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Abstract

This work presents a Genetic Fuzzy Controller (GFC), called Genetic Programming Fuzzy
Inference System for Control tasks (GPFIS-Control). It is based on Multi-Gene Genetic
Programming, a variant of canonical Genetic Programming. The main characteristics and
concepts of this approach are described, as well as its distinctions from other GFCs. Two
benchmarks application of GPFIS-Control are considered: the Cart-Centering Problem
and the Inverted Pendulum. In both cases results demonstrate the superiority and poten-
tialities of GPFIS-Control in relation to other GFCs found in the literature.

1 Introduction

Fuzzy Logic Controllers (FLCs) [1,2] have been
extensively used as an alternative to manipulate and
describe complex systems when traditional control
methods do not provide viable solutions. FLCs
have the capacity of modeling systems by using
fuzzy ”if-then” rules, normally provided by an ex-
pert. Classical fuzzy logic approaches employ ei-
ther a Mamdani-type Fuzzy Inference System (FIS)
[2-3] or a Takagi-Sugeno (TSK) FIS [4-5] and both
have different parameters that must be tuned in or-
der to obtain the best performance, such as rule
base, membership function parameters, etc. These
parameters can be tuned manually by an expert or
automatically by employing a learning approach.
In this respect, this work considers Genetic Fuzzy
Systems [3,6], or, more specifically, Genetic Fuzzy
Controllers.

In Genetic Fuzzy Controllers (GFC) the auto-
matic learning and tuning of parameters is based
on a Genetic-based Meta-Heuristic (GBMH). Some
previous works have considered FLCs embedded
with a Genetic Algorithm (GA) to tune membership
function parameters [7-8] or to search for concise

fuzzy rule bases [9-10]. More recently, some works
have explored Genetic Programming (GP) to build
an FLC by using methodologies and concepts simi-
lar to those employed on a GA based FLC [11-12].

In general, it is advantageous to use a GBMH
exclusively to search for the FLC best configura-
tion. In this perspective, the meta-heuristic is seen
as a tool to build an FLC and not as a mecha-
nism that may change reasoning. Still, in frame-
works with a high level of hybridization, in which
a genetic-based meta-heuristic has a higher partici-
pation, it may be possible to obtain better accuracy.
Examples are Neuro-Fuzzy models [13,14], where
Neural Networks play an important role in the hy-
brid architecture, enabling high accuracy and fast
convergence.

This work proposes a new GFC called Genetic
Programming Fuzzy Inference System for Control
tasks (GPFIS-Control). It makes use of Multi-Gene
Genetic Programming [15-16] for extracting knowl-
edge from the plant. The resulting architecture
should: (1) automatically tune the FLC parameters;
(2) make the plant output reach the setpoint as fast
as possible; (3) provide linguistic comprehension
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for each FLC action; and (4) be easy to implement.

This paper is organized as follows: Section
2 describes related works on GFC and consid-
ers some applications involving GP. Section 3 de-
scribes Multi-Gene Genetic Programming and its
basic differences from standard Genetic Program-
ming strategy. Section 4 presents the proposed
GPFIS-Control in detail. Case studies are consid-
ered in Section 5 and section 5 concludes the work.

2 Related Works

The first attempt to build an FLC by using
GBMH algorithms was presented in [7], where a
GA was used to tune membership functions param-
eters of input and output variables. Subsequently,
many other researchers have employed evolution-
ary algorithms, mostly GA, to tune FLC parameters
and search for concise rule bases [17-19].

Several works can be found in the GFC area,
such as [9], which presents an evolutionary proce-
dure to modify rules, initially set by an expert, for a
Mamdani type FLC. In [20], membership functions,
rule sets and consequent types (TSK or Mamdani
types) are tuned by a GA. Two other approaches
are: [8], which employs linguistic hedge operators,
selected by a GA, to tune membership functions,
and [10] where a hierarchical self-organized GA-
based scheme is proposed.

Recently, most works that make use of GA to
tune FLCs focus on real applications [19, 21, 22].
Type-2 FLCs have also been tuned through GA
[18]. Additionally, some non-GBMH works for
tuning an FLC have also considered Particle Swarm
Optimization [23] and other bio-inspired algorithms
[24].

Few attempts, however, have been made to
build an FLC by using GP, despite its dynamic
structure that benefits rule base codification [6].
The first works in this sense were [25] and [26],
which used a type-constrained GP to build a fuzzy
rule based system. In [27] an FLC based on GP
for mobile robot path tracking is presented. More
recently, [12] proposes the use of a GP variant to
build a TSK FLC. All those approaches adapt the
GP structure to formulate an FLC in a canonical
way, similarly to a GA common procedure. Some
intrinsic advantages of GP are effectively used by

these authors, but many possibilities arise, such as
the use of combinations of different t-norms and t-
conorms, of linguistic hedges and of different ag-
gregation operators.

All approaches previously discussed focus on
Pittsburgh-type GFC, i.e., an individual of the pop-
ulation encodes a whole fuzzy rule set [3,6]. Then,
methods that consider an individual as a fuzzy rule –
Michigan, Genetic Cooperative-Competitive Learn-
ing and Iterative Rule Learning – have not been no-
ticed in the literature [17].

GPFIS-Control is a novel GFC based on Multi-
Gene Genetic Programming. This model builds a
Pittsburgh-type Fuzzy Rule Based System, making
use of a different reasoning method to learn fuzzy
rules.

3 Multi-Gene Genetic Program-
ming

Genetic Programming (GP) [28-29] belongs to
the Evolutionary Computation field. Typically, it
employs a population of individuals, each of them
denoted by a tree structure that codifies a mathe-
matical equation, which describes the relationship
between the output Y and a set of input terminals
X j (j=1,...,J) (features, in the current work).

Multi-Gene Genetic Programming (MGGP)
[15-16] denotes an individual as a structure of trees,
also called genes, that receives X j and tries to pre-
dict Y (Figure 1). Each individual is composed of
D functions fd (d=1,. . . D) that map X j variables to
Y through user-defined mathematical operations. In
GP terminology, the X j input variables are included
in the Terminal set, while the mathematical opera-
tions (plus, minus, etc.) are inserted in the Function
Set (or Mathematical Operations Set).

Figure 1. Example of a multi-gene individual
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specified: it is possible to apply crossover at high
and low levels. The low level is the space where
it is possible to manipulate the structures (terminals
and functions) of equations present in an individual.
The high level, on the other hand, is the space where
expressions can be manipulated in a macro way. In
this case, mutation and low level crossover opera-
tions are similar to those performed in GP. Figure
2 presents a multi-gene individual with five equa-
tions (D=5). Figure 2a shows the mutation opera-
tion, while Figure 2b a low level crossover.

An example of high level crossover is displayed
in Figure 2c. By observing the dashed lines, it can
be seen that the equations were switched from an
individual to the other. The cutting point can be
symmetric – the same number of equations is ex-
changed between individuals –, or asymmetric. In-
tuitively, high level crossover has a deeper effect on
the output than low level crossover or mutation has.
In of the proposed GPFIS-Control model, the asym-
metric high level crossover is considered.

In general, the evolutionary process in MGGP
differs from GP due to the addition of two parame-
ters: maximum number of trees per individual and
high level crossover rate. For the first parameter, a
high value is always used in order to avoid creat-
ing obstacles in the evolutionary process (i.e., not
allowing the MGGP individual to create more trees,
which could be necessary to provide solutions for
complex problems). On the other hand, the high
level crossover rate, similar to other genetic oper-
ators’ rates, needs to be adjusted and its value is
always determined by performing different tests.

4 GPFIS-Control

The GPFIS-Control model is shown in Figure
3. The control signal yt is sent to the plant at time t
(t=0,1, ..., T). The plant outputs ztk (k=1,. . . K) are
compared with the setpoint value, so that the result
of the difference between each plant’s output and its
respective setpoint (the error signal xtk = ztk – Refk)
is presented to the GPFIS-Control model. By using
xtk it is possible to build a control signal yt to satisfy
a performance criteria (Fitness function g(xtk, t)).

The GPFIS-Control model is comprised of four
modules: fuzzification, inference, defuzzification
and evaluation. The inference process begins when

each feedback error xtk is mapped on fuzzy sets.
Then, functions that map each linguistic state of xtk
to a state of yt are synthesized based on MGGP prin-
ciples. The crisp control signal is obtained through
the defuzzification process. This solution is eval-
uated and then selection and recombination opera-
tors are applied. These steps are repeated until a
stopping criterion is met. These four modules are
described in details in the following sub-sections.

4.1 Fuzzification

Let xtk and yt admit J distinct linguistic terms,
or fuzzy sets (j=1,...,J). These are defined by
normalized and uniformly distributed membership
functions [30]. Figure 4 presents an example of
the fuzzification of the k-th plant output, with seven
membership functions with the following linguis-
tic terms: NB – Negative Big; NM – Negative
Medium; NS – Negative Small; NZ – Near Zero;
PS – Positive Small; PM – Positive Medium; and
PB – Positive Big (in this case, j=1,2,...,7).

Figure 4. Example of membership functions

After fuzzification of each input xtk, the GPFIS-
Control inference process initiates.

4.2 Fuzzy Inference

The inference procedure consists of three
stages: Formulation, Partitioning and Aggregation.
In Formulation stage, t-norm, t-conorm, linguistic
hedges and negation operators are defined. In Parti-
tioning stage, the mechanism that connects each an-
tecedent with a consequent is established. Finally,
in Aggregation stage, operators used to combine all
rules are defined.

4.2.1 Formulation

Through each A jk(xtk) (membership degree of
xtk to a fuzzy set A jk), GPFIS-Control evolves a
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controller whose ouput has several terms (B1= Neg-
ative Big, ..., B7= Positive Big, for example), with
membership degrees given by:

µB1 (yt) = g
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
(1)

µB2 (yt) = g
[

fd∈s2

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
(2)

...

µBJ (yt) = g
[

fd∈sJ

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
(3)

where fd∈s j

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)
represents a

set of functions, where each one combines all
µA jk (xtk), k=1,.., K, by using a set of user-defined
mathematical operations; s j (j=1,. . . , J) is an in-
dex set that describes which d-th function fd is re-
lated to the j-th consequent term (d ∈ s j). Methods
to define s j are best described in the Partitioning
stage. In order to each function fd associated to s j

behave as a fuzzy rule, it needs to employ t-norm,
t-conorm, negation and linguistic hedges operators,
with the aim to represent logic connectives for each
linguistic term induced by µA jk (xtk). Finally, g ag-
gregates the activation degrees of each rule set (rep-
resented by fd∈s j ) in a final value. Therefore, if
a set A jk is activated, GPFIS-Control builds a rule
set (function set) that combines all membership de-
grees (µA jk (xtk)) and produces an action.

In Formulation stage, some parameters of
GPFIS-Control must be defined. In MGGP, initial
parameters are called Terminals (input variables)
and Mathematical Operations or Function Set (plus,
times, etc.). In GPFIS-Control, on the other hand,
the terminology will be Input Fuzzy Sets and Fuzzy
Operators Set, respectively. Table 1 presents the ini-
tial user-defined parameters.

Table 1. Input Fuzzy Sets and Fuzzy Operators

Input Fuzzy Sets Fuzzy Operators
Set

µA j1 (xt1) , . . . ,µA jK (xtK) t-norms, t-conorms,
negation and lin-
guistic hedges oper-
ators

Subsequently, by using the Fuzzy Operators
Set, the µA jk (xtk) is combined in order to best

describe the actions µB j (yt) taken by the con-
troller. It is possible to enter a negated or modified
(”hedged”) fuzzy set in the Input Fuzzy Sets stage,
instead of using negation and linguistic hedge oper-
ators in the Fuzzy Operators Set stage. This entails
a larger search space, but can be of help in rules
analysis. In this case, this procedure has been used
to make the fuzzy rules simpler.

By using the operators and membership func-
tions shown in Table 1, the MGGP builds premises
of fuzzy rules as follows:

”If X1is A j1 and .... and XK is A jK”

where negation and linguistic hedges can operate on
each element of the antecedent term.

4.2.2 Partitioning

Let S={s1,s2,...,sJ} be the set of indicators s j,
where each s j represents which fd (d={1,...,D}) is
related to the j-th consequent B j. The method that
describes which d-th function is associated to s j is
called Uniform Division. This partitioning method
makes use of a simple heuristic, given by:

1 Compute: U =
⌊D

J

⌋
(where ⌊.⌋ is the floor oper-

ator).

2 Partition: s1= {1,...,U}, s2= {U+1,..., 2*U},...,
sJ= {U*(J-1)+1,...,U*J}.

As an example, consider D (number of func-
tions) = 10 and J (number of consequent terms) =
5. Thus U = 2, s1= {1, 2}, s2= {3,4}, s3= {5,6}, s4=
{7,8}, s5= {9,10}. Figure 5 illustrates this process.

In summary, each fd is uniformly divided for
each s jso that a consequent has at least one rule
associated to it. This method is similar to others
GFS based on GP, such that consequent and an-
tecedent terms are both synthesized. Through the
definition of the rule set associated to each conse-
quent (S={s0,s1,s2,...,sJ}), the next step is to aggre-
gate them, in order to generate a final degree of ac-
tivation.

4.2.3 Aggregation

Many different aggregation operators may be
found in the literature [31-32].



172 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

Figure 5. Uniform division procedure

Some examples of g
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
are:

– g → max
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
:

max aggregation operator are the most common
used on Mamdani type FIS.

– g → ∑ {d∈sj}
card(s j)

[[ fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)
] :

arithmetic mean operator intends to provide
equal weights for each element of the rule set
associated to the j-th consequent.

In [31], several aggregation operators are pre-
sented. It can be shown that t-norms and t-conorms
are special cases of aggregation operators. In the
experiments both the arithmetic mean and maxi-
mum operators have been used. Once the aggre-
gation operators have been defined, it is possible to
compute the membership degrees for different ac-
tions µB j (yt) taken by the controller. The defuzzi-
fied control signal yt is then computed.

4.3 Defuzzification

Basically, a defuzzification method (center of
gravity, mean of maximum, etc.) produces a crisp
value that is an interpretation of the information
contained in the output fuzzy set resultant from
the inference process. In GPFIS-Control the height
method is used:

yt =
∑J

j=1 b jµB j(yt)

∑J
j=1 µB j(yt)

(4)

where b j represents the center (location) parameter
of each B j. The maximum height method may be
employed when the control signal assumes values
in some finite set:

yt =
∑J

j=1 ϕ jb j µB j (yt)

∑J
j=1 phi jµB j (yt)

(5)

where ϕ j is an indicator function, such that ϕ j = 1,
when µB j (Yt) > µBl (Yt), for all l=1,...,J, e l ̸= j, e
ϕ j = 0, otherwise.

Figure 6 presents an illustration of the dif-
ference between these procedures. We obtained:
µNM (Yt) = 0,8, µPZ (Yt) = 0,6, while µNG (Yt) =
µNP (Yt) = µPP (Yt) = µPM (Yt) = µPG (Yt) = 0.

Then, according to Eq. (4):

Yt =
−20 . 0,8+0 . 0,6

0,8+0,6
= −11,43

If it was used maximum height method, the re-
sponse would be -20, because the presence of only
one maxima value. Height method provides a
smoother transition between responses than maxi-
mum height.

4.4 Evaluation

The right definition of the fitness function is
crucial for obtaining a good performance of the
GPFIS-Control model. For optimal tracking of a
trajectory, a possible fitness function is the Mean
Squared Error (MSE):

MSE =
1
K

K

∑
k=1

(xtk)
2 (6)

When the MSE is minimized, the GPFIS-
Control model successfully obtains a trajectory
close to the setpoint. In minimum time problems,
the fitness function may be the time (t) the output
takes to reach an MSE < ε, where ε is a tolerance.

2. Partition: s1 = {1,...,U}, s2 = {U+1,..., 
2*U},..., sJ  = {U*(J-1)+1,...,U*J}. 

 
As an example, consider  D (number of 

functions) = 10 and J (number of consequent 
terms) = 5. Thus U = 2, s1 = {1, 2}, s2 = {3,4}, 
s3 = {5,6}, s4 = {7,8}, s5 = {9,10}. Figure 5 
illustrates this process. 

In summary, each fd is uniformly divided 
for each sj so that a consequent has at least one 
rule associated to it. This method is similar to 
others GFS based on GP, such that consequent 
and antecedent terms are both synthesized. 
Through the definition of the rule set 
associated to each consequent 
(S={s0,s1,s2,...,sJ}), the next step is to aggregate 
them, in order to generate a final degree of 
activation. 
 

4.2. 3. Aggregation 
 

Many different aggregation operators may 
be found in the literature [31-32].  

Some examples of 
𝑔𝑔 [𝑓𝑓𝑑𝑑∈𝑠𝑠1 (𝜇𝜇𝐴𝐴𝑗𝑗1(𝑥𝑥𝑡𝑡1), … , 𝜇𝜇𝐴𝐴𝑗𝑗𝑗𝑗(𝑥𝑥𝑡𝑡𝑡𝑡))] are: 

 
 𝑔𝑔 →

max [𝑓𝑓𝑑𝑑∈𝑠𝑠1 (𝜇𝜇𝐴𝐴𝑗𝑗1(𝑥𝑥𝑡𝑡1), … , 𝜇𝜇𝐴𝐴𝑗𝑗𝑗𝑗(𝑥𝑥𝑡𝑡𝑡𝑡))]:                   
max aggregation operator are the most 
common used on Mamdani type FIS.  

 
 𝑔𝑔 →

∑_{d∈sj}
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑗𝑗) [[𝑓𝑓𝑑𝑑∈𝑠𝑠1 (𝜇𝜇𝐴𝐴𝑗𝑗1(𝑥𝑥𝑡𝑡1), … , 𝜇𝜇𝐴𝐴𝑗𝑗𝑗𝑗(𝑥𝑥𝑡𝑡𝑡𝑡))] : 
arithmetic mean operator intends to 
provide equal weights for each element of 
the rule set associated to the j-th 
consequent.  

 
 
 

 
In [31], several aggregation operators are 

presented. It can be shown that t-norms and t-
conorms are special cases of aggregation 
operators. In the experiments both the 
arithmetic mean and maximum operators have 
been used. Once the aggregation operators 
have been defined, it is possible to compute the 
membership degrees for different actions 
𝜇𝜇𝐵𝐵𝑗𝑗(𝑦𝑦𝑡𝑡) taken by the controller. The 
defuzzified control signal 𝑦𝑦𝑡𝑡 is then computed. 
 
4.3. Defuzzification 
 

Basically, a defuzzification method (center 
of gravity, mean of maximum, etc.) produces a 
crisp value that is an interpretation of the 
information contained in the output fuzzy set 
resultant from the inference process. In GPFIS-
Control the height method is used: 

 

𝑦𝑦𝑡𝑡 =
∑ 𝑏𝑏𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜇𝜇𝐵𝐵𝑗𝑗(𝑦𝑦𝑡𝑡)
∑ 𝜇𝜇𝐵𝐵𝑗𝑗(𝑦𝑦𝑡𝑡)𝐽𝐽

𝑗𝑗=1
                                       (4)

                   
where 𝑏𝑏𝑗𝑗 represents the center (location) 
parameter of each Bj. The maximum height 
method may be employed when the control 
signal assumes values in some finite set: 
 

𝑦𝑦𝑡𝑡 =
∑ 𝜙𝜙𝑗𝑗𝑏𝑏𝑗𝑗 𝜇𝜇𝐵𝐵𝐵𝐵(𝑦𝑦𝑡𝑡)𝐽𝐽

𝑗𝑗=1
∑  𝜙𝜙𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜇𝜇𝐵𝐵𝐵𝐵(𝑦𝑦𝑡𝑡)

                                   (5)

                    
 
where  𝜙𝜙𝑗𝑗 is an indicator function, such that 𝜙𝜙𝑗𝑗 
= 1, when 𝜇𝜇𝐵𝐵𝑗𝑗(𝑌𝑌𝑡𝑡) > 𝜇𝜇𝐵𝐵𝑙𝑙(𝑌𝑌𝑡𝑡), for all l=1,...,J, e 
l ≠ j, e 𝜙𝜙𝑗𝑗 = 0, otherwise. 
 

 

 
 Figure 5. Uniform division procedure. 
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Figure 5. Uniform division procedure

Some examples of g
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
are:

– g → max
[

fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)]
:

max aggregation operator are the most common
used on Mamdani type FIS.

– g → ∑ {d∈sj}
card(s j)

[[ fd∈s1

(
µA j1 (xt1) , . . . ,µA jK (xtK)

)
] :

arithmetic mean operator intends to provide
equal weights for each element of the rule set
associated to the j-th consequent.

In [31], several aggregation operators are pre-
sented. It can be shown that t-norms and t-conorms
are special cases of aggregation operators. In the
experiments both the arithmetic mean and maxi-
mum operators have been used. Once the aggre-
gation operators have been defined, it is possible to
compute the membership degrees for different ac-
tions µB j (yt) taken by the controller. The defuzzi-
fied control signal yt is then computed.

4.3 Defuzzification

Basically, a defuzzification method (center of
gravity, mean of maximum, etc.) produces a crisp
value that is an interpretation of the information
contained in the output fuzzy set resultant from
the inference process. In GPFIS-Control the height
method is used:

yt =
∑J

j=1 b jµB j(yt)

∑J
j=1 µB j(yt)

(4)

where b j represents the center (location) parameter
of each B j. The maximum height method may be
employed when the control signal assumes values
in some finite set:

yt =
∑J

j=1 ϕ jb j µB j (yt)

∑J
j=1 phi jµB j (yt)

(5)

where ϕ j is an indicator function, such that ϕ j = 1,
when µB j (Yt) > µBl (Yt), for all l=1,...,J, e l ̸= j, e
ϕ j = 0, otherwise.

Figure 6 presents an illustration of the dif-
ference between these procedures. We obtained:
µNM (Yt) = 0,8, µPZ (Yt) = 0,6, while µNG (Yt) =
µNP (Yt) = µPP (Yt) = µPM (Yt) = µPG (Yt) = 0.

Then, according to Eq. (4):

Yt =
−20 . 0,8+0 . 0,6

0,8+0,6
= −11,43

If it was used maximum height method, the re-
sponse would be -20, because the presence of only
one maxima value. Height method provides a
smoother transition between responses than maxi-
mum height.

4.4 Evaluation

The right definition of the fitness function is
crucial for obtaining a good performance of the
GPFIS-Control model. For optimal tracking of a
trajectory, a possible fitness function is the Mean
Squared Error (MSE):

MSE =
1
K

K

∑
k=1

(xtk)
2 (6)

When the MSE is minimized, the GPFIS-
Control model successfully obtains a trajectory
close to the setpoint. In minimum time problems,
the fitness function may be the time (t) the output
takes to reach an MSE < ε, where ε is a tolerance.

GPFIS-CONTROL: A GENETIC FUZZY . . .

GPFIS-Control tries to reduce the size and com-
plexity of the rule base by employing a simple
heuristic called Lexicographic Parsimony Pressure
[33]. This technique is only used in the selection
phase: given two individuals with the same fitness,
the best one is that with fewer nodes. Fewer nodes
indicate rules with fewer antecedents, hedge and
negation operators, as well as few functions (fd),
and, therefore, a smaller rule set.

After the evaluation procedure, a set of individ-
uals are selected (using tournament procedure) and
recombined. Then, in a subset of the population,
the mutation (Figure 7a), low-level crossover (Fig-
ure 7b) or high-level crossover (Figure 7c) opera-
tors are applied. Finally, a new population is gener-
ated.

This process is repeated until a stopping crite-
ria is met. At this moment, the final population is
returned.

5 Case Studies

Two benchmark problems have been consid-
ered to evaluate the GPFIS-Control model: cart-
centering [25,28] and inverted pendulum [9,12].
The cart-centering problem has been used to assess
the performance of GPFIS-Control in comparison
with other GFCs. The application to the inverted
pendulum made use of the GPFIS-Control param-
eters obtained in the tuning for the cart-centering
problem. Results were compared to those presented
in [12].

5.1 Experimental Settings

5.1.1 Cart-centering Problem

The cart-centering problem consists of a cart
with mass m moving on a frictionless rail; at some
instant t its position is xt (m), with velocity vt (m/s).
The cart must stop (vt= 0) at a user-defined setpoint
ref. Tolerance values ε may be considered, so that
|xt – ref.|< ε and |vt – ref.|< ε. The plant dynamics
is given by Equations (7) and (8):

vt+τ = vt + τ
Ft

m
(7)

xt+τ = xt + τvt (8)

where τ is the sampling period and Ft is the force
(N) applied by the controller to the cart at time t.
The objective is to reach the setpoint in minimum
time. The performance of GPFIS-Control has been
compared to the GFC presented in [25]. Several
configurations for GPFIS-Control (t-norms, aggre-
gation operators, etc.) have been evaluated. To
perform a fair comparison, configurations were the
same as those in [25] for all variables and parame-
ters (Table 2 displays these values).

GPFIS-Control is required to move the cart un-
til |xt – 0|< 0.5 and |vt – 0|< 0.5, given 16 initial
values uniformly distributed on the xt domain. The
fitness function has been defined as:

Fitness = tε + ∑
t
|xt | (9)

where tε is the time needed to satisfy the stopping
criteria (|xt – 0|< 0.5 and |vt – 0|< 0.5). An individ-
ual in the GPFIS-Control population is considered
unfeasible if it cannot stop the cart in 10 seconds
(500 sampling steps).

Table 2. Configurations Set for Cart-Centering
Problem

Variable Domain
Ft [-2.5, 2.5] N
vt [-2.5, 2.5] m/s
xt [-2.5, 2.5] m
Parameter Value
τ 0.02s
ε 0.5
m 2.0 kg
ref. xt = vt = 0

After the best solution is found, it is applied to
1000 initial random positions in order to evaluate
the time taken by GPFIS-Control to stop the cart.
In order to perform a fair comparison with [25], the
following procedure has been executed 10 times: (i)
generate a GPFIS-Control model and, (ii) apply it
on 1000 random position, in order to produce sta-
tistical relevant results. The best GPFIS-Control
model is obtained, in each execution, after 25000
evaluations (population size = 50 and number of
generations = 500, respectively). Table 3 displays
all the parameters of the GPFIS-Control model.
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Figure 6. Example for defuzzification procedures

Table 3. Remaining GPFIS-Control parameters

Parameter Value
Tournament Size 5
Maximum Tree Depth 5
Elitism Rate 1%
Maximum rules per in-
dividual

50

Low level crossover
rate

75%

High level crossover
rate

50%

Mutation rate 20%
Direct reproduction
rate

5%

Input Fuzzy Sets 7 Fuzzy Sets + Classi-
cal Negation* of each
Fuzzy Set per variable

Fuzzy Operators Set t-norm: product,
others: described for
each experiment

* used only when told

5.1.2 Inverted Pendulum Problem

The second experiment consisted of an appli-
cation of GPFIS-Control to the inverted pendulum
problem. Results were then compared to those of
[12]. In this problem, a cart of mass M with a pole
of mass m and height λ attached to its center moves

on a frictionless rail. The controller must apply Ft

in order to increase or decrease vt and consequently
change the angular velocity ωt and the pendulum
angle θt . The dynamic model [12,28] is described
below:

ϕt =
gsinθt + cos(θt )Ψ

λ
[

4
3 −

mcos2θt
M+m

] (10)

ψ=
−Ft −mλωtθ2

t sinθt

M+m
(11)

ωt+1 = ωt + τϕt (12)

θt+1 = θt + τωt (13)

at =
Ft +mλ[θ2

t sinθt −ωtcosθt ]

M+m
(14)

vt+1 = vt + τat (15)

xt+1 = xt + τvt (16)

where ϕt is the angular acceleration and τ is the
sampling step. In order to perform a fair com-
parison with [12], the feasible domain for each

Figure 6 presents an illustration of the 
difference between these procedures. We 
obtained: 𝜇𝜇𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) = 0,8, 𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) = 0,6, 
while 𝜇𝜇𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) =  𝜇𝜇𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) =  𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) =
 𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) =  𝜇𝜇𝑃𝑃𝑃𝑃(𝑌𝑌𝑡𝑡) = 0.  

 
Then, according to Eq. (4): 
 

𝑌𝑌𝑡𝑡 = −20 . 0,8 + 0 . 0,6
0,8 + 0,6 =  −11,43 

 
If it was used maximum height method, the 
response would be -20, because the presence of 
only one maxima value. Height method 
provides a smoother transition between 
responses than maximum height. 
 

4.4. Evaluation 
 

The right definition of the fitness function 
is crucial for obtaining a good performance of 
the GPFIS-Control model. For optimal 
tracking of a trajectory, a possible fitness 
function is the Mean Squared Error (MSE): 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾 ∑(𝑥𝑥𝑡𝑡𝑡𝑡)2

𝐾𝐾

𝑘𝑘=1
                                  (6) 

 
 
 

When the MSE is minimized, the GPFIS-
Control model successfully obtains a trajectory 
close to the setpoint. In minimum time 
problems, the fitness function may be the time 
(t) the output takes to reach an MSE < ε, where 
ε is a tolerance. 

GPFIS-Control tries to reduce the size and 
complexity of the rule base by employing a 
simple heuristic called Lexicographic 
Parsimony Pressure [33]. This technique is 
only used in the selection phase: given two 
individuals with the same fitness, the best one 
is that with fewer nodes. Fewer nodes indicate 
rules with fewer antecedents, hedge and 
negation operators, as well as few functions 
(fd), and, therefore, a smaller rule set.  

After the evaluation procedure, a set of 
individuals are selected (using tournament 
procedure) and recombined. Then, in a subset 
of the population, the  mutation (Figure 7a), 
low-level crossover (Figure 7b) or high-level 
crossover (Figure 7c) operators are applied. 
Finally, a new population is generated. 

This process is repeated until a stopping 
criteria is met. At this moment, the final 
population is returned. 
 
 

 

Figure 6. Example for defuzzification procedures. 
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Figure 6. Example for defuzzification procedures

Table 3. Remaining GPFIS-Control parameters

Parameter Value
Tournament Size 5
Maximum Tree Depth 5
Elitism Rate 1%
Maximum rules per in-
dividual

50

Low level crossover
rate

75%

High level crossover
rate

50%

Mutation rate 20%
Direct reproduction
rate

5%

Input Fuzzy Sets 7 Fuzzy Sets + Classi-
cal Negation* of each
Fuzzy Set per variable

Fuzzy Operators Set t-norm: product,
others: described for
each experiment

* used only when told

5.1.2 Inverted Pendulum Problem

The second experiment consisted of an appli-
cation of GPFIS-Control to the inverted pendulum
problem. Results were then compared to those of
[12]. In this problem, a cart of mass M with a pole
of mass m and height λ attached to its center moves

on a frictionless rail. The controller must apply Ft

in order to increase or decrease vt and consequently
change the angular velocity ωt and the pendulum
angle θt . The dynamic model [12,28] is described
below:

ϕt =
gsinθt + cos(θt )Ψ

λ
[

4
3 −

mcos2θt
M+m

] (10)

ψ=
−Ft −mλωtθ2

t sinθt

M+m
(11)

ωt+1 = ωt + τϕt (12)

θt+1 = θt + τωt (13)

at =
Ft +mλ[θ2

t sinθt −ωtcosθt ]

M+m
(14)

vt+1 = vt + τat (15)

xt+1 = xt + τvt (16)

where ϕt is the angular acceleration and τ is the
sampling step. In order to perform a fair com-
parison with [12], the feasible domain for each

GPFIS-CONTROL: A GENETIC FUZZY . . .

Figure 7. Example of recombination operators applied in GPFIS-Control solutions 

 
Figure 7: Example of recombination operators applied in GPFIS-Control solutions. 
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Figure 7. Example of recombination operators applied in GPFIS-Control solutions



176 Koshiyama A. S., Vellasco M. M. B. R. and Tanscheit R.

variable was set as: ωt ∈ [-0.87, 0.87] rad/s,
θt ∈ [-0.34, 0.34] rad, Ft ∈ [-25, 25] N, while
xt and vt are unconstrained, M=1kg, m=0.1kg, λ
=0.5m, g=9.8m/s2 and τ=0,01s. Two initial condi-
tions were considered: θ0 = {-0,18, 0,18}rad, with
ω0={0,0}rad/s and the setpoint is ref=0 rad with
ε=0.01. The time allowed for the position |θt – 0|<
0.01 to be reached is at most 1 second (100 sam-
pling steps).

As in [12], 100,000 evaluations (population size
= 100 and number of generations 1000) have been
made. All this procedure was repeated 10 times, in
order to generate statistical relevant results. Table 3
exhibits the remaining parameters used. The fitness
function is [12]:

Fitness =
100

∑
t=1

(θt − re f )2 (17)

In both experiments seven fuzzy sets have been
assigned to each variable (Ft, xt , vt , ωt , θt), as
shown in Figure 4. In some cases, the negation
of a fuzzy set was entered in the Input Fuzzy Sets
stage of the GPFIS-Control routine (as described in
section 4.2.1). All experiments were performed in
MATLAB R2010a [34].

5.2 Results and Discussions

5.2.1 Cart-Centering Problem

The main results obtained with the cart-
centering problem are presented in Table 4. GPFIS-
Control was tested with the linguistic hedge square
root, the classic negation operator, different ag-
gregation operators (max and average) and differ-
ent defuzzification methods (height and maximum
height). It can be seen that for almost all configu-
rations, the use of the average aggregation operator
reduces by about 39% the mean time taken by the
controller to position the cart at |xt – 0|< 0.5 and |vt

– 0|< 0.5. It may also be noted that the maximum
height defuzzification reduces that time in 14% in
average. However, the use of the negation operator
does not incur in any substantial time decrease, al-
though fewer rules are generated. In fact, the nega-
tion operator has a summarizing power, due to the
enlargement of a fuzzy set support in the universe
of discourse.

The best configurations were obtained with the
following parameters: maximum height method for
defuzzification and average as the aggregation op-
erator. Figure 8 present the 16 initial and final
positions when |xt – 0|< 0.5 and |vt – 0|< 0.5.
Figure 9 exhibits the response surface for GPFIS-
Control best configuration for (a): maximum height
defuzzification method and (b): height defuzzifica-
tion method. It can be seen that the surface for (b)
is smoother than that for (a), due to a broader set of
values that Ft can assume when the height method
is chosen.

The average best result for GPFIS-Control
(135.8 steps) compares favorably with those of [25]
(158 steps) and [35] (149 steps). The optimal solu-
tion is 129 steps.

Figure 8. Initial and final position for the best
individual in an execution of GPFIS-Control, using

Product+Root-Sq+MaxHeight and average
aggregation operator

5.2.2 Inverted Pendulum

Based on the best configuration previously es-
tablished (Product + Root-Sq + Average + Max-
Height), GPFIS-Control has been applied to the in-
verted pendulum problem. Figure 10 shows the
controller’s behavior, generated by the best individ-
ual in 100,000 evaluations, given two initial condi-
tions: θ0 = {-0,18, 0,18}rad, with ω0={0,0}rad/s.
The average best result found for GPFIS-Control
was 0.27 seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in average.
In [12] the GFC took 0.61 seconds to perform the
same task, however producing fewer rules (7 rules).

     

 
Figure 8: Initial and final position for the best 
individual in an execution of GPFIS-Control, 
using Product+Root-Sq+MaxHeight and 
average aggregation operator. 

5.2.2. Inverted Pendulum 
Based on the best configuration previously 

established (Product + Root-Sq + Average + 
MaxHeight), GPFIS-Control has been applied 
to the inverted pendulum problem. Figure 10 
shows the controller’s behavior, generated by 
the best individual in 100,000 evaluations, 
given two initial conditions: θ0 = {-0,18, 
0,18}rad, with ω0 ={0,0}rad/s. The average 
best result found for GPFIS-Control was 0.27 
seconds to reach and stay at |θt – 0|<0.01 
during 1.00 second, generating 14 rules in 
average. In [12] the GFC took 0.61 seconds to 
perform the same task, however producing 
fewer rules (7 rules). 

 
Table 4: Results of GPFIS-Control: Cart-Centering Problem 

Attribute 

Aggregation operator = Max 
Product+Root-

Sq+        
Height 

Product+Root-Sq+ 
MaxHeight Product+Root-Sq+ 

Neg+Height 

Product+Root-Sq+ 
Neg+MaxHeight 

Average Steps (0.02s) 215.9 243.6 224.6 203.5 
Std. Dev. Steps (0.02s) 25.73 94.09 37.89 60.78 

Average Time (s) 4.318s 4.872 4.492 4.07 
Average Rules 21 24 14 15 

Attribute 

Aggregation operator = Average 
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Figure 9: Response surface for the best individual in cart-centering for different defuzzification methods:  
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variable was set as: ωt ∈ [-0.87, 0.87] rad/s,
θt ∈ [-0.34, 0.34] rad, Ft ∈ [-25, 25] N, while
xt and vt are unconstrained, M=1kg, m=0.1kg, λ
=0.5m, g=9.8m/s2 and τ=0,01s. Two initial condi-
tions were considered: θ0 = {-0,18, 0,18}rad, with
ω0={0,0}rad/s and the setpoint is ref=0 rad with
ε=0.01. The time allowed for the position |θt – 0|<
0.01 to be reached is at most 1 second (100 sam-
pling steps).

As in [12], 100,000 evaluations (population size
= 100 and number of generations 1000) have been
made. All this procedure was repeated 10 times, in
order to generate statistical relevant results. Table 3
exhibits the remaining parameters used. The fitness
function is [12]:

Fitness =
100

∑
t=1

(θt − re f )2 (17)

In both experiments seven fuzzy sets have been
assigned to each variable (Ft, xt , vt , ωt , θt), as
shown in Figure 4. In some cases, the negation
of a fuzzy set was entered in the Input Fuzzy Sets
stage of the GPFIS-Control routine (as described in
section 4.2.1). All experiments were performed in
MATLAB R2010a [34].

5.2 Results and Discussions

5.2.1 Cart-Centering Problem

The main results obtained with the cart-
centering problem are presented in Table 4. GPFIS-
Control was tested with the linguistic hedge square
root, the classic negation operator, different ag-
gregation operators (max and average) and differ-
ent defuzzification methods (height and maximum
height). It can be seen that for almost all configu-
rations, the use of the average aggregation operator
reduces by about 39% the mean time taken by the
controller to position the cart at |xt – 0|< 0.5 and |vt

– 0|< 0.5. It may also be noted that the maximum
height defuzzification reduces that time in 14% in
average. However, the use of the negation operator
does not incur in any substantial time decrease, al-
though fewer rules are generated. In fact, the nega-
tion operator has a summarizing power, due to the
enlargement of a fuzzy set support in the universe
of discourse.

The best configurations were obtained with the
following parameters: maximum height method for
defuzzification and average as the aggregation op-
erator. Figure 8 present the 16 initial and final
positions when |xt – 0|< 0.5 and |vt – 0|< 0.5.
Figure 9 exhibits the response surface for GPFIS-
Control best configuration for (a): maximum height
defuzzification method and (b): height defuzzifica-
tion method. It can be seen that the surface for (b)
is smoother than that for (a), due to a broader set of
values that Ft can assume when the height method
is chosen.

The average best result for GPFIS-Control
(135.8 steps) compares favorably with those of [25]
(158 steps) and [35] (149 steps). The optimal solu-
tion is 129 steps.

Figure 8. Initial and final position for the best
individual in an execution of GPFIS-Control, using

Product+Root-Sq+MaxHeight and average
aggregation operator

5.2.2 Inverted Pendulum

Based on the best configuration previously es-
tablished (Product + Root-Sq + Average + Max-
Height), GPFIS-Control has been applied to the in-
verted pendulum problem. Figure 10 shows the
controller’s behavior, generated by the best individ-
ual in 100,000 evaluations, given two initial condi-
tions: θ0 = {-0,18, 0,18}rad, with ω0={0,0}rad/s.
The average best result found for GPFIS-Control
was 0.27 seconds to reach and stay at |θt – 0|<0.01
during 1.00 second, generating 14 rules in average.
In [12] the GFC took 0.61 seconds to perform the
same task, however producing fewer rules (7 rules).
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Figure 9. Response surface for the best individual in cart-centering for different defuzzification methods:
(a): maximum height; (b) height

Figure 10. Initial and final position for the best
individual in an execution of GPFIS-Control, using

Product+Root-Sq+MaxHeight and average
aggregation operator configurations

6 Conclusion

A novel approach for solving control prob-
lems has been presented. It consists of a Genetic
Programming Fuzzy Inference System for Control
tasks (GPFIS-Control), based on Multi-Gene Ge-
netic Programming. The proposed GPFIS-Control
model considers the usual stages of a Genetic Fuzzy
Inference System: fuzzification, inference, defuzzi-
fication and evaluation.

The performance of GPFIS-Control has been
evaluated through two benchmarks problems: cart-
centering and inverted pendulum. The use of dif-

ferent aggregation, defuzzification and negation op-
erators has been analyzed. It was shown that the
right choice of defuzzification and aggregation op-
erators improves results, while the use of negation
may reduce the number of rules. When compared
to other Genetic Fuzzy Controllers, GFPIS-Control
has shown a better performance in average.

Future works shall consider other benchmark
and real world problems, as well as new meth-
ods in formulation, partitioning and aggregation.
For example, rules could be aggregated by using
a weighted average, with adaptive weights for the
rules during the controller operation. This could
improve results with fewer rules. The use of others
partitioning methods can also improve the perfor-
mance, helping GPFIS-Control model to select the
most promising rules for each consequent. A sensi-
tivity analysis of some parameters (tournament size,
maximum tree depth, etc.) would help to evaluate
their influence on the final result.
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