Genetic Fuzzy Controller (GFC), called Genetic Programming Fuzzy
Inference System for Control tasks (GPFIS-Control). It is based on Multi-Gene Genetic
Programming, a variant of canonical Genetic Programming. The main characteristics and
concepts of this approach are described, as well as its distinctions from other GFCs. Two
benchmarks application of GPFIS-Control are considered: the Cart-Centering Problem
and the Inverted Pendulum. In both cases results demonstrate the superiority and poten-
tialities of GPFIS-Control in relation to other GFCs found in the literature.

1 Introduction

Fuzzy Logic Controllers (FLCs) [1,2] have been
extensively used as an alternative to manipulate and
describe complex systems when traditional control
methods do not provide viable solutions. FLCs
have the capacity of modeling systems by using
fuzzy ”if-then” rules, normally provided by an ex-
pert. Classical fuzzy logic approaches employ ei-
ther a Mamdani-type Fuzzy Inference System (FIS)
[2-3] or a Takagi-Sugeno (TSK) FIS [4-5] and both
have different parameters that must be tuned in or-
der to obtain the best performance, such as rule
base, membership function parameters, etc. These
parameters can be tuned manually by an expert or
automatically by employing a learning approach.
In this respect, this work considers Genetic Fuzzy
Systems [3,6], or, more specifically, Genetic Fuzzy
Controllers.

In Genetic Fuzzy Controllers (GFC) the auto-
matic learning and tuning of parameters is based
on a Genetic-based Meta-Heuristic (GBMH). Some
previous works have considered FLCs embedded
with a Genetic Algorithm (GA) to tune membership
function parameters [7-8] or to search for concise

fuzzy rule bases [9-10]. More recently, some works
have explored Genetic Programming (GP) to build
an FLC by using methodologies and concepts simi-
lar to those employed on a GA based FLC [11-12].

In general, it is advantageous to use a GBMH
exclusively to search for the FLC best configura-
tion. In this perspective, the meta-heuristic is seen
as a tool to build an FLC and not as a mecha-
nism that may change reasoning. Still, in frame-
works with a high level of hybridization, in which
a genetic-based meta-heuristic has a higher partici-
pation, it may be possible to obtain better accuracy.
Examples are Neuro-Fuzzy models [13,14], where
Neural Networks play an important role in the hy-
brid architecture, enabling high accuracy and fast
convergence.

This work proposes a new GFC called Genetic
Programming Fuzzy Inference System for Control
tasks (GPFIS-Control). It makes use of Multi-Gene
Genetic Programming [15-16] for extracting knowl-
edge from the plant. The resulting architecture
should: (1) automatically tune the FLC parameters;
(2) make the plant output reach the setpoint as fast
as possible; (3) provide linguistic comprehension

 – 179
10.1515/jaiscr-2015-0006

168 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

for each FLC action; and (4) be easy to implement.

This paper is organized as follows: Section
2 describes related works on GFC and consid-
ers some applications involving GP. Section 3 de-
scribes Multi-Gene Genetic Programming and its
basic differences from standard Genetic Program-
ming strategy. Section 4 presents the proposed
GPFIS-Control in detail. Case studies are consid-
ered in Section 5 and section 5 concludes the work.

2 Related Works

The first attempt to build an FLC by using
GBMH algorithms was presented in [7], where a
GA was used to tune membership functions param-
eters of input and output variables. Subsequently,
many other researchers have employed evolution-
ary algorithms, mostly GA, to tune FLC parameters
and search for concise rule bases [17-19].

Several works can be found in the GFC area,
such as [9], which presents an evolutionary proce-
dure to modify rules, initially set by an expert, for a
Mamdani type FLC. In [20], membership functions,
rule sets and consequent types (TSK or Mamdani
types) are tuned by a GA. Two other approaches
are: [8], which employs linguistic hedge operators,
selected by a GA, to tune membership functions,
and [10] where a hierarchical self-organized GA-
based scheme is proposed.

Recently, most works that make use of GA to
tune FLCs focus on real applications [19, 21, 22].
Type-2 FLCs have also been tuned through GA
[18]. Additionally, some non-GBMH works for
tuning an FLC have also considered Particle Swarm
Optimization [23] and other bio-inspired algorithms
[24].

Few attempts, however, have been made to
build an FLC by using GP, despite its dynamic
structure that benefits rule base codification [6].
The first works in this sense were [25] and [26],
which used a type-constrained GP to build a fuzzy
rule based system. In [27] an FLC based on GP
for mobile robot path tracking is presented. More
recently, [12] proposes the use of a GP variant to
build a TSK FLC. All those approaches adapt the
GP structure to formulate an FLC in a canonical
way, similarly to a GA common procedure. Some
intrinsic advantages of GP are effectively used by

these authors, but many possibilities arise, such as
the use of combinations of different t-norms and t-
conorms, of linguistic hedges and of different ag-
gregation operators.

All approaches previously discussed focus on
Pittsburgh-type GFC, i.e., an individual of the pop-
ulation encodes a whole fuzzy rule set [3,6]. Then,
methods that consider an individual as a fuzzy rule –
Michigan, Genetic Cooperative-Competitive Learn-
ing and Iterative Rule Learning – have not been no-
ticed in the literature [17].

GPFIS-Control is a novel GFC based on Multi-
Gene Genetic Programming. This model builds a
Pittsburgh-type Fuzzy Rule Based System, making
use of a different reasoning method to learn fuzzy
rules.

3 Multi-Gene Genetic Program-
ming

Genetic Programming (GP) [28-29] belongs to
the Evolutionary Computation field. Typically, it
employs a population of individuals, each of them
denoted by a tree structure that codifies a mathe-
matical equation, which describes the relationship
between the output Y and a set of input terminals
X j (j=1,...,J) (features, in the current work).

Multi-Gene Genetic Programming (MGGP)
[15-16] denotes an individual as a structure of trees,
also called genes, that receives X j and tries to pre-
dict Y (Figure 1). Each individual is composed of
D functions fd (d=1,. . . D) that map X j variables to
Y through user-defined mathematical operations. In
GP terminology, the X j input variables are included
in the Terminal set, while the mathematical opera-
tions (plus, minus, etc.) are inserted in the Function
Set (or Mathematical Operations Set).

Figure 1. Example of a multi-gene individual

With respect to genetic operators, mutation in
MGGP is similar to that in GP. As for crossover, the
level at which the operation is performed must be

considers some applications involving GP.
Section 3 describes Multi-Gene Genetic
Programming and its basic differences from
standard Genetic Programming strategy.
Section 4 presents the proposed GPFIS-
Control in detail. Case studies are considered
in Section 5 and section 5 concludes the work.

2 Related Works

The first attempt to build an FLC by using
GBMH algorithms was presented in [7], where
a GA was used to tune membership functions
parameters of input and output variables.
Subsequently, many other researchers have
employed evolutionary algorithms, mostly GA,
to tune FLC parameters and search for concise
rule bases [17-19].

Several works can be found in the GFC
area, such as [9], which presents an
evolutionary procedure to modify rules,
initially set by an expert, for a Mamdani type
FLC. In [20], membership functions, rule sets
and consequent types (TSK or Mamdani types)
are tuned by a GA. Two other approaches are:
[8], which employs linguistic hedge operators,
selected by a GA, to tune membership
functions, and [10] where a hierarchical self-
organized GA-based scheme is proposed.

Recently, most works that make use of GA
to tune FLCs focus on real applications [19,
21, 22]. Type-2 FLCs have also been tuned
through GA [18]. Additionally, some non-
GBMH works for tuning an FLC have also
considered Particle Swarm Optimization [23]
and other bio-inspired algorithms [24].

Few attempts, however, have been made to
build an FLC by using GP, despite its dynamic
structure that benefits rule base codification
[6]. The first works in this sense were [25] and
[26], which used a type-constrained GP to
build a fuzzy rule based system. In [27] an
FLC based on GP for mobile robot path
tracking is presented. More recently, [12]
proposes the use of a GP variant to build a
TSK FLC. All those approaches adapt the GP
structure to formulate an FLC in a canonical
way, similarly to a GA common procedure.
Some intrinsic advantages of GP are
effectively used by these authors, but many
possibilities arise, such as the use of

combinations of different t-norms and t-
conorms, of linguistic hedges and of different
aggregation operators.

All approaches previously discussed focus
on Pittsburgh-type GFC, i.e., an individual of
the population encodes a whole fuzzy rule set
[3,6]. Then, methods that consider an
individual as a fuzzy rule -- Michigan, Genetic
Cooperative-Competitive Learning and
Iterative Rule Learning – have not been
noticed in the literature [17].

GPFIS-Control is a novel GFC based on
Multi-Gene Genetic Programming. This model
builds a Pittsburgh-type Fuzzy Rule Based
System, making use of a different reasoning
method to learn fuzzy rules.

3 Multi-Gene Genetic
Programming

Genetic Programming (GP) [28-29]
belongs to the Evolutionary Computation field.
Typically, it employs a population of
individuals, each of them denoted by a tree
structure that codifies a mathematical equation,
which describes the relationship between the
output Y and a set of input terminals Xj
(j=1,...,J) (features, in the current work).

Multi-Gene Genetic Programming
(MGGP) [15-16] denotes an individual as a
structure of trees, also called genes, that
receives Xj and tries to predict Y (Figure 1).
Each individual is composed of D functions fd
(d=1,…D) that map Xj variables to Y through
user-defined mathematical operations. In GP
terminology, the Xj input variables are included
in the Terminal set, while the mathematical
operations (plus, minus, etc.) are inserted in the
Function Set (or Mathematical Operations Set).

Figure 1: Example of a multi-gene individual.

.

169Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

for each FLC action; and (4) be easy to implement.

This paper is organized as follows: Section
2 describes related works on GFC and consid-
ers some applications involving GP. Section 3 de-
scribes Multi-Gene Genetic Programming and its
basic differences from standard Genetic Program-
ming strategy. Section 4 presents the proposed
GPFIS-Control in detail. Case studies are consid-
ered in Section 5 and section 5 concludes the work.

2 Related Works

The first attempt to build an FLC by using
GBMH algorithms was presented in [7], where a
GA was used to tune membership functions param-
eters of input and output variables. Subsequently,
many other researchers have employed evolution-
ary algorithms, mostly GA, to tune FLC parameters
and search for concise rule bases [17-19].

Several works can be found in the GFC area,
such as [9], which presents an evolutionary proce-
dure to modify rules, initially set by an expert, for a
Mamdani type FLC. In [20], membership functions,
rule sets and consequent types (TSK or Mamdani
types) are tuned by a GA. Two other approaches
are: [8], which employs linguistic hedge operators,
selected by a GA, to tune membership functions,
and [10] where a hierarchical self-organized GA-
based scheme is proposed.

Recently, most works that make use of GA to
tune FLCs focus on real applications [19, 21, 22].
Type-2 FLCs have also been tuned through GA
[18]. Additionally, some non-GBMH works for
tuning an FLC have also considered Particle Swarm
Optimization [23] and other bio-inspired algorithms
[24].

Few attempts, however, have been made to
build an FLC by using GP, despite its dynamic
structure that benefits rule base codification [6].
The first works in this sense were [25] and [26],
which used a type-constrained GP to build a fuzzy
rule based system. In [27] an FLC based on GP
for mobile robot path tracking is presented. More
recently, [12] proposes the use of a GP variant to
build a TSK FLC. All those approaches adapt the
GP structure to formulate an FLC in a canonical
way, similarly to a GA common procedure. Some
intrinsic advantages of GP are effectively used by

these authors, but many possibilities arise, such as
the use of combinations of different t-norms and t-
conorms, of linguistic hedges and of different ag-
gregation operators.

All approaches previously discussed focus on
Pittsburgh-type GFC, i.e., an individual of the pop-
ulation encodes a whole fuzzy rule set [3,6]. Then,
methods that consider an individual as a fuzzy rule –
Michigan, Genetic Cooperative-Competitive Learn-
ing and Iterative Rule Learning – have not been no-
ticed in the literature [17].

GPFIS-Control is a novel GFC based on Multi-
Gene Genetic Programming. This model builds a
Pittsburgh-type Fuzzy Rule Based System, making
use of a different reasoning method to learn fuzzy
rules.

3 Multi-Gene Genetic Program-
ming

Genetic Programming (GP) [28-29] belongs to
the Evolutionary Computation field. Typically, it
employs a population of individuals, each of them
denoted by a tree structure that codifies a mathe-
matical equation, which describes the relationship
between the output Y and a set of input terminals
X j (j=1,...,J) (features, in the current work).

Multi-Gene Genetic Programming (MGGP)
[15-16] denotes an individual as a structure of trees,
also called genes, that receives X j and tries to pre-
dict Y (Figure 1). Each individual is composed of
D functions fd (d=1,. . . D) that map X j variables to
Y through user-defined mathematical operations. In
GP terminology, the X j input variables are included
in the Terminal set, while the mathematical opera-
tions (plus, minus, etc.) are inserted in the Function
Set (or Mathematical Operations Set).

Figure 1. Example of a multi-gene individual

With respect to genetic operators, mutation in
MGGP is similar to that in GP. As for crossover, the
level at which the operation is performed must be

GPFIS-CONTROL: A GENETIC FUZZY . . .

specified: it is possible to apply crossover at high
and low levels. The low level is the space where
it is possible to manipulate the structures (terminals
and functions) of equations present in an individual.
The high level, on the other hand, is the space where
expressions can be manipulated in a macro way. In
this case, mutation and low level crossover opera-
tions are similar to those performed in GP. Figure
2 presents a multi-gene individual with five equa-
tions (D=5). Figure 2a shows the mutation opera-
tion, while Figure 2b a low level crossover.

An example of high level crossover is displayed
in Figure 2c. By observing the dashed lines, it can
be seen that the equations were switched from an
individual to the other. The cutting point can be
symmetric – the same number of equations is ex-
changed between individuals –, or asymmetric. In-
tuitively, high level crossover has a deeper effect on
the output than low level crossover or mutation has.
In of the proposed GPFIS-Control model, the asym-
metric high level crossover is considered.

In general, the evolutionary process in MGGP
differs from GP due to the addition of two parame-
ters: maximum number of trees per individual and
high level crossover rate. For the first parameter, a
high value is always used in order to avoid creat-
ing obstacles in the evolutionary process (i.e., not
allowing the MGGP individual to create more trees,
which could be necessary to provide solutions for
complex problems). On the other hand, the high
level crossover rate, similar to other genetic oper-
ators’ rates, needs to be adjusted and its value is
always determined by performing different tests.

4 GPFIS-Control

The GPFIS-Control model is shown in Figure
3. The control signal yt is sent to the plant at time t
(t=0,1, ..., T). The plant outputs ztk (k=1,. . . K) are
compared with the setpoint value, so that the result
of the difference between each plant’s output and its
respective setpoint (the error signal xtk = ztk – Refk)
is presented to the GPFIS-Control model. By using
xtk it is possible to build a control signal yt to satisfy
a performance criteria (Fitness function g(xtk, t)).

The GPFIS-Control model is comprised of four
modules: fuzzification, inference, defuzzification
and evaluation. The inference process begins when

each feedback error xtk is mapped on fuzzy sets.
Then, functions that map each linguistic state of xtk
to a state of yt are synthesized based on MGGP prin-
ciples. The crisp control signal is obtained through
the defuzzification process. This solution is eval-
uated and then selection and recombination opera-
tors are applied. These steps are repeated until a
stopping criterion is met. These four modules are
described in details in the following sub-sections.

4.1 Fuzzification

Let xtk and yt admit J distinct linguistic terms,
or fuzzy sets (j=1,...,J). These are defined by
normalized and uniformly distributed membership
functions [30]. Figure 4 presents an example of
the fuzzification of the k-th plant output, with seven
membership functions with the following linguis-
tic terms: NB – Negative Big; NM – Negative
Medium; NS – Negative Small; NZ – Near Zero;
PS – Positive Small; PM – Positive Medium; and
PB – Positive Big (in this case, j=1,2,...,7).

Figure 4. Example of membership functions

After fuzzification of each input xtk, the GPFIS-
Control inference process initiates.

4.2 Fuzzy Inference

The inference procedure consists of three
stages: Formulation, Partitioning and Aggregation.
In Formulation stage, t-norm, t-conorm, linguistic
hedges and negation operators are defined. In Parti-
tioning stage, the mechanism that connects each an-
tecedent with a consequent is established. Finally,
in Aggregation stage, operators used to combine all
rules are defined.

4.2.1 Formulation

Through each A jk(xtk) (membership degree of
xtk to a fuzzy set A jk), GPFIS-Control evolves a

Figure 3: Block diagram of GPFIS-Control model.

4 GPFIS-Control

The GPFIS-Control model is shown in
Figure 3. The control signal yt is sent to the
plant at time t (t=0,1, ..., T). The plant outputs
ztk (k=1,…K) are compared with the setpoint
value, so that the result of the difference
between each plant’s output and its respective
setpoint (the error signal xtk = ztk – Refk) is
presented to the GPFIS-Control model. By
using xtk it is possible to build a control signal
yt to satisfy a performance criteria (Fitness
function g(xtk, t)).

The GPFIS-Control model is comprised of
four modules: fuzzification, inference,
defuzzification and evaluation. The inference
process begins when each feedback error xtk is
mapped on fuzzy sets. Then, functions that
map each linguistic state of xtk to a state of yt
are synthesized based on MGGP principles.
The crisp control signal is obtained through the
defuzzification process. This solution is
evaluated and then selection and
recombination operators are applied. These
steps are repeated until a stopping criterion is
met. These four modules are described in
details in the following sub-sections.

4.1. Fuzzification

Let xtk and yt admit J distinct linguistic
terms, or fuzzy sets (j=1,...,J). These are
defined by normalized and uniformly
distributed membership functions [30]. Figure
4 presents an example of the fuzzification of
the k-th plant output, with seven membership
functions with the following linguistic terms:
NB – Negative Big; NM – Negative Medium;
NS – Negative Small; NZ – Near Zero; PS –
Positive Small; PM – Positive Medium; and
PB – Positive Big (in this case, j=1,2,...,7).

Figure 4: Example of membership functions.

 After fuzzification of each input xtk, the
GPFIS-Control inference process initiates.

170 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 2. Example of Multi-Gene Genetic Programming recombination operators

Figure 3. Block diagram of GPFIS-Control model

Figure 2: Example of Multi-Gene Genetic Programming recombination operators

. With respect to genetic operators, mutation
in MGGP is similar to that in GP. As for
crossover, the level at which the operation is
performed must be specified: it is possible to
apply crossover at high and low levels. The
low level is the space where it is possible to
manipulate the structures (terminals and
functions) of equations present in an
individual. The high level, on the other hand, is
the space where expressions can be
manipulated in a macro way. In this case,
mutation and low level crossover operations
are similar to those performed in GP. Figure 2
presents a multi-gene individual with five
equations (D=5). Figure 2a shows the mutation
operation, while Figure 2b a low level
crossover.

An example of high level crossover is
displayed in Figure 2c. By observing the
dashed lines, it can be seen that the equations
were switched from an individual to the other.
The cutting point can be symmetric – the same
number of equations is exchanged between

individuals –, or asymmetric. Intuitively, high
level crossover has a deeper effect on the
output than low level crossover or mutation
has. In of the proposed GPFIS-Control model,
the asymmetric high level crossover is
considered.

In general, the evolutionary process in
MGGP differs from GP due to the addition of
two parameters: maximum number of trees per
individual and high level crossover rate. For
the first parameter, a high value is always used
in order to avoid creating obstacles in the
evolutionary process (i.e., not allowing the
MGGP individual to create more trees, which
could be necessary to provide solutions for
complex problems). On the other hand, the
high level crossover rate, similar to other
genetic operators’ rates, needs to be adjusted
and its value is always determined by
performing different tests.

Figure 3: Block diagram of GPFIS-Control model.

4 GPFIS-Control

The GPFIS-Control model is shown in
Figure 3. The control signal yt is sent to the
plant at time t (t=0,1, ..., T). The plant outputs
ztk (k=1,…K) are compared with the setpoint
value, so that the result of the difference
between each plant’s output and its respective
setpoint (the error signal xtk = ztk – Refk) is
presented to the GPFIS-Control model. By
using xtk it is possible to build a control signal
yt to satisfy a performance criteria (Fitness
function g(xtk, t)).

The GPFIS-Control model is comprised of
four modules: fuzzification, inference,
defuzzification and evaluation. The inference
process begins when each feedback error xtk is
mapped on fuzzy sets. Then, functions that
map each linguistic state of xtk to a state of yt
are synthesized based on MGGP principles.
The crisp control signal is obtained through the
defuzzification process. This solution is
evaluated and then selection and
recombination operators are applied. These
steps are repeated until a stopping criterion is
met. These four modules are described in
details in the following sub-sections.

4.1. Fuzzification

Let xtk and yt admit J distinct linguistic
terms, or fuzzy sets (j=1,...,J). These are
defined by normalized and uniformly
distributed membership functions [30]. Figure
4 presents an example of the fuzzification of
the k-th plant output, with seven membership
functions with the following linguistic terms:
NB – Negative Big; NM – Negative Medium;
NS – Negative Small; NZ – Near Zero; PS –
Positive Small; PM – Positive Medium; and
PB – Positive Big (in this case, j=1,2,...,7).

Figure 4: Example of membership functions.

 After fuzzification of each input xtk, the
GPFIS-Control inference process initiates.

171Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 2. Example of Multi-Gene Genetic Programming recombination operators

Figure 3. Block diagram of GPFIS-Control model

GPFIS-CONTROL: A GENETIC FUZZY . . .

controller whose ouput has several terms (B1= Neg-
ative Big, ..., B7= Positive Big, for example), with
membership degrees given by:

µB1 (yt) = g
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
(1)

µB2 (yt) = g
[

fd∈s2

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
(2)

...

µBJ (yt) = g
[

fd∈sJ

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
(3)

where fd∈s j

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)
represents a

set of functions, where each one combines all
µA jk (xtk), k=1,.., K, by using a set of user-defined
mathematical operations; s j (j=1,. . . , J) is an in-
dex set that describes which d-th function fd is re-
lated to the j-th consequent term (d ∈ s j). Methods
to define s j are best described in the Partitioning
stage. In order to each function fd associated to s j

behave as a fuzzy rule, it needs to employ t-norm,
t-conorm, negation and linguistic hedges operators,
with the aim to represent logic connectives for each
linguistic term induced by µA jk (xtk). Finally, g ag-
gregates the activation degrees of each rule set (rep-
resented by fd∈s j) in a final value. Therefore, if
a set A jk is activated, GPFIS-Control builds a rule
set (function set) that combines all membership de-
grees (µA jk (xtk)) and produces an action.

In Formulation stage, some parameters of
GPFIS-Control must be defined. In MGGP, initial
parameters are called Terminals (input variables)
and Mathematical Operations or Function Set (plus,
times, etc.). In GPFIS-Control, on the other hand,
the terminology will be Input Fuzzy Sets and Fuzzy
Operators Set, respectively. Table 1 presents the ini-
tial user-defined parameters.

Table 1. Input Fuzzy Sets and Fuzzy Operators

Input Fuzzy Sets Fuzzy Operators
Set

µA j1 (xt1) , . . . ,µA jK (xtK) t-norms, t-conorms,
negation and lin-
guistic hedges oper-
ators

Subsequently, by using the Fuzzy Operators
Set, the µA jk (xtk) is combined in order to best

describe the actions µB j (yt) taken by the con-
troller. It is possible to enter a negated or modified
(”hedged”) fuzzy set in the Input Fuzzy Sets stage,
instead of using negation and linguistic hedge oper-
ators in the Fuzzy Operators Set stage. This entails
a larger search space, but can be of help in rules
analysis. In this case, this procedure has been used
to make the fuzzy rules simpler.

By using the operators and membership func-
tions shown in Table 1, the MGGP builds premises
of fuzzy rules as follows:

”If X1is A j1 and and XK is A jK”

where negation and linguistic hedges can operate on
each element of the antecedent term.

4.2.2 Partitioning

Let S={s1,s2,...,sJ} be the set of indicators s j,
where each s j represents which fd (d={1,...,D}) is
related to the j-th consequent B j. The method that
describes which d-th function is associated to s j is
called Uniform Division. This partitioning method
makes use of a simple heuristic, given by:

1 Compute: U =
⌊D

J

⌋
(where ⌊.⌋ is the floor oper-

ator).

2 Partition: s1= {1,...,U}, s2= {U+1,..., 2*U},...,
sJ= {U*(J-1)+1,...,U*J}.

As an example, consider D (number of func-
tions) = 10 and J (number of consequent terms) =
5. Thus U = 2, s1= {1, 2}, s2= {3,4}, s3= {5,6}, s4=
{7,8}, s5= {9,10}. Figure 5 illustrates this process.

In summary, each fd is uniformly divided for
each s jso that a consequent has at least one rule
associated to it. This method is similar to others
GFS based on GP, such that consequent and an-
tecedent terms are both synthesized. Through the
definition of the rule set associated to each conse-
quent (S={s0,s1,s2,...,sJ}), the next step is to aggre-
gate them, in order to generate a final degree of ac-
tivation.

4.2.3 Aggregation

Many different aggregation operators may be
found in the literature [31-32].

172 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 5. Uniform division procedure

Some examples of g
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
are:

– g → max
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
:

max aggregation operator are the most common
used on Mamdani type FIS.

– g → ∑ {d∈sj}
card(s j)

[[fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)
] :

arithmetic mean operator intends to provide
equal weights for each element of the rule set
associated to the j-th consequent.

In [31], several aggregation operators are pre-
sented. It can be shown that t-norms and t-conorms
are special cases of aggregation operators. In the
experiments both the arithmetic mean and maxi-
mum operators have been used. Once the aggre-
gation operators have been defined, it is possible to
compute the membership degrees for different ac-
tions µB j (yt) taken by the controller. The defuzzi-
fied control signal yt is then computed.

4.3 Defuzzification

Basically, a defuzzification method (center of
gravity, mean of maximum, etc.) produces a crisp
value that is an interpretation of the information
contained in the output fuzzy set resultant from
the inference process. In GPFIS-Control the height
method is used:

yt =
∑J

j=1 b jµB j(yt)

∑J
j=1 µB j(yt)

(4)

where b j represents the center (location) parameter
of each B j. The maximum height method may be
employed when the control signal assumes values
in some finite set:

yt =
∑J

j=1 ϕ jb j µB j (yt)

∑J
j=1 phi jµB j (yt)

(5)

where ϕ j is an indicator function, such that ϕ j = 1,
when µB j (Yt) > µBl (Yt), for all l=1,...,J, e l ̸= j, e
ϕ j = 0, otherwise.

Figure 6 presents an illustration of the dif-
ference between these procedures. We obtained:
µNM (Yt) = 0,8, µPZ (Yt) = 0,6, while µNG (Yt) =
µNP (Yt) = µPP (Yt) = µPM (Yt) = µPG (Yt) = 0.

Then, according to Eq. (4):

Yt =
−20 . 0,8+0 . 0,6

0,8+0,6
= −11,43

If it was used maximum height method, the re-
sponse would be -20, because the presence of only
one maxima value. Height method provides a
smoother transition between responses than maxi-
mum height.

4.4 Evaluation

The right definition of the fitness function is
crucial for obtaining a good performance of the
GPFIS-Control model. For optimal tracking of a
trajectory, a possible fitness function is the Mean
Squared Error (MSE):

MSE =
1
K

K

∑
k=1

(xtk)
2 (6)

When the MSE is minimized, the GPFIS-
Control model successfully obtains a trajectory
close to the setpoint. In minimum time problems,
the fitness function may be the time (t) the output
takes to reach an MSE < ε, where ε is a tolerance.

2. Partition: s1 = {1,...,U}, s2 = {U+1,...,
2*U},..., sJ = {U*(J-1)+1,...,U*J}.

As an example, consider D (number of

functions) = 10 and J (number of consequent
terms) = 5. Thus U = 2, s1 = {1, 2}, s2 = {3,4},
s3 = {5,6}, s4 = {7,8}, s5 = {9,10}. Figure 5
illustrates this process.

In summary, each fd is uniformly divided
for each sj so that a consequent has at least one
rule associated to it. This method is similar to
others GFS based on GP, such that consequent
and antecedent terms are both synthesized.
Through the definition of the rule set
associated to each consequent
(S={s0,s1,s2,...,sJ}), the next step is to aggregate
them, in order to generate a final degree of
activation.

4.2. 3. Aggregation

Many different aggregation operators may
be found in the literature [31-32].

Some examples of
𝑔𝑔 [𝑓𝑓𝑑𝑑∈𝑠𝑠1 (𝜇𝜇𝐴𝐴𝑗𝑗1(𝑥𝑥𝑡𝑡1), … , 𝜇𝜇𝐴𝐴𝑗𝑗𝑗𝑗(𝑥𝑥𝑡𝑡𝑡𝑡))] are:

 𝑔𝑔 →

max [𝑓𝑓𝑑𝑑∈𝑠𝑠1 (𝜇𝜇𝐴𝐴𝑗𝑗1(𝑥𝑥𝑡𝑡1), … , 𝜇𝜇𝐴𝐴𝑗𝑗𝑗𝑗(𝑥𝑥𝑡𝑡𝑡𝑡))]:
max aggregation operator are the most
common used on Mamdani type FIS.

 𝑔𝑔 →

∑_{d∈sj}
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑗𝑗) [[𝑓𝑓𝑑𝑑∈𝑠𝑠1 (𝜇𝜇𝐴𝐴𝑗𝑗1(𝑥𝑥𝑡𝑡1), … , 𝜇𝜇𝐴𝐴𝑗𝑗𝑗𝑗(𝑥𝑥𝑡𝑡𝑡𝑡))] :
arithmetic mean operator intends to
provide equal weights for each element of
the rule set associated to the j-th
consequent.

In [31], several aggregation operators are

presented. It can be shown that t-norms and t-
conorms are special cases of aggregation
operators. In the experiments both the
arithmetic mean and maximum operators have
been used. Once the aggregation operators
have been defined, it is possible to compute the
membership degrees for different actions
𝜇𝜇𝐵𝐵𝑗𝑗(𝑦𝑦𝑡𝑡) taken by the controller. The
defuzzified control signal 𝑦𝑦𝑡𝑡 is then computed.

4.3. Defuzzification

Basically, a defuzzification method (center
of gravity, mean of maximum, etc.) produces a
crisp value that is an interpretation of the
information contained in the output fuzzy set
resultant from the inference process. In GPFIS-
Control the height method is used:

𝑦𝑦𝑡𝑡 =
∑ 𝑏𝑏𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜇𝜇𝐵𝐵𝑗𝑗(𝑦𝑦𝑡𝑡)
∑ 𝜇𝜇𝐵𝐵𝑗𝑗(𝑦𝑦𝑡𝑡)𝐽𝐽

𝑗𝑗=1
 (4)

where 𝑏𝑏𝑗𝑗 represents the center (location)
parameter of each Bj. The maximum height
method may be employed when the control
signal assumes values in some finite set:

𝑦𝑦𝑡𝑡 =
∑ 𝜙𝜙𝑗𝑗𝑏𝑏𝑗𝑗 𝜇𝜇𝐵𝐵𝐵𝐵(𝑦𝑦𝑡𝑡)𝐽𝐽

𝑗𝑗=1
∑ 𝜙𝜙𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜇𝜇𝐵𝐵𝐵𝐵(𝑦𝑦𝑡𝑡)

 (5)

where 𝜙𝜙𝑗𝑗 is an indicator function, such that 𝜙𝜙𝑗𝑗
= 1, when 𝜇𝜇𝐵𝐵𝑗𝑗(𝑌𝑌𝑡𝑡) > 𝜇𝜇𝐵𝐵𝑙𝑙(𝑌𝑌𝑡𝑡), for all l=1,...,J, e
l ≠ j, e 𝜙𝜙𝑗𝑗 = 0, otherwise.

 Figure 5. Uniform division procedure.

173Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 5. Uniform division procedure

Some examples of g
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
are:

– g → max
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
:

max aggregation operator are the most common
used on Mamdani type FIS.

– g → ∑ {d∈sj}
card(s j)

[[fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)
] :

arithmetic mean operator intends to provide
equal weights for each element of the rule set
associated to the j-th consequent.

In [31], several aggregation operators are pre-
sented. It can be shown that t-norms and t-conorms
are special cases of aggregation operators. In the
experiments both the arithmetic mean and maxi-
mum operators have been used. Once the aggre-
gation operators have been defined, it is possible to
compute the membership degrees for different ac-
tions µB j (yt) taken by the controller. The defuzzi-
fied control signal yt is then computed.

4.3 Defuzzification

Basically, a defuzzification method (center of
gravity, mean of maximum, etc.) produces a crisp
value that is an interpretation of the information
contained in the output fuzzy set resultant from
the inference process. In GPFIS-Control the height
method is used:

yt =
∑J

j=1 b jµB j(yt)

∑J
j=1 µB j(yt)

(4)

where b j represents the center (location) parameter
of each B j. The maximum height method may be
employed when the control signal assumes values
in some finite set:

yt =
∑J

j=1 ϕ jb j µB j (yt)

∑J
j=1 phi jµB j (yt)

(5)

where ϕ j is an indicator function, such that ϕ j = 1,
when µB j (Yt) > µBl (Yt), for all l=1,...,J, e l ̸= j, e
ϕ j = 0, otherwise.

Figure 6 presents an illustration of the dif-
ference between these procedures. We obtained:
µNM (Yt) = 0,8, µPZ (Yt) = 0,6, while µNG (Yt) =
µNP (Yt) = µPP (Yt) = µPM (Yt) = µPG (Yt) = 0.

Then, according to Eq. (4):

Yt =
−20 . 0,8+0 . 0,6

0,8+0,6
= −11,43

If it was used maximum height method, the re-
sponse would be -20, because the presence of only
one maxima value. Height method provides a
smoother transition between responses than maxi-
mum height.

4.4 Evaluation

The right definition of the fitness function is
crucial for obtaining a good performance of the
GPFIS-Control model. For optimal tracking of a
trajectory, a possible fitness function is the Mean
Squared Error (MSE):

MSE =
1
K

K

∑
k=1

(xtk)
2 (6)

When the MSE is minimized, the GPFIS-
Control model successfully obtains a trajectory
close to the setpoint. In minimum time problems,
the fitness function may be the time (t) the output
takes to reach an MSE < ε, where ε is a tolerance.

GPFIS-CONTROL: A GENETIC FUZZY . . .

GPFIS-Control tries to reduce the size and com-
plexity of the rule base by employing a simple
heuristic called Lexicographic Parsimony Pressure
[33]. This technique is only used in the selection
phase: given two individuals with the same fitness,
the best one is that with fewer nodes. Fewer nodes
indicate rules with fewer antecedents, hedge and
negation operators, as well as few functions (fd),
and, therefore, a smaller rule set.

After the evaluation procedure, a set of individ-
uals are selected (using tournament procedure) and
recombined. Then, in a subset of the population,
the mutation (Figure 7a), low-level crossover (Fig-
ure 7b) or high-level crossover (Figure 7c) opera-
tors are applied. Finally, a new population is gener-
ated.

This process is repeated until a stopping crite-
ria is met. At this moment, the final population is
returned.

5 Case Studies

Two benchmark problems have been consid-
ered to evaluate the GPFIS-Control model: cart-
centering [25,28] and inverted pendulum [9,12].
The cart-centering problem has been used to assess
the performance of GPFIS-Control in comparison
with other GFCs. The application to the inverted
pendulum made use of the GPFIS-Control param-
eters obtained in the tuning for the cart-centering
problem. Results were compared to those presented
in [12].

5.1 Experimental Settings

5.1.1 Cart-centering Problem

The cart-centering problem consists of a cart
with mass m moving on a frictionless rail; at some
instant t its position is xt (m), with velocity vt (m/s).
The cart must stop (vt= 0) at a user-defined setpoint
ref. Tolerance values ε may be considered, so that
|xt – ref.|< ε and |vt – ref.|< ε. The plant dynamics
is given by Equations (7) and (8):

vt+τ = vt + τ
Ft

m
(7)

xt+τ = xt + τvt (8)

where τ is the sampling period and Ft is the force
(N) applied by the controller to the cart at time t.
The objective is to reach the setpoint in minimum
time. The performance of GPFIS-Control has been
compared to the GFC presented in [25]. Several
configurations for GPFIS-Control (t-norms, aggre-
gation operators, etc.) have been evaluated. To
perform a fair comparison, configurations were the
same as those in [25] for all variables and parame-
ters (Table 2 displays these values).

GPFIS-Control is required to move the cart un-
til |xt – 0|< 0.5 and |vt – 0|< 0.5, given 16 initial
values uniformly distributed on the xt domain. The
fitness function has been defined as:

Fitness = tε + ∑
t
|xt | (9)

where tε is the time needed to satisfy the stopping
criteria (|xt – 0|< 0.5 and |vt – 0|< 0.5). An individ-
ual in the GPFIS-Control population is considered
unfeasible if it cannot stop the cart in 10 seconds
(500 sampling steps).

Table 2. Configurations Set for Cart-Centering
Problem

Variable Domain
Ft [-2.5, 2.5] N
vt [-2.5, 2.5] m/s
xt [-2.5, 2.5] m
Parameter Value
τ 0.02s
ε 0.5
m 2.0 kg
ref. xt = vt = 0

After the best solution is found, it is applied to
1000 initial random positions in order to evaluate
the time taken by GPFIS-Control to stop the cart.
In order to perform a fair comparison with [25], the
following procedure has been executed 10 times: (i)
generate a GPFIS-Control model and, (ii) apply it
on 1000 random position, in order to produce sta-
tistical relevant results. The best GPFIS-Control
model is obtained, in each execution, after 25000
evaluations (population size = 50 and number of
generations = 500, respectively). Table 3 displays
all the parameters of the GPFIS-Control model.

174 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 6. Example for defuzzification procedures

Table 3. Remaining GPFIS-Control parameters

Parameter Value
Tournament Size 5
Maximum Tree Depth 5
Elitism Rate 1%
Maximum rules per in-
dividual

50

Low level crossover
rate

75%

High level crossover
rate

50%

Mutation rate 20%
Direct reproduction
rate

5%

Input Fuzzy Sets 7 Fuzzy Sets + Classi-
cal Negation* of each
Fuzzy Set per variable

Fuzzy Operators Set t-norm: product,
others: described for
each experiment

* used only when told

5.1.2 Inverted Pendulum Problem

The second experiment consisted of an appli-
cation of GPFIS-Control to the inverted pendulum
problem. Results were then compared to those of
[12]. In this problem, a cart of mass M with a pole
of mass m and height λ attached to its center moves

on a frictionless rail. The controller must apply Ft

in order to increase or decrease vt and consequently
change the angular velocity ωt and the pendulum
angle θt . The dynamic model [12,28] is described
below:

ϕt =
gsinθt + cos(θt)Ψ

λ
[

4
3 −

mcos2θt
M+m

] (10)

ψ=
−Ft −mλωtθ2

t sinθt

M+m
(11)

ωt+1 = ωt + τϕt (12)

θt+1 = θt + τωt (13)

at =
Ft +mλ[θ2

t sinθt −ωtcosθt]

M+m
(14)

vt+1 = vt + τat (15)

xt+1 = xt + τvt (16)

where ϕt is the angular acceleration and τ is the
sampling step. In order to perform a fair com-
parison with [12], the feasible domain for each

Figure 6 presents an illustration of the
difference between these procedures. We
obtained: 𝜇𝜇𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) = 0,8, 𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) = 0,6,
while 𝜇𝜇𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) = 𝜇𝜇𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) = 𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) =
 𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) = 𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) = 0.

Then, according to Eq. (4):

𝑌𝑌𝑡𝑡 = −20 . 0,8 + 0 . 0,6
0,8 + 0,6 = −11,43

If it was used maximum height method, the
response would be -20, because the presence of
only one maxima value. Height method
provides a smoother transition between
responses than maximum height.

4.4. Evaluation

The right definition of the fitness function
is crucial for obtaining a good performance of
the GPFIS-Control model. For optimal
tracking of a trajectory, a possible fitness
function is the Mean Squared Error (MSE):

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾 ∑(𝑥𝑥𝑡𝑡𝑡𝑡)2

𝐾𝐾

𝑘𝑘=1
 (6)

When the MSE is minimized, the GPFIS-
Control model successfully obtains a trajectory
close to the setpoint. In minimum time
problems, the fitness function may be the time
(t) the output takes to reach an MSE < ε, where
ε is a tolerance.

GPFIS-Control tries to reduce the size and
complexity of the rule base by employing a
simple heuristic called Lexicographic
Parsimony Pressure [33]. This technique is
only used in the selection phase: given two
individuals with the same fitness, the best one
is that with fewer nodes. Fewer nodes indicate
rules with fewer antecedents, hedge and
negation operators, as well as few functions
(fd), and, therefore, a smaller rule set.

After the evaluation procedure, a set of
individuals are selected (using tournament
procedure) and recombined. Then, in a subset
of the population, the mutation (Figure 7a),
low-level crossover (Figure 7b) or high-level
crossover (Figure 7c) operators are applied.
Finally, a new population is generated.

This process is repeated until a stopping
criteria is met. At this moment, the final
population is returned.

Figure 6. Example for defuzzification procedures.

175Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 6. Example for defuzzification procedures

Table 3. Remaining GPFIS-Control parameters

Parameter Value
Tournament Size 5
Maximum Tree Depth 5
Elitism Rate 1%
Maximum rules per in-
dividual

50

Low level crossover
rate

75%

High level crossover
rate

50%

Mutation rate 20%
Direct reproduction
rate

5%

Input Fuzzy Sets 7 Fuzzy Sets + Classi-
cal Negation* of each
Fuzzy Set per variable

Fuzzy Operators Set t-norm: product,
others: described for
each experiment

* used only when told

5.1.2 Inverted Pendulum Problem

The second experiment consisted of an appli-
cation of GPFIS-Control to the inverted pendulum
problem. Results were then compared to those of
[12]. In this problem, a cart of mass M with a pole
of mass m and height λ attached to its center moves

on a frictionless rail. The controller must apply Ft

in order to increase or decrease vt and consequently
change the angular velocity ωt and the pendulum
angle θt . The dynamic model [12,28] is described
below:

ϕt =
gsinθt + cos(θt)Ψ

λ
[

4
3 −

mcos2θt
M+m

] (10)

ψ=
−Ft −mλωtθ2

t sinθt

M+m
(11)

ωt+1 = ωt + τϕt (12)

θt+1 = θt + τωt (13)

at =
Ft +mλ[θ2

t sinθt −ωtcosθt]

M+m
(14)

vt+1 = vt + τat (15)

xt+1 = xt + τvt (16)

where ϕt is the angular acceleration and τ is the
sampling step. In order to perform a fair com-
parison with [12], the feasible domain for each

GPFIS-CONTROL: A GENETIC FUZZY . . .

Figure 7. Example of recombination operators applied in GPFIS-Control solutions

Figure 7: Example of recombination operators applied in GPFIS-Control solutions.

GPFIS-CONTROL: A GENETIC FUZZY . . .

Figure 7. Example of recombination operators applied in GPFIS-Control solutions

176 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

variable was set as: ωt ∈ [-0.87, 0.87] rad/s,
θt ∈ [-0.34, 0.34] rad, Ft ∈ [-25, 25] N, while
xt and vt are unconstrained, M=1kg, m=0.1kg, λ
=0.5m, g=9.8m/s2 and τ=0,01s. Two initial condi-
tions were considered: θ0 = {-0,18, 0,18}rad, with
ω0={0,0}rad/s and the setpoint is ref=0 rad with
ε=0.01. The time allowed for the position |θt – 0|<
0.01 to be reached is at most 1 second (100 sam-
pling steps).

As in [12], 100,000 evaluations (population size
= 100 and number of generations 1000) have been
made. All this procedure was repeated 10 times, in
order to generate statistical relevant results. Table 3
exhibits the remaining parameters used. The fitness
function is [12]:

Fitness =
100

∑
t=1

(θt − re f)2 (17)

In both experiments seven fuzzy sets have been
assigned to each variable (Ft, xt , vt , ωt , θt), as
shown in Figure 4. In some cases, the negation
of a fuzzy set was entered in the Input Fuzzy Sets
stage of the GPFIS-Control routine (as described in
section 4.2.1). All experiments were performed in
MATLAB R2010a [34].

5.2 Results and Discussions

5.2.1 Cart-Centering Problem

The main results obtained with the cart-
centering problem are presented in Table 4. GPFIS-
Control was tested with the linguistic hedge square
root, the classic negation operator, different ag-
gregation operators (max and average) and differ-
ent defuzzification methods (height and maximum
height). It can be seen that for almost all configu-
rations, the use of the average aggregation operator
reduces by about 39% the mean time taken by the
controller to position the cart at |xt – 0|< 0.5 and |vt

– 0|< 0.5. It may also be noted that the maximum
height defuzzification reduces that time in 14% in
average. However, the use of the negation operator
does not incur in any substantial time decrease, al-
though fewer rules are generated. In fact, the nega-
tion operator has a summarizing power, due to the
enlargement of a fuzzy set support in the universe
of discourse.

The best configurations were obtained with the
following parameters: maximum height method for
defuzzification and average as the aggregation op-
erator. Figure 8 present the 16 initial and final
positions when |xt – 0|< 0.5 and |vt – 0|< 0.5.
Figure 9 exhibits the response surface for GPFIS-
Control best configuration for (a): maximum height
defuzzification method and (b): height defuzzifica-
tion method. It can be seen that the surface for (b)
is smoother than that for (a), due to a broader set of
values that Ft can assume when the height method
is chosen.

The average best result for GPFIS-Control
(135.8 steps) compares favorably with those of [25]
(158 steps) and [35] (149 steps). The optimal solu-
tion is 129 steps.

Figure 8. Initial and final position for the best
individual in an execution of GPFIS-Control, using

Product+Root-Sq+MaxHeight and average
aggregation operator

5.2.2 Inverted Pendulum

Based on the best configuration previously es-
tablished (Product + Root-Sq + Average + Max-
Height), GPFIS-Control has been applied to the in-
verted pendulum problem. Figure 10 shows the
controller’s behavior, generated by the best individ-
ual in 100,000 evaluations, given two initial condi-
tions: θ0 = {-0,18, 0,18}rad, with ω0={0,0}rad/s.
The average best result found for GPFIS-Control
was 0.27 seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in average.
In [12] the GFC took 0.61 seconds to perform the
same task, however producing fewer rules (7 rules).

Figure 8: Initial and final position for the best
individual in an execution of GPFIS-Control,
using Product+Root-Sq+MaxHeight and
average aggregation operator.

5.2.2. Inverted Pendulum
Based on the best configuration previously

established (Product + Root-Sq + Average +
MaxHeight), GPFIS-Control has been applied
to the inverted pendulum problem. Figure 10
shows the controller’s behavior, generated by
the best individual in 100,000 evaluations,
given two initial conditions: θ0 = {-0,18,
0,18}rad, with ω0 ={0,0}rad/s. The average
best result found for GPFIS-Control was 0.27
seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in
average. In [12] the GFC took 0.61 seconds to
perform the same task, however producing
fewer rules (7 rules).

Table 4: Results of GPFIS-Control: Cart-Centering Problem

Attribute

Aggregation operator = Max
Product+Root-

Sq+
Height

Product+Root-Sq+
MaxHeight Product+Root-Sq+

Neg+Height

Product+Root-Sq+
Neg+MaxHeight

Average Steps (0.02s) 215.9 243.6 224.6 203.5
Std. Dev. Steps (0.02s) 25.73 94.09 37.89 60.78

Average Time (s) 4.318s 4.872 4.492 4.07
Average Rules 21 24 14 15

Attribute

Aggregation operator = Average
Product+Root-

Sq+
Height

Product+Root-Sq+
MaxHeight

Product+Root-Sq+
Neg+Height Product+Root-Sq+

Neg+MaxHeight

Average Steps (0.02s) 160.2 135.8 205.5 144.9
Std. Dev. Steps (0.02s) 18.92 18.94 38.99 11.43

Average Time (s) 3.204 2.796 4.11 2.89
Average Rules 27 28 26 24

Figure 9: Response surface for the best individual in cart-centering for different defuzzification methods:
 (a): maximum height; (b) height.

177Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

variable was set as: ωt ∈ [-0.87, 0.87] rad/s,
θt ∈ [-0.34, 0.34] rad, Ft ∈ [-25, 25] N, while
xt and vt are unconstrained, M=1kg, m=0.1kg, λ
=0.5m, g=9.8m/s2 and τ=0,01s. Two initial condi-
tions were considered: θ0 = {-0,18, 0,18}rad, with
ω0={0,0}rad/s and the setpoint is ref=0 rad with
ε=0.01. The time allowed for the position |θt – 0|<
0.01 to be reached is at most 1 second (100 sam-
pling steps).

As in [12], 100,000 evaluations (population size
= 100 and number of generations 1000) have been
made. All this procedure was repeated 10 times, in
order to generate statistical relevant results. Table 3
exhibits the remaining parameters used. The fitness
function is [12]:

Fitness =
100

∑
t=1

(θt − re f)2 (17)

In both experiments seven fuzzy sets have been
assigned to each variable (Ft, xt , vt , ωt , θt), as
shown in Figure 4. In some cases, the negation
of a fuzzy set was entered in the Input Fuzzy Sets
stage of the GPFIS-Control routine (as described in
section 4.2.1). All experiments were performed in
MATLAB R2010a [34].

5.2 Results and Discussions

5.2.1 Cart-Centering Problem

The main results obtained with the cart-
centering problem are presented in Table 4. GPFIS-
Control was tested with the linguistic hedge square
root, the classic negation operator, different ag-
gregation operators (max and average) and differ-
ent defuzzification methods (height and maximum
height). It can be seen that for almost all configu-
rations, the use of the average aggregation operator
reduces by about 39% the mean time taken by the
controller to position the cart at |xt – 0|< 0.5 and |vt

– 0|< 0.5. It may also be noted that the maximum
height defuzzification reduces that time in 14% in
average. However, the use of the negation operator
does not incur in any substantial time decrease, al-
though fewer rules are generated. In fact, the nega-
tion operator has a summarizing power, due to the
enlargement of a fuzzy set support in the universe
of discourse.

The best configurations were obtained with the
following parameters: maximum height method for
defuzzification and average as the aggregation op-
erator. Figure 8 present the 16 initial and final
positions when |xt – 0|< 0.5 and |vt – 0|< 0.5.
Figure 9 exhibits the response surface for GPFIS-
Control best configuration for (a): maximum height
defuzzification method and (b): height defuzzifica-
tion method. It can be seen that the surface for (b)
is smoother than that for (a), due to a broader set of
values that Ft can assume when the height method
is chosen.

The average best result for GPFIS-Control
(135.8 steps) compares favorably with those of [25]
(158 steps) and [35] (149 steps). The optimal solu-
tion is 129 steps.

Figure 8. Initial and final position for the best
individual in an execution of GPFIS-Control, using

Product+Root-Sq+MaxHeight and average
aggregation operator

5.2.2 Inverted Pendulum

Based on the best configuration previously es-
tablished (Product + Root-Sq + Average + Max-
Height), GPFIS-Control has been applied to the in-
verted pendulum problem. Figure 10 shows the
controller’s behavior, generated by the best individ-
ual in 100,000 evaluations, given two initial condi-
tions: θ0 = {-0,18, 0,18}rad, with ω0={0,0}rad/s.
The average best result found for GPFIS-Control
was 0.27 seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in average.
In [12] the GFC took 0.61 seconds to perform the
same task, however producing fewer rules (7 rules).

GPFIS-CONTROL: A GENETIC FUZZY . . .

Figure 9. Response surface for the best individual in cart-centering for different defuzzification methods:
(a): maximum height; (b) height

Figure 10. Initial and final position for the best
individual in an execution of GPFIS-Control, using

Product+Root-Sq+MaxHeight and average
aggregation operator configurations

6 Conclusion

A novel approach for solving control prob-
lems has been presented. It consists of a Genetic
Programming Fuzzy Inference System for Control
tasks (GPFIS-Control), based on Multi-Gene Ge-
netic Programming. The proposed GPFIS-Control
model considers the usual stages of a Genetic Fuzzy
Inference System: fuzzification, inference, defuzzi-
fication and evaluation.

The performance of GPFIS-Control has been
evaluated through two benchmarks problems: cart-
centering and inverted pendulum. The use of dif-

ferent aggregation, defuzzification and negation op-
erators has been analyzed. It was shown that the
right choice of defuzzification and aggregation op-
erators improves results, while the use of negation
may reduce the number of rules. When compared
to other Genetic Fuzzy Controllers, GFPIS-Control
has shown a better performance in average.

Future works shall consider other benchmark
and real world problems, as well as new meth-
ods in formulation, partitioning and aggregation.
For example, rules could be aggregated by using
a weighted average, with adaptive weights for the
rules during the controller operation. This could
improve results with fewer rules. The use of others
partitioning methods can also improve the perfor-
mance, helping GPFIS-Control model to select the
most promising rules for each consequent. A sensi-
tivity analysis of some parameters (tournament size,
maximum tree depth, etc.) would help to evaluate
their influence on the final result.

References
[1] J. M. Mendel, Fuzzy logic systems for engineering:

a tutorial, Proceedings of the IEEE, Vol.83, No.3,
1995, p.345-377.

[2] C. Elmas, C., O. Deperlioglu, and H. H. Sayan,
Adaptive fuzzy logic controller for DC–DC con-
verters, Expert Systems with Applications, Vol.36,
No.2, 2009, pp.1540-1548.

[3] O. Cordn, A historical review of evolutionary
learning methods for Mamdani-type fuzzy rule-

GPFIS-CONTROL: A GENETIC FUZZY . . .

[20] C. F. Juang, J. Y. Lin, and C. T. Lin, Genetic rein-
forcement learning through symbiotic evolution for
fuzzy controller design, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, Vol.30, No.2,
2000, pp.290-302.

[21] E. De Santis, A. Rizzi, A. Sadeghiany, and F. M.
F. Mascioli, Genetic optimization of a fuzzy con-
trol system for energy flow management in micro-
grids, In: Proceedings of IFSA World Congress
and NAFIPS Annual Meeting, W. Pedrycz and M.
Reformat, IEEE, New Jersey, 2013, pp. 418-423.

[22] L. H. Hassan, M. Moghavvemi, H. A. Almurib,
O. Steinmayer, Application of genetic algorithm in
optimization of unified power flow controller pa-
rameters and its location in the power system net-
work, International Journal of Electrical Power &
Energy Systems, Vol.46, 2013, pp.89-97.

[23] R. P. Prado, S. Garca-Galn, J. Exposito, and A. J.
Yuste, Knowledge acquisition in fuzzy-rule-based
systems with particle-swarm optimization, IEEE
Transactions on Fuzzy Systems, Vol.18, No.6,
2010, pp.1083-1097.

[24] O. Castillo, R. Martnez-Marroqun, P. Melin, F.
Valdez, and J. Soria, Comparative study of bio-
inspired algorithms applied to the optimization
of type-1 and type-2 fuzzy controllers for an
autonomous mobile robot, Information Sciences,
Vol.192, 2012, pp.19-38.

[25] E. Alba, C. Cotta, and J. M. Troya, Type-
constrained genetic programming for rule-base
definition in fuzzy logic controllers, In: Proceed-
ings of the First Annual Conference of Genetic
Programming, J. R. Koza, MIT Press, Massachus-
sets, 1996, pp. 255-260.

[26] E. Tunstel, and M. Jamshidi, On genetic program-
ming of fuzzy rule-based systems for intelligent
control, International Journal of Intelligent Au-
tomation and Soft Computing, Vol.2, No.3, 1996,
pp.271-284.

[27] A. Homaifar, D. Battle, E. Tunstel, and G. Dozier,
Genetic Programming Design of Fuzzy Logic Con-
trollers for Mobile Robot Path Tracking, Interna-
tional Journal of Knowledge Based Intelligent En-
gineering Systems, Vol.4, No.1, 2000, pp.33-52.

[28] J. R. Koza, Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection, MIT Press, Massachusetts, 1992.

[29] W. B. Langdon, and R. Poli, Foundations of Ge-
netic Programming, Springer-Verlag, Heidelberg,
2002.

[30] G. J. Klir, and B. Yuan, Fuzzy sets and fuzzy logic,
Prentice-Hall, New Jersey, 1995.

[31] T. Calvo, A. Kolesrov, M. Komornkov, and R.
Mesiar, Aggregation operators: properties, classes
and construction methods, In: Aggregation Oper-
ators, T. Calvo et al., Physica-Verlag, Heidelberg,
2002, pp.3-104.

[32] R. R. Yager, J. Kacprzyk, and G. Beliakov, Recent
developments in the ordered weighted averaging
operators: theory and practice, Springer, Heidel-
berg, 2011.

[33] S. Luke and L. Panait, Lexicographic parsimony
pressure, In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, W. B. Langdon
et al., Morgan Kaufmann Publishers, New York,
2002, pp. 829-836.

[34] MATLAB 7.10.0 (R2010a), The MathWorks Inc,
Massachusetts, 2010.

[35] P. R. Thrift, Fuzzy Logic Synthesis with Genetic
Algorithms. In: Proceedings of the International
Conference on Genetic Algorithms, R. K. Belew
and L. B. Booker, Morgan Kauffman Publishers,
California, pp. 509-513, July 1991.

Figure 10: Initial and final position for the best
individual in an execution of GPFIS-Control,
using Product+Root-Sq+MaxHeight and
average aggregation operator configurations.

6. Conclusion

A novel approach for solving control
problems has been presented. It consists of a
Genetic Programming Fuzzy Inference System
for Control tasks (GPFIS-Control), based on
Multi-Gene Genetic Programming. The
proposed GPFIS-Control model considers the
usual stages of a Genetic Fuzzy Inference
System: fuzzification, inference,
defuzzification and evaluation.

The performance of GPFIS-Control has
been evaluated through two benchmarks
problems: cart-centering and inverted
pendulum. The use of different aggregation,
defuzzification and negation operators has
been analyzed. It was shown that the right
choice of defuzzification and aggregation
operators improves results, while the use of
negation may reduce the number of rules.
When compared to other Genetic Fuzzy
Controllers, GFPIS-Control has shown a better
performance in average.

Future works shall consider other
benchmark and real world problems, as well as
new methods in formulation, partitioning and
aggregation. For example, rules could be
aggregated by using a weighted average, with
adaptive weights for the rules during the
controller operation. This could improve
results with fewer rules. The use of others
partitioning methods can also improve the
performance, helping GPFIS-Control model to
select the most promising rules for each
consequent. A sensitivity analysis of some

parameters (tournament size, maximum tree
depth, etc.) would help to evaluate their
influence on the final result.

References

[1] J. M. Mendel, Fuzzy logic systems for

engineering: a tutorial, Proceedings of the
IEEE, Vol.83, No.3, 1995, p.345-377.

[2] C. Elmas, C., O. Deperlioglu, and H. H.
Sayan, Adaptive fuzzy logic controller for
DC–DC converters, Expert Systems with
Applications, Vol.36, No.2, 2009,
pp.1540-1548.

[3] O. Cordón, A historical review of
evolutionary learning methods for
Mamdani-type fuzzy rule-based systems.
International Journal of Approximate
Reasoning, Vol. 52, No. 6, 2011, pp.894-
913.

[4] J. S. R. Jang, C. T. Sun, and E. Mizutani,
Neuro-fuzzy and soft computing: a
computational approach to learning and
machine intelligence. Prentice-Hall,
Englewood Cliffs, 1997.

[5] R.E. Precup, and H. Hellendoorn, A
survey on industrial applications of fuzzy
control, Computers in Industry, Vol. 62,
No.3, 2011, pp.213-226.

[6] O. Cordon, F. Gomide, F. Herrera, F.
Hoffmann, and L. Magdalena, Ten years
of genetic fuzzy systems: current
framework and new trends, Fuzzy Sets &
Systems, Vol.141, No.1, 2004, pp. 5-31.

[7] C. Karr, Genetic algorithms for fuzzy
controllers, AI Expert, Vol.6, No. 2, 1991,
pp.26-33.

[8] B. D. Liu, C. Y. Chen, and J. Y. Tsao,
Design of adaptive fuzzy logic controller
based on linguistic-hedge concepts and
genetic algorithms, IEEE Transactions on
Systems, Man and Cybernetics, Part B:
Vol.31, No.1, 2001, pp.32-53.

[9] F. Herrera, M. Lozano, and J. L.
Verdegay, A learning process for fuzzy
control rules using genetic algorithms,
Fuzzy Sets and Systems, Vol. 100, No. 1,
1998, pp.143-158.

[10] T. Pal, and N. R. Pal, SOGARG: A self-
organized genetic algorithm-based rule
generation scheme for fuzzy controllers.
IEEE Transactions on Evolutionary
Computation, Vol.7, No.4, 2003, pp.397-
415.

Figure 8: Initial and final position for the best
individual in an execution of GPFIS-Control,
using Product+Root-Sq+MaxHeight and
average aggregation operator.

5.2.2. Inverted Pendulum
Based on the best configuration previously

established (Product + Root-Sq + Average +
MaxHeight), GPFIS-Control has been applied
to the inverted pendulum problem. Figure 10
shows the controller’s behavior, generated by
the best individual in 100,000 evaluations,
given two initial conditions: θ0 = {-0,18,
0,18}rad, with ω0 ={0,0}rad/s. The average
best result found for GPFIS-Control was 0.27
seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in
average. In [12] the GFC took 0.61 seconds to
perform the same task, however producing
fewer rules (7 rules).

Table 4: Results of GPFIS-Control: Cart-Centering Problem

Attribute

Aggregation operator = Max
Product+Root-

Sq+
Height

Product+Root-Sq+
MaxHeight Product+Root-Sq+

Neg+Height

Product+Root-Sq+
Neg+MaxHeight

Average Steps (0.02s) 215.9 243.6 224.6 203.5
Std. Dev. Steps (0.02s) 25.73 94.09 37.89 60.78

Average Time (s) 4.318s 4.872 4.492 4.07
Average Rules 21 24 14 15

Attribute

Aggregation operator = Average
Product+Root-

Sq+
Height

Product+Root-Sq+
MaxHeight

Product+Root-Sq+
Neg+Height Product+Root-Sq+

Neg+MaxHeight

Average Steps (0.02s) 160.2 135.8 205.5 144.9
Std. Dev. Steps (0.02s) 18.92 18.94 38.99 11.43

Average Time (s) 3.204 2.796 4.11 2.89
Average Rules 27 28 26 24

Figure 9: Response surface for the best individual in cart-centering for different defuzzification methods:
 (a): maximum height; (b) height.

178 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Table 4. Results of GPFIS-Control: Cart-Centering Problem

based systems. International Journal of Approxi-
mate Reasoning, Vol. 52, No. 6, 2011, pp.894-913.

[4] J. S. R. Jang, C. T. Sun, and E. Mizutani,
Neuro-fuzzy and soft computing: a computational
approach to learning and machine intelligence.
Prentice-Hall, Englewood Cliffs, 1997.

[5] R.E. Precup, and H. Hellendoorn, A survey on in-
dustrial applications of fuzzy control, Computers
in Industry, Vol. 62, No.3, 2011, pp.213-226.

[6] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann,
and L. Magdalena, Ten years of genetic fuzzy sys-
tems: current framework and new trends, Fuzzy
Sets & Systems, Vol.141, No.1, 2004, pp. 5-31.

[7] C. Karr, Genetic algorithms for fuzzy controllers,
AI Expert, Vol.6, No. 2, 1991, pp.26-33.

[8] B. D. Liu, C. Y. Chen, and J. Y. Tsao, De-
sign of adaptive fuzzy logic controller based on
linguistic-hedge concepts and genetic algorithms,
IEEE Transactions on Systems, Man and Cyber-
netics, Part B: Vol.31, No.1, 2001, pp.32-53.

[9] F. Herrera, M. Lozano, and J. L. Verdegay, A learn-
ing process for fuzzy control rules using genetic al-
gorithms, Fuzzy Sets and Systems, Vol. 100, No. 1,
1998, pp.143-158.

[10] T. Pal, and N. R. Pal, SOGARG: A self-organized
genetic algorithm-based rule generation scheme
for fuzzy controllers. IEEE Transactions on Evo-
lutionary Computation, Vol.7, No.4, 2003, pp.397-
415.

[11] E. Tunstel, and M. Jamshidi, On genetic program-
ming of fuzzy rule-based systems for intelligent
control, International Journal of Intelligent Au-
tomation and Soft Computing, Vol. 2, No. 3, 1996,
pp.271-284.

[12] A. Tsakonas, Local and global optimization for
Takagi–Sugeno fuzzy system by memetic genetic
programming, Expert Systems with Applications,
Vol.40, No.8, 2013, pp.3282-3298.

[13] N. Kasabov, and Q. Song, DENFIS: dynamic
evolving neural-fuzzy inference system and its ap-
plication for time-series prediction, IEEE Trans.
Fuzzy Systems, Vol.10, No. 2, 2002, pp.144-154.

[14] R. J. Contreras, M.M.B.R. Vellasco, and R.
Tanscheit, Hierarchical type-2 neuro-fuzzy BSP
model, Information Sciences, Vol. 181, No. 15,
2011, pp. 3210-3224.

[15] M. P. Hinchliffe, M. J. Willis, H. Hiden, M.T.
Tham, B. McKay, and G.W. Barton, Modeling
chemical process systems using a multi-gene ge-
netic programming algorithm, In: Proceedings of
the First Annual Conference of Genetic Program-
ming, J. R. Koza, MIT Press, Massachussets, 1996,
pp. 56-65.

[16] D. P. Searson, M. J. Willis, and G.A. Montague,
Co-evolution of non-linear PLS model compo-
nents, Journal of Chemometrics, Vol. 2, 2007, pp.
592-603.

[17] F. Herrera, Genetic fuzzy systems: taxonomy, cur-
rent research trends and prospects, Evolutionary
Intelligence, Vol.1, No.1, 2008, pp.27-46.

[18] O. Castillo, and P. Melin, A review on the de-
sign and optimization of interval type-2 fuzzy con-
trollers, Applied Soft Computing, Vol.12, No.4,
2012, pp.1267-1278.

[19] M. Fazzolari, R. Alcal, Y. Nojima, H. Ishibuchi,
and F. Herrera, A Review of the Application of
Multiobjective Evolutionary Fuzzy Systems: Cur-
rent Status and Further Directions, IEEE Transac-
tions on Fuzzy Sets, Vol.21, No.1, 2013, pp.45-65.

Figure 8: Initial and final position for the best
individual in an execution of GPFIS-Control,
using Product+Root-Sq+MaxHeight and
average aggregation operator.

5.2.2. Inverted Pendulum
Based on the best configuration previously

established (Product + Root-Sq + Average +
MaxHeight), GPFIS-Control has been applied
to the inverted pendulum problem. Figure 10
shows the controller’s behavior, generated by
the best individual in 100,000 evaluations,
given two initial conditions: θ0 = {-0,18,
0,18}rad, with ω0 ={0,0}rad/s. The average
best result found for GPFIS-Control was 0.27
seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in
average. In [12] the GFC took 0.61 seconds to
perform the same task, however producing
fewer rules (7 rules).

Table 4: Results of GPFIS-Control: Cart-Centering Problem

Attribute

Aggregation operator = Max
Product+Root-

Sq+
Height

Product+Root-Sq+
MaxHeight Product+Root-Sq+

Neg+Height

Product+Root-Sq+
Neg+MaxHeight

Average Steps (0.02s) 215.9 243.6 224.6 203.5
Std. Dev. Steps (0.02s) 25.73 94.09 37.89 60.78

Average Time (s) 4.318s 4.872 4.492 4.07
Average Rules 21 24 14 15

Attribute

Aggregation operator = Average
Product+Root-

Sq+
Height

Product+Root-Sq+
MaxHeight

Product+Root-Sq+
Neg+Height Product+Root-Sq+

Neg+MaxHeight

Average Steps (0.02s) 160.2 135.8 205.5 144.9
Std. Dev. Steps (0.02s) 18.92 18.94 38.99 11.43

Average Time (s) 3.204 2.796 4.11 2.89
Average Rules 27 28 26 24

Figure 9: Response surface for the best individual in cart-centering for different defuzzification methods:
 (a): maximum height; (b) height.

179Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Table 4. Results of GPFIS-Control: Cart-Centering Problem

based systems. International Journal of Approxi-
mate Reasoning, Vol. 52, No. 6, 2011, pp.894-913.

[4] J. S. R. Jang, C. T. Sun, and E. Mizutani,
Neuro-fuzzy and soft computing: a computational
approach to learning and machine intelligence.
Prentice-Hall, Englewood Cliffs, 1997.

[5] R.E. Precup, and H. Hellendoorn, A survey on in-
dustrial applications of fuzzy control, Computers
in Industry, Vol. 62, No.3, 2011, pp.213-226.

[6] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann,
and L. Magdalena, Ten years of genetic fuzzy sys-
tems: current framework and new trends, Fuzzy
Sets & Systems, Vol.141, No.1, 2004, pp. 5-31.

[7] C. Karr, Genetic algorithms for fuzzy controllers,
AI Expert, Vol.6, No. 2, 1991, pp.26-33.

[8] B. D. Liu, C. Y. Chen, and J. Y. Tsao, De-
sign of adaptive fuzzy logic controller based on
linguistic-hedge concepts and genetic algorithms,
IEEE Transactions on Systems, Man and Cyber-
netics, Part B: Vol.31, No.1, 2001, pp.32-53.

[9] F. Herrera, M. Lozano, and J. L. Verdegay, A learn-
ing process for fuzzy control rules using genetic al-
gorithms, Fuzzy Sets and Systems, Vol. 100, No. 1,
1998, pp.143-158.

[10] T. Pal, and N. R. Pal, SOGARG: A self-organized
genetic algorithm-based rule generation scheme
for fuzzy controllers. IEEE Transactions on Evo-
lutionary Computation, Vol.7, No.4, 2003, pp.397-
415.

[11] E. Tunstel, and M. Jamshidi, On genetic program-
ming of fuzzy rule-based systems for intelligent
control, International Journal of Intelligent Au-
tomation and Soft Computing, Vol. 2, No. 3, 1996,
pp.271-284.

[12] A. Tsakonas, Local and global optimization for
Takagi–Sugeno fuzzy system by memetic genetic
programming, Expert Systems with Applications,
Vol.40, No.8, 2013, pp.3282-3298.

[13] N. Kasabov, and Q. Song, DENFIS: dynamic
evolving neural-fuzzy inference system and its ap-
plication for time-series prediction, IEEE Trans.
Fuzzy Systems, Vol.10, No. 2, 2002, pp.144-154.

[14] R. J. Contreras, M.M.B.R. Vellasco, and R.
Tanscheit, Hierarchical type-2 neuro-fuzzy BSP
model, Information Sciences, Vol. 181, No. 15,
2011, pp. 3210-3224.

[15] M. P. Hinchliffe, M. J. Willis, H. Hiden, M.T.
Tham, B. McKay, and G.W. Barton, Modeling
chemical process systems using a multi-gene ge-
netic programming algorithm, In: Proceedings of
the First Annual Conference of Genetic Program-
ming, J. R. Koza, MIT Press, Massachussets, 1996,
pp. 56-65.

[16] D. P. Searson, M. J. Willis, and G.A. Montague,
Co-evolution of non-linear PLS model compo-
nents, Journal of Chemometrics, Vol. 2, 2007, pp.
592-603.

[17] F. Herrera, Genetic fuzzy systems: taxonomy, cur-
rent research trends and prospects, Evolutionary
Intelligence, Vol.1, No.1, 2008, pp.27-46.

[18] O. Castillo, and P. Melin, A review on the de-
sign and optimization of interval type-2 fuzzy con-
trollers, Applied Soft Computing, Vol.12, No.4,
2012, pp.1267-1278.

[19] M. Fazzolari, R. Alcal, Y. Nojima, H. Ishibuchi,
and F. Herrera, A Review of the Application of
Multiobjective Evolutionary Fuzzy Systems: Cur-
rent Status and Further Directions, IEEE Transac-
tions on Fuzzy Sets, Vol.21, No.1, 2013, pp.45-65.

GPFIS-CONTROL: A GENETIC FUZZY . . .

[20] C. F. Juang, J. Y. Lin, and C. T. Lin, Genetic rein-
forcement learning through symbiotic evolution for
fuzzy controller design, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, Vol.30, No.2,
2000, pp.290-302.

[21] E. De Santis, A. Rizzi, A. Sadeghiany, and F. M.
F. Mascioli, Genetic optimization of a fuzzy con-
trol system for energy flow management in micro-
grids, In: Proceedings of IFSA World Congress
and NAFIPS Annual Meeting, W. Pedrycz and M.
Reformat, IEEE, New Jersey, 2013, pp. 418-423.

[22] L. H. Hassan, M. Moghavvemi, H. A. Almurib,
O. Steinmayer, Application of genetic algorithm in
optimization of unified power flow controller pa-
rameters and its location in the power system net-
work, International Journal of Electrical Power &
Energy Systems, Vol.46, 2013, pp.89-97.

[23] R. P. Prado, S. Garca-Galn, J. Exposito, and A. J.
Yuste, Knowledge acquisition in fuzzy-rule-based
systems with particle-swarm optimization, IEEE
Transactions on Fuzzy Systems, Vol.18, No.6,
2010, pp.1083-1097.

[24] O. Castillo, R. Martnez-Marroqun, P. Melin, F.
Valdez, and J. Soria, Comparative study of bio-
inspired algorithms applied to the optimization
of type-1 and type-2 fuzzy controllers for an
autonomous mobile robot, Information Sciences,
Vol.192, 2012, pp.19-38.

[25] E. Alba, C. Cotta, and J. M. Troya, Type-
constrained genetic programming for rule-base
definition in fuzzy logic controllers, In: Proceed-
ings of the First Annual Conference of Genetic
Programming, J. R. Koza, MIT Press, Massachus-
sets, 1996, pp. 255-260.

[26] E. Tunstel, and M. Jamshidi, On genetic program-
ming of fuzzy rule-based systems for intelligent
control, International Journal of Intelligent Au-
tomation and Soft Computing, Vol.2, No.3, 1996,
pp.271-284.

[27] A. Homaifar, D. Battle, E. Tunstel, and G. Dozier,
Genetic Programming Design of Fuzzy Logic Con-
trollers for Mobile Robot Path Tracking, Interna-
tional Journal of Knowledge Based Intelligent En-
gineering Systems, Vol.4, No.1, 2000, pp.33-52.

[28] J. R. Koza, Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection, MIT Press, Massachusetts, 1992.

[29] W. B. Langdon, and R. Poli, Foundations of Ge-
netic Programming, Springer-Verlag, Heidelberg,
2002.

[30] G. J. Klir, and B. Yuan, Fuzzy sets and fuzzy logic,
Prentice-Hall, New Jersey, 1995.

[31] T. Calvo, A. Kolesrov, M. Komornkov, and R.
Mesiar, Aggregation operators: properties, classes
and construction methods, In: Aggregation Oper-
ators, T. Calvo et al., Physica-Verlag, Heidelberg,
2002, pp.3-104.

[32] R. R. Yager, J. Kacprzyk, and G. Beliakov, Recent
developments in the ordered weighted averaging
operators: theory and practice, Springer, Heidel-
berg, 2011.

[33] S. Luke and L. Panait, Lexicographic parsimony
pressure, In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, W. B. Langdon
et al., Morgan Kaufmann Publishers, New York,
2002, pp. 829-836.

[34] MATLAB 7.10.0 (R2010a), The MathWorks Inc,
Massachusetts, 2010.

[35] P. R. Thrift, Fuzzy Logic Synthesis with Genetic
Algorithms. In: Proceedings of the International
Conference on Genetic Algorithms, R. K. Belew
and L. B. Booker, Morgan Kauffman Publishers,
California, pp. 509-513, July 1991.

Administrator
Highlight

