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Abstract

For determination of the relationships among significant gene markers, statistical analy-
sis and association rule mining are considered as very useful protocols. The first protocol
identifies the significant differentially expressed/methylated gene markers, whereas the
second one produces the interesting relationships among them across different types of
samples or conditions. In this article, statistical tests and association rule mining based
approaches have been used on gene expression and DNA methylation datasets for the
prediction of different classes of samples (viz., Uterine Leiomyoma/class-formersmoker
and uterine myometrium/class-neversmoker). A novel rule-based classifier is proposed
for this purpose. Depending on sixteen different rule-interestingness measures, we have
utilized a Genetic Algorithm based rank aggregation technique on the association rules
which are generated from the training set of data by Apriori association rule mining al-
gorithm. After determining the ranks of the rules, we have conducted a majority voting
technique on each test point to estimate its class-label through weighted-sum method.
We have run this classifier on the combined dataset using 4-fold cross-validations, and
thereafter a comparative performance analysis has been made with other popular rule-
based classifiers. Finally, the status of some important gene markers has been identified
through the frequency analysis in the evolved rules for the two class-labels individually
to formulate the interesting associations among them.

1 Introduction

In the present scenario, it has been observed that
certain epigenetic factors have a major role in the
regulation of a gene. It has been proved that DNA
methylation is an important epigenetic factor which
can seize the transcription of a gene. Therefore,
gene-expression levels are automatically biased to
non-differential expression. The DNA methylation
is observed in the promoter region of a gene. The
methylated DNA is bound by methyl-CpG-binding

domain proteins (MBDs) which might push some
other proteins to the locus (viz., histone deacety-
lases and other chromatin remodeling proteins) that
may alter histones. Hence, inactive chromatin (i.e.,
heterochromatin) has been formed and transcrip-
tional silencing of hyper-methylated genes has been
took place.

In this article, DNA methylation and gene ex-
pression [3], [4], [33] data have been analyzed
through an integrated approach [5] of some statis-
tical testing [7], [8], [21] and association rule min-
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ing [10], [12] based techniques. First a normality
test has been applied on the data to know whether
it is normally distributed. If so, then some para-
metric statistical tests have been utilized on it, oth-
erwise some non-parametric tests are used to ob-
tain differentially expressed (i.e., DE) [18], [19]
or differentially methylated (i.e., DM) genes cor-
rectly. Thereafter, the intersected DE/DM genes
are identified from all parametric tests as well as all
non-parametric tests [14], [22] individually; and top
common DE/DM genes are then chosen for the next
step. The data discretization of the genes has been
performed using k-means clustering sample-wise.
The discretized data are then subdivided into test
data and training data using 4-fold cross-validations
(CVs). We have also applied updated Apriori rule-
mining algorithm [11] on the training data and de-
termined frequent closed itemsets (FCIs) at a mini-
mum support value. From the itemsets, correspond-
ing association rules have been extracted and eval-
uated w.r.t. 16 different rule-interestingness mea-
sures [17], [20]. On the basis of the 16 interesting-
ness measures, we have performed a Genetic Algo-
rithm (GA) based rank aggregation technique [2] on
the evolved rules to estimate final ranking list of the
evolved rules. A majority voting technique is then
conducted on each test point to determine its class-
label (i.e., either experimental/treated class-label
or control/normal class-label) whose training rules
maximally satisfy that test point through weighted-
sum technique. Our proposed classifier is verified
on one methylation and two expression datasets us-
ing 4-fold CVs. A comparative performance anal-
ysis has been done between our proposed classifier
and the other popular rule-based classifiers.

Some significant observations have been finally
demonstrated on the status of some important genes
through the frequency analysis in association rules
for the two class labels individually.

The remaining sections of the article are ar-
ranged as follows. Section 2 contains a description
of our proposed methodology. The source and in-
formation of some real datasets have been enlisted
in section 3. Section 4 reports the experimental re-
sults with discussion. Finally, section 5 draws the
concluding remarks.

2 Proposed Methodology

In this section, we have described the proposed
methodology in detail.

2.1 Normalization

Suppose, MD[i, j] is input data matrix of the
top genes, where i and j refer to genes and sam-
ples, respectively. First of all, the data should be
normalized as normalization converts the data from
different scales into a common scale. There are
many normalization methods available. In our ex-
periment, we have used zero-mean normalization
[32] which converts the data into such configuration
where mean of each row (i.e., each gene) becomes
zero and standard deviation becomes one.

2.2 Normality Test

It is fact that parametric statistical tests perform
well for the normally distributed data, and non-
parametric statistical tests fit well for the data that
do not follow normal distribution. Thus, normality
test for each gene of each dataset is essential here.
Therefore, Jarque-Bera test [25] has been applied
on each gene as normality test.

2.3 Determination of DE/DM genes using
different statistical tests

The parametric and non-parametric tests are
then applied based on results of the normality test to
identify DE/DM genes. In our experiment, we have
used two parametric tests (viz., t-test and modified
Bayes t-test [7]) and two non-parametric tests (viz.,
Limma [14], SAM). Thereafter, the intersection of
all the parametric tests as well as non-parametric
tests are obtained separately. The common genes
are then ranked using majority voting technique
based on their p-values for the different tests and
top 160 genes are listed in total, in which 80 among
them are upregulated/hypomethylated and rest of
them are downregulated/hypomethylated.
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Figure 1. Flowchart of the whole methodology of
the proposed rule-base classifier.

2.4 Data Discretization

The top genes are then discretized into boolean
form. At first, we transpose MD. Let, MDT be
the resulting matrix. At this moment, discretiza-
tion of the input data matrix is mandatory for ARM.
Thus, we run k-means clustering algorithm row-
wise (i.e., sample-wise) on each row of MDT where
number of clusters is set to 2. The cluster that has
higher centroid value is considered to be cluster of
up-regulated/hyper-methylated genes and other be-
comes cluster of down-regulated/hypo-methylated
genes.

Number of columns of MDT is set to twice
the original number of columns, where the
first half of columns are for up-regulation/hyper-
methylation property and the second half of
columns are for down-regulation/hypo-methylation
property. For the first half, 1 denotes upreg-
ulated/hypermethylated and 0 denotes downregu-
lated/hypomethylated. Similarly, for the second
half, 1 denotes downregulated/hypomethylated and
0 denotes upregulated/hypermethylated. Two extra
columns are then added at the end of all columns,
where first extra column refers to the treated class-

label (i.e., class=tumor for Dataset 1 or class-
formersmoker for Dataset 2) and second extra col-
umn refers to the normal/control class-label (i.e.,
class=normal for Dataset 1 or class-neversmoker
for Dataset 2). The values of the experimental class-
label are 1 for experimental samples and 0 for con-
trol samples. Similarly, the values of the control
class-label are 1 for control samples and 0 for ex-
perimental samples. Here, we have shown an exam-
ple of discretization of the input data matrix MDT
in Table 1. Let us assume that MDT b is the re-
sulting boolean matrix, whose rows refer to samples
and columns denote genes. According to the table,
sexp and sctr denote experimental/treated and con-
trol samples respectively, where ‘+’ and ‘-’ denote
up and down-regulation respectively.

Table 1. An example of discretization of data
matrix: here, sexp and sctr refer to experimental and

normal samples respectively, ‘Gn’ denotes gene,
‘+’ and ‘-’ denote hyper-methylation/up-regulation

and hypo-methylation/down-regulation,
respectively. ‘Up-regulated region’ and

‘Down-regulated region’ denote
hyper-methylated/up-regulated and

hypo-methylated/down-regulated regions,
respectively.

Up-regulated region Down-regulated region Experimental Control
Gn1+ Gn2+ ... Gn1- Gn2- ... class-

label
(Ex)

class-
label
(Ct)

sexp1 1 0 ... 0 1 ... 1 0
sexp2 0 1 ... 1 0 ... 1 0
... ... ... ... ... ... ... ... ...
sctr1 1 1 ... 0 0 ... 0 1
sctr2 1 0 ... 0 1 ... 0 1
... ... ... ... ... ... ... ... ...

Here, for the first row/sample (i.e., sexp1), gene1
(denoted by ‘Gn1’) is upregulated and gene2 (de-
noted by ‘Gn2’) is downregulated. Therefore, in the
table, the cell MDT b(sexp1,Gn1+)=1 as ‘Gn1’ is
upregulated, and the cell MDT b(sexp1,Gn2−)=1 as
‘Gn2’ is downregulated. Hence, automatically, the
cells MDT b(sexp1,Gn1−)=0 as ‘Gn1’ is not down-
regulated, and MDT b(sexp1,Gn2+)=0 as ‘Gn2’ is
not upregulated. Subsequently, MDT b(sexp1,Ex)=1
as this row refers to an experimental/treated sam-
ple sexp1. Similarly, MDT b(sexp1,Ct)=0 as this
row does not denote a control/normal sample. The
similar technique is applicable for the other sam-
ples/rows of the matrix MDT b. In case of DM
genes, the approach is same for methylation data
of the table.
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2.5 Cross validation

Subsequently, we divide MDT b data matrix
into 4-folds, where one-fold of MDT b can be con-
sidered as test data, and remaining 3-fold data can
be used as training data. This procedure will be
repeated for 3 times again as it is 4-fold cross-
validations.

2.6 A Novel ARM based approach

Before progressing further, let us discuss some
fundamental concepts of ARM and Apriori algo-
rithm [11]. ARM is a popular technique to esti-
mate interesting relationships among different at-
tributes (i.e., genes). It produces different associ-
ation rules depending on most frequent attributes.
Suppose, It = {i1, i2, ..., in} be an itemset and Trc =
{t1, t2, ..., tm} be a set of transactions. Thus, a rule
might be described as An ⇒Cn, where An,Cn ⊆ It
and An

⋂
Cn = φ. Here, An is called as antecedent

(i.e., set of items in left-hand side of a rule) and Cn
is called as consequent (i.e., set of items in right-
hand side of a rule). The support of It can be de-
fined as the total number of transactions in which
all items of It appear. It is frequent when its sup-
port is greater than a threshold value (i.e., minimum
support). The confidence of a rule is defined as the
ratio of support of An ∩Cn to the support of An.
Apriori is a basic algorithm for learning associa-
tion rules. Apriori utilizes a “bottom-up” approach,
where frequent subsets are extended one item at a
time to generate each candidate and groups of the
candidates are tested against the data. The algo-
rithm terminates if there is no further successful
extensions to be identified. The output of Apriori
is actually the sets of rules that generate the oc-
currence of items in the dataset. Apriori follows
a breadth-first search and a Hash tree structure to
count the candidate itemsets. Apriori produces can-
didate itemsets of length k from itemsets of length
k− 1. Thereafter, it eliminates the candidates hav-
ing an infrequent sub-pattern. The candidate set
contains all frequent-itemsets. It searches the trans-
action database to discover most frequent itemsets
from the candidates.

In our experiment, updated Apriori rule-mining
algorithm [31] has been applied on the training sub-
part of MDT b and estimate FCIs with atleast two
genes/items at 0.1 minimum support. The corre-

sponding association rules have been extracted and
evaluated with sixteen different rule-interestingness
measures (i.e., support, confidence, hyperconfi-
dence, lift, oddsRatio, leverage, conviction, cosine,
doc, fishersExactTest, coverage, gini, improvement,
phi, RLD and hyperLift) from CFIs. Each result-
ing rule must be of a special type (i.e., classifica-
tion rule type), where consequent of it consists of
class-label (viz., class=tumor/class-formersmoker,
or class=normal/class-neversmoker) only. For gene
expression data, the rules are like the followings
(from the first two rows of Table 1):
[Gn1+,Gn2−, ...]⇒ [class = tumor]
[Gn1−,Gn2+, ...]⇒ [class = normal],
where ‘Gn’ denotes gene, ‘+’ denotes up-regulation
and ‘-’ denotes down-regulation. The first rule can
be interpreted as follows: if gene1 is up-regulated
and gene2 is down-regulated simultaneously, the
condition or corresponding class label becomes ex-
perimental. The second rule may be defined as fol-
lows: if gene1 is down-regulated and gene2 is up-
regulated simultaneously, the condition will be nor-
mal/control. Similarly, for DNA methylation data,
types of rules will be same as expression data except
‘+’ and ‘-’ denote hyper and hypo-methylation re-
spectively, instead of up and down-regulation. The
rules are then ranked according to each of the rule-
interestingness measures separately.

GA based rank aggregation algorithm [2] is
then applied on the resulting rankings of the rules
depending on the rule-interestingness measures,
and the final ranking list of the rules has been ob-
tained.

2.7 Two-class classification technique

Thereafter, two-class classification technique is
needed to apply on the test data points. Thus, we
have applied a majority voting technique on each
test data point to determine its class label through
weighted-sum method. Hence, we have assigned
some weight (i.e., 0.0000 < weight < 1.0000) in
descending order on the final list of rules in such
a way that the topmost rule gets the highest weight,
2nd topper gets 2nd highest weight and so on. Fi-
nally, for the lowest ranked rule, the lowest weight
is assigned. The weight-interval between any two
consecutive ranked rules is kept same here. Now,
consider one test data point. We have filtered the
association rules with their class-labels and corre-
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sponding weights by which the test data point is
completely satisfied. Thereafter, we have added
the weights of the rules whose original class-label
is experimental and also do the same for the rules
whose original class-label is control. The two re-
sults are then compared and the class-label with
higher weighted-sum becomes the predicted class-
label of the test data point. But, if the weighted-
sum for one class-label is equal to the other, the
class-label of the top rule that satisfies the test data
point, becomes the predicted class-label of it. In
case, if there is no such rule that satisfies the test
data point, consider the class-label of the rule (be-
longs to the all rules of the dataset) that satisfies
maximum number of test points, is considered as
the predicted class-label of it.

After that, a performance analysis has been con-
ducted. We calculate the number of true posi-
tives (TP), true negatives (TN), false positives (FP),
false negatives (FN), and sensitivity [24], specificity
[24], accuracy [24] and Mathews correlation coeffi-
cient (MCC) [24]. Sensitivity, specificity, accuracy
and MCC are defined in the Equations 1, 2, 3 and
4, respectively.

sensitivity =
T P

(T P+FN)
, (1)

speci f icity =
T N

(FP+T N)
, (2)

accuracy =
(T P+T N)

(T P+FP+T N +FN)
, (3)

MCC =
(T P∗T N)− (FP∗FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
.

(4)

2.8 Comparative performance analysis be-
tween proposed and other rule based
classifiers

The performance of the proposed technique
has been compared with that of some existing
rule-based classifiers. Flowchart of the complete
methodology of the proposed rule-base classifier is
depicted in Figure 1.

3 Real Datasets

Here, two real datasets have been utilized which
are described in Table 2. For the first dataset, we

have used the common set of genes which have both
expression values and methylation values.

4 Experimental Results and Dis-
cussion

4.1 Identification of DE/DM genes

For Dataset 1, we have considered only com-
mon genes (i.e, 13072 genes) that have both expres-
sion and methylation data, and then utilized our pro-
posed method on the common genes for expression
as well as methylation data individually. First of
all, the datasets are normalized. Fig. 2(a) shows the
data representation before using any normalization,
and Fig. 2(b) depicts the data representation after
using zero-mean normalization. 10,236 and 2,836
genes are found to be normal and non-normally
distributed respectively for the expression data of
Dataset 1, where for methylation data of Dataset 1,
these numbers are 8,173 and 4,899 respectively. For
Dataset 2, these are 15,113 and 7,170 respectively.
Fig. 3(a) presents a normality plot for a normally
distributed data of a gene, where Fig. 3(b) denotes
the normality plot for a non-normally distributed
data of another gene from Dataset 1.

After normality test, different parametric and
non-parametric tests are used. In Table 3, we have
listed number of DE/DM genes by the statistical
tests (at 0.05 p-value cutoff) and common DE/DM
genes from the tests for each of the datasets. A vol-
canoplot by Limma test to identify DE genes and
clustergram for expression data for Dataset 1 are de-
picted in Fig 4(a) and (b), respectively.

According to Table 3, we have filtered the
common genes from each dataset, and ranked
these using majority voting technique. Thereby,
top forty genes from normally distributed up-
regulated/hyper-methylated list (e.g., top 40 from
323 common DE genes in Table 3(a)) and an-
other top forty from non-normally distributed up-
regulated/hyper-methylated list (e.g., top 40 from
86 common DE genes in Table 3(b)) are selected.
Similar thing is done for the down-regulated/hypo-
methylated genes.

Hence, the top 160 DE genes (i.e., 40 plus 40
from up-regulated list; and 40 plus 40 for down-
regulated list for each dataset) are finally chosen for
the data discretization.
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Table 2. Information of used Datasets (DS).

DS Dataset information NCBI Sample
id Ref. id size
1 Gene expression and genome-wide

methylation datasets of Uterine
Leiomyoma [1], having Uterine
Leiomyoma tumor (experimental)
and normal myometrial samples.

GSE31699 32 (having 16 experimental and 16 normal).

2 Gene expression dataset of cigarette
smokers of lung adenocarcinoma
[6], former smoker (FS) and never
smoker (NS) for Non-Tumor sam-
ples.

GSE10072 33 (having 18 FS and 15 NS).

fig2before.jpg fig2after.jpg

(a) (b)

Figure 2. Boxplots of data for each gene of Dataset 1 (a) before, and (b) after zero-mean normalization,
where each boxplot denotes data for each gene.(Here, boxplots for the first thirty genes are presented.)

fig3normal.jpg fig3nonnormal.jpg

(a) (b)

Figure 3. Normality plots for (a) normally distributed expression data of a gene, and (b) non-normally
distributed expression data for another gene, of Dataset 1.
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Table 2. Information of used Datasets (DS).
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1 Gene expression and genome-wide
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Leiomyoma [1], having Uterine
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and normal myometrial samples.

GSE31699 32 (having 16 experimental and 16 normal).

2 Gene expression dataset of cigarette
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[6], former smoker (FS) and never
smoker (NS) for Non-Tumor sam-
ples.

GSE10072 33 (having 18 FS and 15 NS).
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where each boxplot denotes data for each gene.(Here, boxplots for the first thirty genes are presented.)
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Figure 3. Normality plots for (a) normally distributed expression data of a gene, and (b) non-normally
distributed expression data for another gene, of Dataset 1.
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Table 3. Number of differentially expressed/methylated genes by different statistical tests (at 0.05 p-value
cutoff)- for the expression data of (a) normally distributed genes, (b) non-normally distributed genes of

Dataset 1; -for the methylation data of (c) normally distributed genes, (d) non-normally distributed genes of
Dataset 1; and the expression data (e) normally distributed genes, (f) non-normally distributed genes of
Dataset 2. Here #geneup, #genedown denote up and down-regulated genes respectively; where #genehyper

and #genehypo refer to hyper and hypo-methylated genes respectively.

fig4GSE10072.jpg fig4GSE31699.jpg

(a) (b)

Figure 4. (a) Volcanoplot by Limma test for identifying differentially expressed genes and (b) clustergram,
for gene expression data of Dataset 1.

Table 4. Comparative performance analysis of the rule based classifiers on (a) gene expression data, and
(b) methylation data for Dataset 1.
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Table 3: Number of differentially expressed/methylated genes by different statistical tests (at 0.05 p-value
cutoff)- for the expression data of (a) normally distributed genes, (b) non-normally distributed genes of
Dataset 1; -for the methylation data of (c) normally distributed genes, (d) non-normally distributed genes
of Dataset 1; and the expression data (e) normally distributed genes, (f) non-normally distributed genes of
Dataset 2. Here #geneup, #genedown denote up and down-regulated genes respectively; where #genehyper
and #genehypo refer to hyper and hypo-methylated genes respectively.

(a)
t-test Bayes t-test common

#geneup 391 329 323
#genedown 576 491 486

(b)
SAM Limma common

#geneup 86 86 86
#genedown 70 70 70

(c)
t-test Bayes common

#genehyper 695 548 548
#genehypo 686 608 608

(d)
SAM Limma common

#genehyper 174 177 174
#genehypo 165 170 165

(e)
t-test Bayes t-test common

#geneup 462 88 46
#genedown 536 93 46

(f)
SAM Limma common

#geneup 200 201 185
#genedown 290 238 233
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Figure 4: (a) Volcanoplot by Limma test for identifying differentially expressed genes and (b) clustergram,
for gene expression data of Dataset 1.
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Table 4: Comparative performance analysis of the rule based classifiers on (a) gene expression data, and (b)
methylation data for Dataset 1.

(a)
Rule Average Average Average Average
based sensitivity specificity accuracy MCC
classifier [%](s.d.) [%](s.d.) [%](s.d.) [%](s.d.)
Proposed 72.92 (7.22) 89.58 (6.99) 81.25 (6.25) 0.64 (0.13)
Conjunctive-Rule 89.58 (0.04) 62.5 (0.06) 76.04 (4.77) 0.54 (0.09)
Decision-Table 87.5 (0.00) 62.5 (0.11) 75 (5.41) 0.52 (0.10)
JRip 83.33 (0.07) 64.58 (0.10) 73.96 (6.50) 0.49 (0.13)
OneR 87.5 (0.00) 64.58 (0.10) 76.04 (4.77) 0.54 (0.09)
PART 83.33 (0.07) 68.75 (0.11) 76.04 (7.86) 0.53 (0.16)
Ridor 77.08 (0.04) 77.08 (0.13) 77.08 (7.22) 0.54 (0.14)

(b)
Average Average Average Average

sensitivity specificity accuracy MCC
[%](s.d.) [%](s.d.) [%](s.d.) [%](s.d.)

91.67 (3.61) 100 (0.00) 95.83 (1.80) 0.92 (0.03)
100 (0.00) 68.75 (0.06) 84.38 (3.13) 0.72 (0.09)
100 (0.00) 81.25 (0.00) 90.63 (0.00) 0.83 (0.00)
100 (0.00) 91.67 (0.07) 95.83 (3.61) 0.92 (0.07)
100 (0.00) 81.25 (0.00) 90.63 (3.61) 0.83 (0.00)
100 (0.00) 91.67 (0.07) 95.83 (3.61) 0.92 (0.07)
100 (0.00) 91.67 (0.07) 92.71 (1.80) 0.86 (0.03)

Table 5: Comparative performance analysis of the
rule based classifiers on gene expression data od
Dataset 2.

Rule Average Average Average Average
based sensitivity specificity accuracy MCC
classifier [%](s.d.) [%](s.d.) [%](s.d.) [%](s.d.)
Proposed 85.96 (6.07) 80.95 (4.12) 83.84 (4.63) 0.67 (0.09)
Conjunctive-
Rule

73.85 (4.32) 76.82 (3.03) 73.74 (4.63) 0.50 (0.07)

Decision-
Table

79.67 (9.46) 76.82 (3.03) 77.78 (7.63) 0.57 (0.13)

JRip 84.21 (5.26) 80.95 (4.12) 82.83 (4.63) 0.65 (0.09)
OneR 84.21 (5.26) 78.57 (0) 81.82 (3.03) 0.63 (0.06)
PART 87.31 (2.75) 77.38 (2.06) 82.83 (1.75) 0.65 (0.03)
Ridor 89 (4.58) 76.45 (3.67) 82.83 (1.75) 0.66 (0.03)
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Figure 5: Comparison of accuracies among different
statistical tests for (a) expression and (b) methylation
data of Dataset 1, and (c) expression data of Dataset
2, respectively, where ‘Prop’, ‘CJR’ and ‘DT’ denote
proposed, ConjunctiveRule and DecisionTable clas-
sifiers respectively.
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4.2 Comparative performance analysis be-
tween proposed and other rule based
classifiers

For comparison purpose, we have taken into ac-
count other popular rule-based classifiers (i.e., Con-
junctiveRule, DecisionTable, JRip, OneR, PART,
Ridor) implemented in Weka 3.6 software and then
we have compared the performance of our proposed
classifier with the other rule based classifiers. In our
experiment, we have run 4-fold CV for 3 times and
then we have estimated average sensitivity, average
specificity, average accuracy and average MCC. Ta-
bles 4 (a) and (b) report the comparative perfor-
mance among the classifiers for the expression and
methylation data respectively for Dataset 1. Simi-
larly, Table 5 presents the same for Dataset 2.

For the expression data of Dataset 1, our pro-
posed classifier provides the better average accu-
racy (i.e., 81.25%) and better average MCC (i.e.,
0.64) than the other rule based classifiers (see Ta-
ble 4(a)). For methylation data of the Dataset,
our classifier provides better average accuracy (i.e.,
95.83%) and average MCC (i.e., 0.92) than Con-
junctiveRule, DecisionTable, OneR and Ridor clas-
sifiers. JRip and PART yield same average accu-
racy and average MCC as the proposed one (see Ta-
ble 4(b)). But, from the point of standard deviation
(s.d.) of accuracies, proposed one is better than the
two classifiers as the s.d. of accuracies (i.e., 1.80)
of our classifier is lower than the other two. Sim-
ilarly, w.r.t. s.d. of MCCs, it is also better than
the other two as the s.d. of MCCs of it (i.e., 0.03)
is lower than the others. For above expression and
methylation data of Dataset 1, average specificity
of the proposed one is better than the others, but
sensitivity of it is lower than the others. In case of
Dataset 2, our classifier also performs better than
others in term of average specificity, average accu-
racy and average MCC (see Table 5). The sensitiv-
ity of it is found less than Ridor classifier, but bet-
ter than others. Moreover, Fig. 5 presents barplot
for the datasets comparing the average accuracies
of the classifiers.

accuracy_barplots.jpg

Figure 5. Comparison of accuracies among
different statistical tests for (a) expression and (b)
methylation data of Dataset 1, and (c) expression

data of Dataset 2, respectively, where ‘Prop’,
‘CJR’ and ‘DT’ denote proposed, ConjunctiveRule

and DecisionTable classifiers respectively.

In fact, from expression data, we have got to-
tal 744 (i.e., 428 plus 316) association rules for all
4-fold CVs, where the rules having ‘class=tumor’
in the consequent are found 428 times and the rules
having ‘class=normal’ in the consequent are found
316 times.

For the expression data of Dataset 1, we have
observed that down-regulation of ‘TACSTD2’ gene
is found with 99.77% frequency of occurring in
the evolved rules of tumor class-label. But, down-
regulation of the gene has not been found in the
evolved rules of control class-label. Therefore,
down-regulation of it seems to be extremely im-
portant for tumor (i.e., Uterine Leiomyoma) for-
mation. We have found some literature-base ev-
idences about ‘TACSTD2’ gene for tumor forma-
tion in [23], [30]. Down-regulation of another
gene ‘ACSL5’ has been identified with 73.36% fre-
quency of occurring in the evolved rules of tu-
mor class-label; but down-regulation of it has not
been found in the evolved rules of control class-
label. Thereby, down-regulation of ‘ACSL5’ is also
important like down-regulation of ‘TACSTD2’ for
Uterine Leiomyoma formation. Down-regulation of
‘FHL5’ has some less importance in tumor forma-
tion as down-regulation of it is found with .63% fre-
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4.2 Comparative performance analysis be-
tween proposed and other rule based
classifiers

For comparison purpose, we have taken into ac-
count other popular rule-based classifiers (i.e., Con-
junctiveRule, DecisionTable, JRip, OneR, PART,
Ridor) implemented in Weka 3.6 software and then
we have compared the performance of our proposed
classifier with the other rule based classifiers. In our
experiment, we have run 4-fold CV for 3 times and
then we have estimated average sensitivity, average
specificity, average accuracy and average MCC. Ta-
bles 4 (a) and (b) report the comparative perfor-
mance among the classifiers for the expression and
methylation data respectively for Dataset 1. Simi-
larly, Table 5 presents the same for Dataset 2.

For the expression data of Dataset 1, our pro-
posed classifier provides the better average accu-
racy (i.e., 81.25%) and better average MCC (i.e.,
0.64) than the other rule based classifiers (see Ta-
ble 4(a)). For methylation data of the Dataset,
our classifier provides better average accuracy (i.e.,
95.83%) and average MCC (i.e., 0.92) than Con-
junctiveRule, DecisionTable, OneR and Ridor clas-
sifiers. JRip and PART yield same average accu-
racy and average MCC as the proposed one (see Ta-
ble 4(b)). But, from the point of standard deviation
(s.d.) of accuracies, proposed one is better than the
two classifiers as the s.d. of accuracies (i.e., 1.80)
of our classifier is lower than the other two. Sim-
ilarly, w.r.t. s.d. of MCCs, it is also better than
the other two as the s.d. of MCCs of it (i.e., 0.03)
is lower than the others. For above expression and
methylation data of Dataset 1, average specificity
of the proposed one is better than the others, but
sensitivity of it is lower than the others. In case of
Dataset 2, our classifier also performs better than
others in term of average specificity, average accu-
racy and average MCC (see Table 5). The sensitiv-
ity of it is found less than Ridor classifier, but bet-
ter than others. Moreover, Fig. 5 presents barplot
for the datasets comparing the average accuracies
of the classifiers.
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In fact, from expression data, we have got to-
tal 744 (i.e., 428 plus 316) association rules for all
4-fold CVs, where the rules having ‘class=tumor’
in the consequent are found 428 times and the rules
having ‘class=normal’ in the consequent are found
316 times.

For the expression data of Dataset 1, we have
observed that down-regulation of ‘TACSTD2’ gene
is found with 99.77% frequency of occurring in
the evolved rules of tumor class-label. But, down-
regulation of the gene has not been found in the
evolved rules of control class-label. Therefore,
down-regulation of it seems to be extremely im-
portant for tumor (i.e., Uterine Leiomyoma) for-
mation. We have found some literature-base ev-
idences about ‘TACSTD2’ gene for tumor forma-
tion in [23], [30]. Down-regulation of another
gene ‘ACSL5’ has been identified with 73.36% fre-
quency of occurring in the evolved rules of tu-
mor class-label; but down-regulation of it has not
been found in the evolved rules of control class-
label. Thereby, down-regulation of ‘ACSL5’ is also
important like down-regulation of ‘TACSTD2’ for
Uterine Leiomyoma formation. Down-regulation of
‘FHL5’ has some less importance in tumor forma-
tion as down-regulation of it is found with .63% fre-
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Table 5. Comparative performance analysis of the rule based classifiers on gene expression data od Dataset
2.

Rule Average Average Average Average
based sensitivity specificity accuracy MCC

classifier [%](s.d.) [%](s.d.) [%](s.d.) [%](s.d.)
Proposed 85.96 (6.07) 80.95 (4.12) 83.84 (4.63) 0.67 (0.09)

Conjunctive-Rule 73.85 (4.32) 76.82 (3.03) 73.74 (4.63) 0.50 (0.07)
Decision-Table 79.67 (9.46) 76.82 (3.03) 77.78 (7.63) 0.57 (0.13)

JRip 84.21 (5.26) 80.95 (4.12) 82.83 (4.63) 0.65 (0.09)
OneR 84.21 (5.26) 78.57 (0) 81.82 (3.03) 0.63 (0.06)
PART 87.31 (2.75) 77.38 (2.06) 82.83 (1.75) 0.65 (0.03)
Ridor 89 (4.58) 76.45 (3.67) 82.83 (1.75) 0.66 (0.03)

Table 6. Occurrence of highly-frequent genes in evolved rules of experimental and normal class-labels for
4-fold CVs in (a) gene expression data and (b) methylation data, both from Dataset 1 and (c) gene

expression data from Dataset 2, respectively; here ‘+’ denotes up-regulation/hyper-methylation and ‘-’
denotes down-regulation/hypo-methylation.

(a)
Frequency [%] of Frequency [%] of

Gene occurrence in evolved occurrence in evolved
rules of ‘class=tumor’ rules of ‘class=normal’

TACSTD2- 99.77 0
ACSL5- 73.36 0
FHL5- 100 0.63

CALCRL+ 0.23 93.04

(b)
Frequency [%] of Frequency [%] of

Gene occurrence in evolved occurrence in evolved
rules of ‘class=tumor’ rules of ‘class=normal’

NRTN- 100 0
PRSS8+ 100 14.19

(c)
Frequency [%] of Frequency [%] of

Gene occurrence in evolved occurrence in evolved
rules of rules of

‘class-formersmoker’ ‘class-neversmoker’
204224 s at- 96.23 0
207968 s at+ 94.21 0
209780 at+ 0 95.67
209717 at+ 0 62.68
221578 at- 0 61.93
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Table 7. The p-values of top frequent genes for (a) expression data, (b) methylation data, both for Dataset
1 and (c) expression data, for Dataset 2, respectively.

(a)
Gene p-value

TACSTD2 1.46E-05 (in Limma),
(Non-normally distributed gene) 0.000353 (in SAM).

ACSL5 2.50E-05 (in Limma),
(Non-normally distributed gene) 0.000353 (in SAM).

(b)
Gene p-value

NRTN 1.66E-12 (in t-test),
(Normally distributed gene) 5.85E-14 (in Bayes t).

(c)
Gene p-value

204224 s at 0.0148 (in Limma),
(Non-normally distributed gene) 0.0068 (in SAM).

207968 s at 0.0346 (in Limma),
(Non-normally distributed gene) 0.0326 (in SAM).

209780 at 0.02565 (in Limma),
(Non-normally distributed gene) 0.02185 (in SAM).

209717 at 0.0069 (in Limma),
(Non-normally distributed gene) 0.0052 (in SAM).

221578 at 0.0419 (in Limma),
(Non-normally distributed gene) 0.0366 (in SAM).
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Table 7. The p-values of top frequent genes for (a) expression data, (b) methylation data, both for Dataset
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quency of occurring in the evolved rules of control
class-label in spite of 100% frequency of occurring
in the evolved rules of tumor class-label. Similarly,
up-regulation of ‘CALCRL’ has some less impor-
tance for non-tumorous condition as up-regulation
of the gene is already identified with .23% fre-
quency of occurring in the evolved rules for tumor
class-label in spite of 93.04% such frequency for
control class-label.

For the methylation data of Dataset 1, we have
found total 399 (i.e., 251 plus 148) association
rules, where the rules having ‘class=tumor’ in the
consequent are identified 251 times and the rules
having ‘class=normal’ in the consequent are iden-
tified 148 times. Here, we have found that hypo-
methylation of ‘NRTN’ is identified with 100% fre-
quency of occurring in the evolved rules of tumor
class-label for both 4-fold CVs. Hypo-methylation
of the gene is not found in the evolved rules of con-
trol class-label. So, hypo-methylation of it seems to
be very important for Uterine Leiomyoma forma-
tion. Hyper-methylation of ‘PRSS8’ is also found
with 100% frequency for tumor class-label and
14.19% frequency for control class-label. There-
fore, it is less responsible for tumor formation.

Similarly, for the expression data of Dataset
2, we have obtained 96.23% frequency of
down-regulated gene 204224 s at- (here, it is
probe-id of a gene) for class-formersmoker,
but nothing for class-neversmoker. Hence,
down-regulation of 204224 s at- is important for
the class-formersmoker. Similarly, up-regulated
gene 207968 s at+ is also important for the
class-formersmoker. Subsequently, 209780 at+,
209717 at+ and 221578 at- are also significant for
class-neversmoker. For details, see Table 6(a), (b)
and (c) respectively for the datasets. The p-values of
the top significant genes in different statistical tests
are listed in Table 7(a), (b) and (c), respectively for
the datasets.

Finally, we have applied GA based rank ag-
gregation algorithm on all evolved rules depending
upon the rule-interestingness measures, and top 10
rules from the results are listed in Table 9(a), (b)
and (c) respectively for all the datasets.

4.3 Integrated analysis of the expression
and methylation data for Dataset 1

Here we discuss the integrated analysis on the
gene expression and methylation data for Dataset
1. We have already found the 409 up-regulated
genes (i.e., 323 from normally distributed data of
genes plus 86 from non-normally distributed data
of genes), and 556 down-regulated genes (i.e., 486
from normally distributed data of genes plus 70
from non-normally distributed data of genes) from
the expression data. Subsequently, 692 hyper-
methylated genes (i.e., 507 from normally dis-
tributed data of genes plus 185 from non-normally
distributed data of genes), and 765 hypo-methylated
genes (i.e., 600 from normally distributed data of
genes plus 165 from non-normally distributed data
of genes) have been determined from the methyla-
tion data. Suppose, number of such up and down-
regulated, hyper and hypo-methylated genes are de-
noted as #Gup, #Gdown, #Ghyper and #Ghypo, respec-
tively. Thereby, 17 genes have been identified as
#(Gup ∩Ghyper), where 34 genes as #(Gup ∩Ghypo)
(see Fig. 6(a) and Table 8). Similarly, 62 and 22 are
found as #(Gdown ∩Ghyper) and #(Gdown ∩Ghypo),
respectively (see Fig. 6(b) and Table 8).

Hence, we have identified two types of inverse
co-relationships between the expression data and
methylation data for the above cases, one is for
#(Gup ∩Ghypo) where 34 genes are identified, and
other is for #(Gdown∩Ghyper) where 62 are detected.

fig6part1.jpg fig6part2.jpg

(a) (b)

Figure 6. Intersections of any two among: (a)
#Gup, #Ghyper and #Ghypo, and (b) #Gdown, #Ghyper

and #Ghypo, respectively for Dataset 1.

Therefore, according to these observations, we
draw conclusions that the 34 genes are up-regulated
due to the hypo-methylation effect on the genes.
Similarly, the 62 genes are down-regulated due
to heavy methylation effect on the genes. But,
in case of the 17 genes, there might be some
other epigenetic effects which dominate the hyper-
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Table 8. (a) Gup ∩Ghyper, (b) Gup ∩Ghypo, (c) Gdown ∩Ghyper, (d) Gdown ∩Ghypo respectively for Dataset 1.

#Genes Genes
4* Gup ∩ Ghyper 17 APBA2, C1orf61, CNKSR1, DBC1, DSG2, ETNK2, FKBP7, HDAC3,

LHFPL2, NOPE, PCSK1, PNMA3, PRKD1, THEG, UAP1L1,
UNC5D, ZIM2.

8* Gup ∩ Ghypo 34 B4GALNT4, BCAN, BSN, C20orf100, CAD, CDO1, COL6A3,
DDB2, FSD1, GALNT13, GAP43, GDF15, GLIS1, GPT2, H2AFY,
HOXA11, HSD17B6, KCNG1, KLHL13, MAMDC4, PDE8B, PHF13,
PHLDB2, PI15, RPE65, SCN2B, SEMA7A, SHOX2, TDO2, TH,
THSD4, TNFSF4, TP53INP1, TUBB3.

8* Gdown ∩
Ghyper

62 ABI3, BMX, BST2, C11orf52, C1orf115, C8orf4, C9orf58, CAL-
CRL, CARD10, CCDC68, CD2, CD34, CD40, CD52, CD79B,
CD8A, CLDN5, CLIC1, CMTM8, CREG1, CRIM1, CRIP1,
CYBA, CYTL1, EDG1, EGFL7, EMCN, EVI1, FBLN2, GIMAP5,
GRAMD3, HLA-DMA, HOXB8, ICAM2, ICAM3, IFI27, ITGB7,
KLF11, LRP5, LYST, MFNG, MFSD7, MMRN2, MTSS1, MVP,
MYOT, NUAK1, PCDHGC4, PECAM1, RASIP1, RPH3AL, SCN4B,
SH2D3C, SLC25A18, SLC35A3, SQRDL, ST6GALNAC1, STEAP4,
TEK, TMC6, TMEM71, ZNF217.

6* Gdown ∩ Ghypo 22 ACSL5, ARHGAP9, CYB5R3, GDPD5, GFOD1, HSPB2, IL7R,
LRRC51, MAPK10, NFS1, OR51E2, PAM, PKHD1, PTPRCAP,
RAMP3, RHAG, SDC4, SEMA3B, SLAMF6, SORBS2, STARD8,
TESC.

methylation effect totally on the genes. That’s why,
the genes are still up-regulated. Similarly, as the
hypo-methylation effect is completely dominated
by other epigenetic effects on the 22 genes, the
genes are still down-regulated in spite of the hypo-
methylation effect.

5 Conclusion

An integrated analysis of statistical method-
ologies and ARM has been performed on
gene expression and DNA methylation data for
the prediction of experimental (i.e., Uterine
Leiomyoma/class-formersmoker) and control (i.e.,
Uterine myometrium/class-neversmoker) class-
labels. Some important observations on the com-
bined dataset are also made applying our integrated
analysis. Moreover, we have proposed a novel rule
based classifier. Based on the sixteen different rule-
interestingness measures, we have also applied GA
based rank aggregation technique on the associa-
tion rules that are generated from the training set
of data by Apriori algorithm. After determining the
ranks of the rules, we have conducted a majority
voting technique on each test point to determine
its class-label (i.e., experimental or control class-

label) through weighted-sum method. We have run
this classifier on the combined dataset using 4-fold
CVs. Moreover, a comparative performance anal-
ysis is conducted between our proposed classifier
and other existing rule based classifiers. Finally, we
have predicted the status of some significant genes
through the frequency analysis in the evolved rules
for the two class-labels individually.
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INTEGRATED STATISTICAL AND RULE-MINING TECHNIQUES FOR . . .

Table 9. Top 10 association rules of genes of experimental and normal class-labels in (a) gene expression
data, and (b) methylation data of Dataset 1; and (c) gene expression data of Dataset 2, respectively.

(a)
{BAX+, ISG20L1+, FHL5+, ACSL5+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-,
EDA2R-, OTC- ⇒ class=normal}
{BAX+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC-, STEAP2-,
HS3ST1- ⇒ class=normal}
{BAX+, ACSL5+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC- ⇒
class=normal}
{BAX+, GALNT13-, NTNG1-, GLIS1-, HMGB3-, LIG1-, EDA2R-, FHL5-, OTC-, TACSTD2-, ACSL5-, STEAP2-, HRC-, HS3ST1- ⇒
class=tumor}
{BAX+, ISG20L1+, GALNT13-, GLIS1-, LIG1-, EDA2R-, FHL5-, OTC-, TACSTD2-, ACSL5-, STEAP2-, CALCRL-, HRC-, HS3ST1- ⇒
class=tumor}
{BAX+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC-, HS3ST1- ⇒
class=normal}
{BAX+, ACSL5+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC- ⇒
class=normal}
{BAX+, ACSL5+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC- ⇒
class=normal}
{BAX+, ACSL5+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC- ⇒
class=normal}
{BAX+, CALCRL+, TNFSF10+, PRKCH+, GALNT13-, NTNG1-, GLIS1-, IGF2-, GDF15-, HMGB3-, LIG1-, EDA2R-, OTC- ⇒
class=normal}

(b)
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, PMF1+, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-,
FBLIM1-, TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, CCR1-, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-,
FBLIM1-, TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, CCR1-, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-,
FBLIM1-, TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, CCR1-, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-,
FBLIM1-, TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, PANX3+, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-,
FBLIM1-, TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, ENTPD3-, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-,
FBLIM1-, TUBB3- ⇒ class=tumor}
{SEMA4G+, H19+, IL29+, TMEM71+, GP9+, NRTN+, CFHR1+, PMF1+, PANX3+, ENTPD3-, CCR1-, C9orf58-, LDB3-, FBLIM1-,
TUBB3- ⇒ class=normal}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-, FBLIM1-,
TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-, FBLIM1-,
TUBB3- ⇒ class=tumor}
{PRSS8+, SEMA4G+, H19+, IL29+, TMEM71+, GP9+, CCDC13+, C9orf58-, NRTN-, CD1A-, LDB3-, KIAA1641-, NAV1-, FBLIM1-,
TUBB3- ⇒ class=tumor}

(c)
{201449 at+, 204976 s at+, 209717 at+, 218152 at+, 211698 at+, 206272 at+, 219025 at-, 218475 at- ⇒ class-neversmoker}
{205941 s at+, 211071 s at+, 201562 s at+, 220688 s at+ ⇒ class-formersmoker}
{210977 s at+, 220213 at+, 205142 x at+, 211181 x at+, 201982 s at+, 208916 at+, 207312 at+, 208096 s at-, 204224 s at- ⇒ class-
formersmoker}
{38892 at+, 202251 at+, 201449 at+, 204976 s at+, 209717 at+, 218152 at+, 211698 at+, 206272 at+, 219025 at-, 218475 at- ⇒ class-
neversmoker}
{205941 s at+, 215809 at+, 212016 s at+, 211071 s at+, 201562 s at+, 220688 s at+, 214198 s at-, 204224 s at-, 212281 s at- ⇒ class-
formersmoker}
{65588 at+, 205941 s at+, 219256 s at+, 211071 s at+, 210405 x at+, 205574 x at+, 201562 s at+, 220688 s at+, class-formersmoker}
{210977 s at+, 205142 x at+ ⇒ class-formersmoker }
{214146 s at+, 210237 at-, 202250 s at- ⇒ class-neversmoker }
{211698 at+, 208744 x at- ⇒ class-neversmoker}
{65588 at+, 202507 s at+, 210977 s at+, 215809 at+, 205142 x at+, 217193 x at+, 211380 s at+, 204199 at+ ⇒ class-formersmoker}
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