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Abstract

Flying insects are valuable animal models for elucidating computational processes un-
derlying visual motion detection. For example, optical flow analysis by wide-field motion
processing neurons in the insect visual system has been investigated from both behavioral
and physiological perspectives [1]. This has resulted in useful computational models with
diverse applications [2,3]. In addition, some insects must also extract the movement of
their prey or conspecifics from their environment. Such insects have the ability to detect
and interact with small moving targets, even amidst a swarm of others [4,5]. We use elec-
trophysiological techniques to record from small target motion detector (STMD) neurons
in the insect brain that are likely to subserve these behaviors. Inspired by such recordings,
we previously proposed an ‘elementary’ small target motion detector (ESTMD) model
that accounts for the spatial and temporal tuning of such neurons and even their ability
to discriminate targets against cluttered surrounds [6-8]. However, other properties such
as direction selectivity [9] and response facilitation for objects moving on extended tra-
jectories [10] are not accounted for by this model. We therefore propose here two model
variants that cascade an ESTMD model with a traditional motion detection model algo-
rithm, the Hassenstein Reichardt ‘elementary motion detector’ (EMD) [11]. We show
that these elaborations maintain the principal attributes of ESTMDs (i.e. spatiotempo-
ral tuning and background clutter rejection) while also capturing the direction selectivity
observed in some STMD neurons. By encapsulating the properties of biological STMD
neurons we aim to develop computational models that can simulate the remarkable ca-
pabilities of insects in target discrimination and pursuit for applications in robotics and
artificial vision systems.

1 Introduction

The dominant computational model for bio-
logical motion processing for over 50 years, the
Hassenstein-Reichardt (HR) model for a direction-
selective ‘elementary motion detector’ (EMD), in-
volves correlation of spatially separated contrast
signals after delaying one channel (Fig. 1A). The
HR model (and a number of mathematically simi-
lar variants) is well supported by diverse evidence,
from behavior to electrophysiology, particularly
from insects [review, 1]. In dipteran flies, large ar-

rays of local HR detectors with differing local di-
rection preferences for motion are collated (i.e. spa-
tially summed) by large-field neurons of the insect
3rd optic ganglion to provide matched filters for dif-
ferent classes of wide-field optical flow (e.g. pitch,
roll, yaw and translation) and to mediate flight con-
trol [12].

While evidence for an HR-like detector in the
wide-field motion system is overwhelming, less
is known about the mechanisms underlying other
types of motion processing in insects. This is partic-
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ularly the case for the neural pathways involved in
feature detection. One group of insect feature detec-
tors, the small target motion detector (STMD) neu-
rons, have several response characteristics that are
well explained by classical HR models. These in-
clude distinct velocity tuning and a non-linear sen-
sitivity to stimulus contrast [13]. Both direction-
selective and non-directional STMDs with other-
wise identical tuning have been described [9,14-
16], yet the HR model is inherently selective for the
direction of the stimulus. Moreover, the HR detec-
tor itself confers no selectivity for small targets –
the hallmark of STMDs as a class and would thus
be responsive to the larger features that dominate
natural scenes [17]. Furthermore, the classical HR
detector is insensitive to the sign of feature contrast,
responding equally well to features that are brighter
or darker than the background, while STMD neu-
rons can be highly selective for a single sign of con-
trast (e.g. dark contrast targets).

To reconcile these disparate findings, we pre-
viously proposed a model for target selectivity by
STMDs that utilized half-rectified separation of in-
put channels for luminance increments (ON) and
decrements (OFF) channels [6, 18]. We derived
inspiration for this ‘elementary small target mo-
tion detector’ (ESTMD) model from electrophysi-
ological recordings of rectifying, transient cells in
the locust medulla [19], blowfly 1st optic chiasm
[20] and blowfly medulla [6] that depolarize and/or
spike (i.e. generate action potentials) in response
to either luminance increments or decrements. Our
ESTMD model included partially rectified ON and
OFF channels with fast and independent dynamic
adaptation (gain reduction), which are then corre-
lated with one another after a delay at the same spa-
tial location (Fig. 1B). This opposite polarity cor-
relation exploits an expected property of a spatially
circumscribed feature moving in a given direction:
even against cluttered backgrounds, such a feature
is most likely to have a leading edge opposite in sign
to its trailing edge. Even a tiny object crossing the
receptive field of a single detector will thus produce
a response that first rises before falling. The ad-
dition of strong surround antagonism then extends
this discrimination for small features along the axis
orthogonal to its motion (Fig. 1B).
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Figure 1. Correlation based models of ‘elementary
motion detection’ (EMD). A. The

Hassenstein-Reichardt (HR) EMD correlates
spatially separated luminance signals with one path

delayed in time before multiplication. The
subtraction of mirror symmetric units permits

opponent responses to motion in the non-preferred
direction. B. The non-directional ESTMD model
has strong centre-surround antagonism of ON and
OFF channels followed by the correlation of the

delayed OFF with the undelayed ON signal. This
processing matches the spatiotemporal profile of a
small moving target. C. In the 2 detector HR EMD,
‘like’ channels are correlated with one another, i.e.
ON with ON and OFF with OFF. D. The cascaded

EMD-ESTMD model uses spatiotemporally
correlated ON and OFF channels to serve as inputs

to an ESTMD model. F. The cascaded
ESTMD-EMD model adds directionality to target

detection by correlating the output of two
non-directional ESTMD units.

Our ESTMD model accounts well for the size
and velocity tuning observed in insect STMDs [6,
21], and is also robust to the presence of back-
ground clutter, even without relative motion cues
[22]. This model therefore captures a remark-
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able property of biological STMD neurons, which
have been shown to respond very robustly to tar-
gets against highly cluttered backgrounds, regard-
less of the extent of relative motion [14, 15]. How-
ever the core correlation operation of the ESTMD
model lacks the spatial asymmetry that confers di-
rection selectivity to the HR-EMD model.

An interesting possibility to explain the ob-
servation that some STMD neurons are direction-
selective is that they might employ a second-order
motion detector that cascades an HR-type EMD
stage with an ESTMD stage. This is further
suggested by the recent discovery of direction-
selective STMD neurons with relatively small re-
ceptive fields, around 5-10◦ across (where the inter-
detector angle of the insect is 1-1.5◦) [16]. While
signaling local motion of small features, these
small-field STMDs (SF-STMDs) still encapsulate
inputs corresponding to a local pool of dozens of
adjacent input ommatidia, so could easily represent
the output of an asymmetric, non-linear integration
of local ESTMDs – i.e. a 2nd order motion detector
network [23].

Consistent with this notion, a 2nd order op-
eration was recently proposed following our find-
ing that the response time-course in the large-field
dragonfly STMD neuron, CSTMD1, to small target
stimuli builds to a maximum over several hundred
milliseconds [10]. It does so, however, only for tar-
gets that successively track across tens of degrees of
visual angle, and thus large numbers of local om-
matidia [24, 25]. A second-order motion detector
network [23] might not only confer direction selec-
tivity, but could potentially enhance target detection
by taking advantage of a distinguishing character-
istic feature of natural target motion: true targets
tend to move along continuous paths, even if they
change direction or vary in contrast as they move
across the background. A response in one local
motion detector should be well correlated with an
appropriately delayed response in neighboring de-
tectors (i.e. matching the target velocity). Noise, on
the other hand (including spurious feature motion of
the background, such as foliage moving with wind),
would tend to be local and inconsistent, and thus
less likely to persist along continuous trajectories.
A second-order system would thus enhance rejec-
tion of feature motion not correlated across multiple
local adjacent input detectors, permitting amplifica-

tion to enhance robustness whilst maintaining un-
derlying selectivity to stimuli on the spatial scale of
single ommatidia of the eye.

In this paper, we present several variants of
computational models that capture the key prop-
erties of direction-selective SF-STMD neurons by
cascading partially rectified ESTMD stages with
HR-type EMDs, and vice versa. We further ex-
tend the work presented in Wiederman & O’Carroll,
2013b [26], with the addition of new physiologi-
cal data from STMD neurons (direction selectivity,
contrast sensitivity and dark target selectivity). Ad-
ditionally, we extend model simulations, robustly
determining the contrast sensitivity function of a
particular STMD neuron (CSTMD1). We exam-
ine the key response tuning and predictions of these
second order systems for simple stimuli. We find
that the combination of an ESTMD front-end with
a 2nd order EMD is able to combine both the direc-
tion selectivity of classical EMDs with the feature
selectivity of the ESTMD model. This model cap-
tures the sharper response tuning for either size or
velocity of targets observed in insect STMD neu-
rons compared with the predictions of either EMD
or ESTMD models alone.

2 Results

2.1 Model variants

We developed three versions of the target-
detection model each including identical
‘biomimetic’ front-end processing. The compu-
tational models simulated insect optics (blurring
and hexagonal sampling) and early visual process-
ing (dynamic band pass filtering) as described in
the Appendix [6-8]:

i ESTMD: this is our original ESTMD model
(Fig. 1B) which includes strong surround an-
tagonism and correlates a delayed OFF channel
with an undelayed ON channel [6, 18].

ii 2nd order EMD-ESTMD: this is a second or-
der ‘hybrid’ model (Fig. 1D). This implements
a front end based on a direction-selective 2-
detector EMD (Fig 1C) that separates ON and
OFF channels and then subsequently correlates
these ‘like’ channels in separate multiplication
stages. This EMD is based on recent findings



8 S. D. Wiederman, D. C. O’Carroll

from genetic modification of fruit-fly vision and
is currently regarded as the ‘state of the art’ as a
biomimetic model for the HR-EMD as observed
in real insects [28]. In our hybrid EMD-ESTMD
model (Fig. 1D) each ‘ON-ON’ and OFF-OFF
motion signal at the output of the 2 EMDs then
serves as input to a 2nd order ESTMD stage
which correlates the delayed signal from the
OFF EMD with the undelayed ON EMD.

iii 2nd order ESTMD-EMD: this variant (Fig. 1E)
implements similar operations to the EMD-
ESTMD, but in reverse order, i.e. the model
first computes the ‘matched target’ filter with an
ESTMD (as in Fig. 1B), before correlating these
as inputs to a 2nd order 2-detector EMD (as in
Fig. 1C).

2.2 Direction selectivity

A subset of STMD neurons are direction selec-
tive [16]. As shown in Fig. 2A, an example STMD
neuron responds robustly to targets drifted across
the display from right to left (at varying vertical lo-
cations), but not to targets drifted in the rightwards
direction. In this example, responses are in fact in-
hibited below the spontaneous firing rate to such an
‘opponent’ direction of motion. In a second exam-
ple STMD, responses to targets drifted in either di-
rection produce robust spiking activity (i.e. non-
directional). Such ‘receptive fields’ of the neuron
can also be mapped in the vertical direction, to de-
termine the neuron’s overall preferred directionality
(data not shown).

Fig. 3 shows that both hybrid models (Fig 1D,
E) lead to a direction-selective output. Shown is the
percentage strength of directionality, defined here
relative to the sum of the absolute responses to tar-
gets moving in two opposite directions. The tar-
get stimulus subtended an angle of 1.25◦ x 2◦ and
moved at a speed of 45◦/s. As can be seen, the
ESTMD responds equally to either target direction
and is in effect a local flicker detector, matched
to the spatiotemporal profile of a moving target.
A cascaded 2-detector EMD either before (EMD-
ESTMD) or after (ESTMD-EMD) the matched fil-
ter induces strong directionality to the model re-
sponses, with responses in the ‘preferred’ direction
comprising almost 100% of the overall response to
both.

2.3 Spatiotemporal tuning

To examine whether model variants produce
similar characteristics to those observed in physi-
ological STMD experiments [9, 27], we examined
the target size tuning of the model variants by simu-
lating target motion of varying width (i.e. their spa-
tial direction in the direction of travel) and at two
different velocities (Fig. 4).

All 3 model variants produce similar response
characteristics, displaying a dependence on both
image velocity and target width. These tuning
functions are similar to those observed in earlier
ESTMD modeling efforts [28].

image2.jpg

Figure 2. The receptive field of a neuron is
mapped by drifting a target across the screen at

multiple vertical locations and plotting the spiking
activity A. An unidenitifed STMD neuron is only

responsive to a target drifiting in one direction
(left). B. The receptive field of CSTMD1 reveals

that the neuron responds similalry to target motion
either left or right (non-directional)
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Figure 3. The ESTMD model responds equally to
target motion in either direction (1.25◦ x 2◦ at

45◦/s). The addition of a 2 detector EMD cascaded
either before (EMD-ESTMD) or after

(ESTMD-EMD) the matched filter induces strong
directionality in the response to a moving target

image4.jpg

Figure 4. Size tuning of the three model variants at
two velocities 45◦/s (closed circles) and 90◦/s

(open circles) shows tuning curves similar to those
observed in physiology. The EMD-ESTMD model

produces a tuning curve shifted to the right in
comparison to the other models. The

ESTMD-EMD model has a similar optimum to the
ESTMD, however is more sharply tuned.

The EMD-ESTMD size-tuning curve is sharper
and shifted to the right (i.e. less selective for very
small targets) than with the other models. The

ESTMD-EMD tuning curve exhibits a similar op-
timum to the ESTMD model, however is also more
sharply tuned. At a lower, less optimal velocity
(45◦/s), curves are slightly left-shifted compared to
a velocity of 90◦/s, indicating the confounded re-
lationship between the velocity/width profile of a
moving target.

2.4 Responses to ON and OFF edges

An interesting prediction of the ESTMD model
(irrespective of the addition of a second order cor-
relation) that has not previously been extensively
tested in the biological STMDs is that responses to
individual ON or OFF edges should be smaller than
responses to a dark target (due to the multiplicative
nonlinearity between the opposite polarity ON and
OFF contrast channels).

image5.jpg

Figure 5. STMD responses to ON and OFF edge
stimuli, as well as to a dark target. Spiking activity
to either edge is weak, whilst the response to the
dark target is more than their linear combination.

Fig. 5 shows data obtained from a dragonfly
STMD neuron that suggest that this untested char-
acteristic is indeed observed in the biological sys-
tem. Interestingly, it appears in this example that
the dark target responses represent a super-linear
combination of the responses to ON and OFF ‘edge’
features produced by extending a single bar across
the stimulus display, along the same path as the
target (as indicated by the inset pictograms). This
observation is strongly supportive of an ESTMD-
like operation occurring in the input pathway to the
STMD neuron.
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Figure 6. Neuron and Model output in response to
moving stimuli of varying contrast. A. Compares

the contrast sensitivity function (CSF) for
responses to sinusoidal grating patterns of

optimum frequency in HS cells, a class of neurons
in the fly that are believed to collate the output

from large arrays of classical HR-EMDs [29], with
those of CSTMD1 (a dragonfly STMD neuron

selective for small targets) to optimal target
stimuli. Because the wide-field neuron integrates

motion from many local EMDs, its absolute
sensitive to low contrast motion is higher than in

the STMD, hence our use of a Log X-axis to
display the data. However once above a threshold
level, the STMD displays a much steeper rise of
response towards the saturated regime. B. Shows
the sensitivity of the 3 model variants to Weber
contrast (Itarget-Ibackground)/Ibackground , a measure
that is more appropriate to small targets against a

uniform background. Although all 3 variants show
an expansive response to contrast, the

EMD-ESTMD and ESTMD-EMD models exhibit
similar CSFs with a higher-order dependence on

contrast (i.e. steeper rise) than the ESTMD, due to
the 4th order (cascaded) multiplicative correlations.
C. We apply an arbitrary gain to each of the model
variants, matching the initial expansive ‘threshold’.
We also include a saturating non-linearity (a tanh
function), ubiquitous in neuron encoding. Note
that the expansiveness from either model variant
(single correlation or cascade) is readily fit to the
physiological data by varying the arbitrary gain

and saturation parameters.

2.5 Responses to feature contrast

A further characteristic of the HR EMD is that
output in response to increased stimulus contrast is
expansive, due to the super-linear interaction be-
tween the inputs (usually modeled as multiplica-
tion). In biological systems, this expansive nonlin-
earity is inherently bounded by the saturation lim-
its of synaptic signaling and biochemistry within
which such super-linear operations must be imple-
mented [1].

Hence typical neurons taking their inputs from
HR-type EMDs, such as the HS neurons of flies,
show contrast-response functions that are initially
super-linear [30], before becoming sub-linear as
saturation begins to dominate the response (Fig.
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6A). If we model the ESTMD with no such satura-
tion on its outputs (Fig. 6B), it displays an identical
expansive characteristic, due to the multiplication
stage. The EMD-ESTMD and ESTMD-EMD show
very similar responses to increasing target contrast.
However, as expected from cascading a 2nd order
multiplication, the rate of expansion of both is even
higher order (i.e. 4thorder) than in the ESTMD.

Can the shape of the contrast response function
reveal whether such cascaded multiplications un-
derlie physiological responses? Unfortunately, this
is unlikely, as arbitrary sensitivity (gain) with the
addition of a saturating nonlinearity (a fundamental
component of a neurons response characteristics)
could be used to fit either model variant (Fig. 6C).

3 Discussion

Several alternative correlation-based models
(including the ESTMD) can explain a number of ba-
sic response tuning properties of insect STMD neu-
rons, such as their size and velocity tuning. Other
characteristics, such as selectivity for contrast po-
larity (e.g. dark) and their ability to discriminate
targets in clutter without relative motion cues, can
presently only be explained by the ESTMD model
[6-8]. However, some STMDs also exhibit char-
acteristics that the ESTMD cannot account for, in-
cluding directionality [9] and facilitation [10]. By
elaborating the ESTMD model with a cascaded
EMD, we induce directionality (Fig. 2, 3) main-
tain the size and velocity tuning intrinsic to our
ESTMD model (Fig. 4) and can also explain the
highly super-linear response to target contrast that
distinguishes many insect STMD neurons (Fig. 5,
6).

A 2nd order motion detector network similar to
those we implement was previously proposed to ex-
plain the ‘facilitated’ responses observed in some
STMDs when targets move along continuous tra-
jectories [10, 24, 25]. In future experiments we will
present moving targets in cluttered environments to
our model variants and determine whether this fa-
cilitation breaks or enhances target discrimination.

image7.jpg

Figure 7. Model Overview of A. early visual
processing and B. the elementary small target
motion detector (ESTMD). Inputs are spatially

blurred to represent fly optics. We retain only the
green channel of the RGB image, to represent
spectral sensitivity of the motion pathway. A

complex photoreceptor model implements
dynamic filtering characteristics and adaptive

feedbacks which allow for the encoding of vast
luminance conditions. LMCs are modeled as

dynamic spatiotemporal high-pass filters (relaxed),
removing redundant information. The model

implements functionality inspired from
electrophysiological recordings of RTCs, found in

the brain of the fly. This includes ON and OFF
channel separation, independent fast temporal
adaptation and independent channel surround

antagonism. Finally, the delayed OFF channel is
recombined with the undelayed ON channel for
dark target sensitivity. The final output reveals
enhanced small target discrimination as seen in

physiological STMDs.

One of our objectives was to determine
whether one or other of the cascaded model vari-
ants matched observed physiological results and
whether in fact one variant could be ‘ruled out’
due to an inconsistency. As both models match the
data we have supported the existence of a 2nd or-
der network, however, more physiological experi-
ments and modeling will be required to elucidate
the underlying architecture. Interestingly, it has re-
cently been shown that insects respond behaviorally
to non-Fourier motion [31], a further indication of
a 2nd order network underlying feature discrimina-
tion. In future work we will stimulate our model
variants with non-Fourier motion and see whether
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this can be used to determine which architecture is
the more likely candidate to underlie STMD pro-
cessing.

4 Appendix

4.1 Model Overview

Models were implemented in Matlab (Math-
works, Natick, USA). An overview of early visual
processing and the ESTMD model is shown in Fig.
7. The EMD model and combination model vari-
ants are shown in Fig. 1.

Photoreceptor responses were based on a
biomimetic model with parameters and elabora-
tions derived via electrophysiological results from
Eristalis tenax [32]. The spatiotemporal dynam-
ics of the first order interneurons, the LMCs, have
previously been established for blowfly (Calliphora
vicina) and hoverfly, (Eristalis tenax) [33, 34].
Model outputs were matched to STMD neurons in
Eristalis tenax [14-16]. We modeled an array of
ESTMD (elementary STMD) subunits that could be
spatially pooled to form the position invariant re-
ceptive field, as seen in the physiological STMD
[27]. The model output define values in a three di-
mensional (2D+t) space.

4.2 Early Visual Processing

We used the green channel in our 8-bit input
imagery to simulate ‘green-blue’ spectral sensitiv-
ity in the fly visual system [35]. We applied a
Gaussian low-pass filter (full width at half max-
imum 1.4◦) to emulate spatial blur of the optics
[36]. Input images were spatially sampled at 1◦

in a hexagonal manner [37]. Photoreceptors incor-
porated variable gain control, saturating nonlinear-
ities and dynamic low-pass filtering [32, 38], with
cutoff frequencies dependent on adaptation state
(ranging from 20 to 100 Hz). Followed by two
divisive, delayed feedbacks (one linear, one expo-
nential) representing short and longer term adapta-
tions (τ=23 ms, τ=12.4 s). Finally, a compressive,
saturating nonlinearity is implemented by a Naka-
Rushton transform. The LMC implements spa-
tiotemporal high-pass filtering, altering its filtering
characteristics dependent on visual conditions. In
the dark adaptation state, the LMC is more integra-
tive with longer sustaining temporal components.

As overall luminance conditions increase, the LMC
becomes more transient and high-pass in nature,
both in space and time [33]. This spatial interac-
tion (center-surround antagonism) was modeled in a
feed forward manner with surround (nearest neigh-
bor) photoreceptor signals summed, and temporally
delayed (τ=16 ms), before subtractive inhibiting the
central LMC (strength ranging from 0-30%, depen-
dent on adaptation state). The LMC temporal dy-
namics were modeled with relaxed, variable high-
pass filtering (lower corner frequency ranging from
0 to 8 Hz) which incorporated a small DC compo-
nent (0-10%). Following, a saturating nonlinear-
ity with a hyperbolic tangent function, ensured the
LMC response was limited to a predictable output
range.

4.3 Elementary Small Target Motion De-
tector (ESTMD)

The main processing of the ESTMD is based
on the Rectifying Transient Cell (RTC). Briefly, the
RTC creates transient ‘on’ and ‘off’ phases (from
the LMC high-pass filtering), separated via a fur-
ther temporal high pass filter (τ = 40ms) and then
half-wave rectification into independent ON and
OFF channels. Each of the channels is temporally
processed through a fast adaptive mechanism. An
adaptation state is determined by a nonlinear fil-
ter, which approximates cellular ‘fast depolariza-
tion and slow repolarization’ responses. This low-
pass filter switches its time constant dependent on
whether the input is increasing or decreasing (time
constants are ‘fast’ (τ=3 ms) when channel input is
increasing and ‘slow’ (τ=70 ms) when decreasing).
This adaptation state causes subtractive inhibition
of the unaltered ‘pass-through’ signal. The result of
this complex, nonlinear filtering is the signaling of
‘novel’ transient contrast changes (of the particular
channel phase, ‘on’ or ‘off’) with the suppression of
fluctuating textural variations. As well as this tem-
poral antagonism, the channels also exhibit spatial
antagonism with ON surround channels subtractive
inhibition of the ON center channel, and similarly
with the OFF channels. The resultant signal was
then half-wave rectified, so that the surround does
not inhibit the center below a zero value (a nonlin-
earity seen in some spiking neurons).

ON and OFF channels are recombined via mul-
tiplication [6]. Both dark and light target sensitivity
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(ranging from 20 to 100 Hz). Followed by two
divisive, delayed feedbacks (one linear, one expo-
nential) representing short and longer term adapta-
tions (τ=23 ms, τ=12.4 s). Finally, a compressive,
saturating nonlinearity is implemented by a Naka-
Rushton transform. The LMC implements spa-
tiotemporal high-pass filtering, altering its filtering
characteristics dependent on visual conditions. In
the dark adaptation state, the LMC is more integra-
tive with longer sustaining temporal components.
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becomes more transient and high-pass in nature,
both in space and time [33]. This spatial interac-
tion (center-surround antagonism) was modeled in a
feed forward manner with surround (nearest neigh-
bor) photoreceptor signals summed, and temporally
delayed (τ=16 ms), before subtractive inhibiting the
central LMC (strength ranging from 0-30%, depen-
dent on adaptation state). The LMC temporal dy-
namics were modeled with relaxed, variable high-
pass filtering (lower corner frequency ranging from
0 to 8 Hz) which incorporated a small DC compo-
nent (0-10%). Following, a saturating nonlinear-
ity with a hyperbolic tangent function, ensured the
LMC response was limited to a predictable output
range.

4.3 Elementary Small Target Motion De-
tector (ESTMD)

The main processing of the ESTMD is based
on the Rectifying Transient Cell (RTC). Briefly, the
RTC creates transient ‘on’ and ‘off’ phases (from
the LMC high-pass filtering), separated via a fur-
ther temporal high pass filter (τ = 40ms) and then
half-wave rectification into independent ON and
OFF channels. Each of the channels is temporally
processed through a fast adaptive mechanism. An
adaptation state is determined by a nonlinear fil-
ter, which approximates cellular ‘fast depolariza-
tion and slow repolarization’ responses. This low-
pass filter switches its time constant dependent on
whether the input is increasing or decreasing (time
constants are ‘fast’ (τ=3 ms) when channel input is
increasing and ‘slow’ (τ=70 ms) when decreasing).
This adaptation state causes subtractive inhibition
of the unaltered ‘pass-through’ signal. The result of
this complex, nonlinear filtering is the signaling of
‘novel’ transient contrast changes (of the particular
channel phase, ‘on’ or ‘off’) with the suppression of
fluctuating textural variations. As well as this tem-
poral antagonism, the channels also exhibit spatial
antagonism with ON surround channels subtractive
inhibition of the ON center channel, and similarly
with the OFF channels. The resultant signal was
then half-wave rectified, so that the surround does
not inhibit the center below a zero value (a nonlin-
earity seen in some spiking neurons).

ON and OFF channels are recombined via mul-
tiplication [6]. Both dark and light target sensitivity
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is possible by delaying and recombining the rele-
vant contrast polarity. For these experiments we de-
layed the OFF channel using a 1st-order low-pass
filter (τ=25 ms) and multiplying this by the unde-
layed ON channel. This processing provides a tem-
plate for the characteristic temporal ‘signature’ of a
small moving target.

4.4 2 Detector Elementary Motion Detec-
tor (EMD)

Channels were separated into ON and OFF
channels via half-wave rectification following high
pass filtering (τ=100 ms). The delay arm was mod-
eled with a low-pass filter (τ=25 ms).
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