
JAISCR, 2013, Vol. 3, No. 1, pp.   15S. D. Wiederman, D. C. O’Carroll

[20] N. Jansonius, and J. Hateren, “Fast temporal
adaptation of on-off units in the first optic chiasm
of the blowfly,” J. Comp. Physiol. A vol. 168, pp.
631–637, 1991.

[21] D.M. Bolzon, K. Nordstrom, D.C. O’Carroll “Lo-
cal and large-range inhibition in feature detec-
tion” J Neurosci vol. 29 pp 14143–14150 2009

[22] S.D. Wiederman SD and D.C. O’Carroll, “Dis-
crimination of features in natural scenes by a
dragonfly neuron,” J. Neurosci. vol. 31, pp. 7141–
7144, 2011.

[23] J. Zanker, “Modelling human motion perception.
II. Beyond Fourier motion stimuli,” Naturwis-
senschaften vol. 81, pp. 200–209, 1994.

[24] J.R. Dunbier, S.D. Wiederman, P.A. Shoemaker,
and D.C. O’Carroll, “Modelling the temporal re-
sponse properties of an insect small target motion
detector”, Proc. 7th Int. Conf. on Intelligent Sen-
sors, Sensor Networks and Information Process-
ing, pp. 125-130, 2011.

[25] J.R. Dunbier, S.D. Wiederman, P.A. Shoemaker
and D.C. O’Carroll, “Facilitation of dragonfly
target-detecting neurons by slow moving features
on continuous paths,” Front. Neural Circuits. vol.
6, pp. 79, 2012.

[26] S.D. Wiederman, D.C. O’Carroll, “Biomimetic
Target Detection: modeling 2nd order correlation
of OFF and ON channels”. Proc. of the IEEE,
Symposium Series on Computational Intelligence
for Multimedia, Signal and Vision Processing,
Singapore (in press).

[27] K. Nordstrm, and D.C. O’Carroll, “Small object
detection neurons in female hoverflies,” P. Roy.
Soc. B-Biol. Sci. vol. 273, pp.1211-1216, 2006.

[28] S.D. Wiederman, R.S.A. Brinkworth and D.C.
O’Carroll, “Bio-inspired target detection in natu-
ral scenes: optimal thresholds and ego-motion,”
Proc. of the SPIE, Biosensing, vol. 7035, pp.
70350Z, 2008.

[29] H. Eichner, M. Joesch, B. Schnell, D.F. Reiff, and
A. Borst “Internal structure of the fly elementary
motion detector,” Neuron vol. 70, pp. 1155–1164,
2011.

[30] R.A. Harris, D.C. O’Carroll and S.B. Laughlin,
“Contrast gain reduction in fly motion adaptation”
Neuron, vol 28 pp 595. 2000

[31] J.C. Theobald, B.J. Duistermars, D.L. Ringach
and M.A. Frye, “Flies see second-order ?motion,”
Curr. Biol. vol. 18, pp. R464–R465, 2008.

[32] E. L. Mah, R. S. Brinkworth, and D. C. O’Carroll,
”An elaborated electronic prototype of a biologi-
cal photoreceptor,” Biol Cybern vol. 98, pp. 357-
369, 2008.

[33] M. Juusola, R. O. Uusitalo, and M. Weckstrom,
”Transfer of graded potentials at the photorecep-
tor interneuron synapse,” J Gen Physiol vol. 105,
pp. 117-148, 1995.

[34] A. C. James, ”Nonlinear operator network models
of processing in the fly lamina,” in Nonlinear Vi-
sion, N. B, Ed. Boca Raton, FL: CRC, 1992, pp.
39-74.

[35] M. V. Srinivasan and R. G. Guy, ”Spectral prop-
erties of movement perception in the dronefly
Eristalis,” J Comp Physiol A vol. 166, pp. 287-
295, 1990.

[36] D. G. Stavenga, ”Angular and spectral sensitivity
of fly photoreceptors. I. Integrated facet lens and
rhabdomere optics,” J Comp Physiol A vol. 189,
pp. 1-17, 2003.

[37] A. D. Straw, E. J. Warrant, and D. C. O’Carroll,
”A ‘bright zone’ in male hoverfly (Eristalis tenax)
eyes and associated faster motion detection and
increased contrast sensitivity,” J Exp Biol vol.
209, pp. 4339-4354, 2006.

[38] J. H. van Hateren and H. P. Snippe, ”Informa-
tion theoretical evaluation of parametric models
of gain control in blowfly photoreceptor cells,”
Vision Res vol. 41, pp. 1851-1865, 2001.

[39] R.S.A. Brinkworth and D. C. O’Carroll, ”
Robust Models for Optic Flow Coding in
Natural Scenes Inspired by Insect Biology”
PLoS Comput Biol vol 5, (??), e1000555.
doi:10.1371/journal.pcbi.1000555, 2009

FAST FCM WITH SPATIAL NEIGHBORHOOD
INFORMATION FOR BRAIN MR IMAGE SEGMENTATION

Abbas Biniaz1 and Ataollah Abbasi2
1M.Sc. Student, Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of

Electrical Engineering, Sahand University of Technology, Tabriz, Iran. abbass biniaz@yahoo.com

2Assistant professor, Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of
Electrical Engineering, Sahand University of Technology, Tabriz, Iran. ata.abbasi@sut.ac.ir

Abstract

Among different segmentation approaches Fuzzy c-Means clustering (FCM) is a well-
developed algorithm for medical image segmentation. In emergency medical applications
quick convergence of FCM is necessary. On the other hand spatial information is seldom
exploited in standard FCM; therefore nuisance factors can simply affect it and cause mis-
classification. This paper aims to introduce a Fast FCM (FFCM) technique by incorpora-
tion of spatial neighborhood information which is exploited by a linear function on fuzzy
membership. Applying proposed spatial Fast FCM (sFFCM), elapsed time is decreased
and neighborhood spatial information is exploited in FFCM. Moreover, iteration numbers
by proposed FFCM/sFFCM techniques are decreased efficiently. The FCM/FFCM tech-
niques are examined on both simulated and real MR images. Furthermore, to considerably
decrease of convergence time and iterations number, cluster centroids are initialized by
an algorithm. Accuracy of the new approach is same as standard FCM. The quantitative
assessments of presented FCM/FFCM techniques are evaluated by conventional validity
functions. Experimental results demonstrate that sFFCM techniques efficiently handle
noise interference and significantly decrease elapsed time.

1 Introduction

Medical imaging is a technique and process used
to create images of the human body or parts for
clinical purposes. In medical imaging, accurate de-
tection of tissue borders is very important [1,2].
Image segmentation is a technique to label pix-
els/voxels and categorizes the image into separate
sections; each section with uniformity in gray lev-
els. Medical image segmentation extracts tissue
borders in medical images. Magnetic resonance
imaging (MRI) is a medical imaging modality and
an important tool in the evaluation of brain diseases.
Segmentation of MR images has many applications
in medicine such as [1-4]:

– Identification of tissue anatomy

– Pre-and-post surgical Evaluation

– Detection of abnormal tissues such as tumors
and pathological lesions

– Investigation of nervous system diseases such as
MS and Alzheimer

– Evaluation of arteriosclerosis disease

– Detection of left and right ventricles

– Breast cancer detection

– Diagnosis of seizures

– Diagnosis of immune system weakness
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MR image segmentation methods are com-
monly based on statistical or structural properties
of images [5]:

1-Methods based on statistical characteristics: the
statistical features are extracted from different mod-
els and functions such as the probability distribu-
tion function of the image intensities. Statistical
methods segment an image by estimation of inten-
sity distribution and assign the class labels to their
corresponding pixels. They can either be paramet-
ric or nonparametric. Both are extensively used in
segmentation of brain MR images such as Markov
random models (MRFs) and Bayesian network clas-
sifiers [6, 7].

2-Methods based on structural characteristics: in
these approaches the spatial characteristics of the
image like edges and regions are applied. Segmen-
tation with structural characteristics includes sev-
eral groups:

– Pixel based methods segment according to the
image intensity features. Thresholding, k-
means, or fuzzy c-means clustering are pixel
based approaches [8, 9];

– Edge based methods rely on boundary identi-
fication by tracing closed areas in the image.
However they fall into the trap of false and
blurred edges; also their performances are un-
predictable. Edge detectors such as active con-
tours or common edge detections (like prewitt,
sobel & canny) were plentifully used in image
segmentation [5, 10];

– region-based methods detect similar regions
based on predefined criteria. The criteria can be
image intensity level, the similar tissues, image
uniformity, or sharpness. Region growing is a
common region based technique [11].

Commonly combination of above methods has
been used for optimal segmentation of medical
images. Among existing methods, FCM is a
well-developed unsupervised clustering approach.
Widespread applications in image segmentation
caused FCM to be considered as a favorite method.
Applying fuzzy membership, each pixel can be a
member of all tissues with different membership de-
grees. FCM because of its fuzziness, has high ca-
pability to reserve more information about the orig-

inal image compared to the other segmentation ap-
proaches [12, 13].

Conventional FCM doesn’t have enough con-
vergence speed in medical applications specifically
in emergency circumstances. This paper presents
a fast FCM algorithm based on neighborhood spa-
tial information. Proposed FFCM technique utilizes
novel rule to update cluster centers in each iteration
step. The new rule significantly preserves quality
of standard FCM and is faster than it. Furthermore,
using dist-max algorithm [14] cluster centers are
initialized before clustering process. Therefore, al-
gorithm convergence speed increases more. More-
over proposed sFFCM algorithm by incorporation
of spatial information [15] in FFCM avoids from
tissue misclassification by noise interference.

The rest of this paper is as follows: In sec-
tion 2-1, the conventional FCM algorithm is re-
viewed. Section 2-2 initializes cluster centers. Sec-
tion 2-3 presents FFCM algorithm and Section 2-4
proposes sFCM/sFFCM by incorporation of spatial
information in FCM/FFCM. To assess FCM tech-
niques, validation functions are expressed in sec-
tion 3. Then in Section 4, results and discussion are
presented; and section 5 involves the conclusions of
this paper.

2 Methodology

2.1 FCM algorithm

The c-means families are well developed group
of batch clustering type because they are “least
square” models. Each cluster consists of one or
more common characteristics depending on the di-
mension of input data. FCM developed in 1970s,
assigns fuzzy memberships to each element of
dataset instead of hard membership [16]. There-
fore in FCM each data point belongs to multiple
clusters with different membership values. Let X =
{x1,x2, ...,xn} denote an input vector with n pixels
which should be partitioned into (2 ≤ c ≤ n) and
x j is feature value. FCM is an iterative optimiza-
tion procedure which minimizes the following cost
function [15]:

Jm(U,V ) =
c

∑
i=1

n

∑
j=1

um
i j

∥∥x j − vi
∥∥2

. (1)



17A. Biniaz and A. Abbasi

MR image segmentation methods are com-
monly based on statistical or structural properties
of images [5]:

1-Methods based on statistical characteristics: the
statistical features are extracted from different mod-
els and functions such as the probability distribu-
tion function of the image intensities. Statistical
methods segment an image by estimation of inten-
sity distribution and assign the class labels to their
corresponding pixels. They can either be paramet-
ric or nonparametric. Both are extensively used in
segmentation of brain MR images such as Markov
random models (MRFs) and Bayesian network clas-
sifiers [6, 7].

2-Methods based on structural characteristics: in
these approaches the spatial characteristics of the
image like edges and regions are applied. Segmen-
tation with structural characteristics includes sev-
eral groups:

– Pixel based methods segment according to the
image intensity features. Thresholding, k-
means, or fuzzy c-means clustering are pixel
based approaches [8, 9];

– Edge based methods rely on boundary identi-
fication by tracing closed areas in the image.
However they fall into the trap of false and
blurred edges; also their performances are un-
predictable. Edge detectors such as active con-
tours or common edge detections (like prewitt,
sobel & canny) were plentifully used in image
segmentation [5, 10];

– region-based methods detect similar regions
based on predefined criteria. The criteria can be
image intensity level, the similar tissues, image
uniformity, or sharpness. Region growing is a
common region based technique [11].

Commonly combination of above methods has
been used for optimal segmentation of medical
images. Among existing methods, FCM is a
well-developed unsupervised clustering approach.
Widespread applications in image segmentation
caused FCM to be considered as a favorite method.
Applying fuzzy membership, each pixel can be a
member of all tissues with different membership de-
grees. FCM because of its fuzziness, has high ca-
pability to reserve more information about the orig-

inal image compared to the other segmentation ap-
proaches [12, 13].

Conventional FCM doesn’t have enough con-
vergence speed in medical applications specifically
in emergency circumstances. This paper presents
a fast FCM algorithm based on neighborhood spa-
tial information. Proposed FFCM technique utilizes
novel rule to update cluster centers in each iteration
step. The new rule significantly preserves quality
of standard FCM and is faster than it. Furthermore,
using dist-max algorithm [14] cluster centers are
initialized before clustering process. Therefore, al-
gorithm convergence speed increases more. More-
over proposed sFFCM algorithm by incorporation
of spatial information [15] in FFCM avoids from
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tion 3. Then in Section 4, results and discussion are
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2 Methodology

2.1 FCM algorithm

The c-means families are well developed group
of batch clustering type because they are “least
square” models. Each cluster consists of one or
more common characteristics depending on the di-
mension of input data. FCM developed in 1970s,
assigns fuzzy memberships to each element of
dataset instead of hard membership [16]. There-
fore in FCM each data point belongs to multiple
clusters with different membership values. Let X =
{x1,x2, ...,xn} denote an input vector with n pixels
which should be partitioned into (2 ≤ c ≤ n) and
x j is feature value. FCM is an iterative optimiza-
tion procedure which minimizes the following cost
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∑
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i j

∥∥x j − vi
∥∥2

. (1)
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And

0≤ ui j ≤ 1 f or1 ≤ i ≤ c,1 ≤ j ≤ n,
0¡∑n

k=1 ui j < n f or1 ≤ i ≤ c,
∑c

i=1 ui j = 1, f or1 ≤ j ≤ n.

Where n is number of data points, m is the fuzzy
fitness grade (m equals to 1 in hard clustering and
more than 1 in fuzzy clustering), ui j is the member-
ship of pixel x j in the i-th cluster, vi is the centroid
of i-th cluster, and ‖.‖ is Euclidean norm.

Since the cost function must be minimized, pix-
els which are close to their clusters center should
have high membership values. Vice versa low mem-
bership values are assigned to pixels with data far
from cluster center. In the other hand, the maxi-
mum distance between the cluster centroids leads to
the optimum clustering. Membership function and
cluster centers are updated by the following equa-
tions:

ui j
1

∑c
k=1

(
‖x j−vi‖
‖x j−vk‖

)2/ (m-1)
. (2)

vi =
∑n

j=1 um
i jx j

∑n
j=1 um

i j
. (3)

Starting with an initial value for each cluster
center, the FCM converges to a solution for vi rep-
resenting the local minima or a saddle point of the
cost function [15]. Convergence rate can be de-
termined by comparing the differences between the
membership function or cluster centers in two suc-
cessive iterations. Convergence time depends on
computing time of membership functions and clus-
ter centers in the iterations.

2.2 Cluster center initialization

In order to avoid the random initialization, the
dist-max algorithm for the center initialization has
been offered [14]. In FCM/FFCM algorithm ran-
dom initialization consumes more time to algorithm
be converged. Cluster center initialization algo-
rithm for FCM/FFCM is as follows [14]:

Step1: Sorting mi’s in ascending order where
mk =

1
p ∑p

s=1 xis and i=1,2,. . . n for input vector X =
{x1,x2, ...,xn} which is p-dimensional data.

Step2: Relabeling and reorganizing the dataset ma-
trix as X

′
= {x

′
1 ,x

′
2 , ...,x

′
n}; Partition the data in to c

groups and Find nck = �n/c�, where nck is number
of data points in k-th cluster; such that the (j-1)th
group contains the (j-1)th nck data of X

′
, and the c-

th group contains the remaining all elements; where
j=1,2,..., c. The number of cluster c is specified ac-
cording to the nature of the dataset (1<c<n).

Step3: Making a distance tables that show the dis-
tance between the elements within each group. (ie)
if group k = {xk

1 ,x
k
2 , ...,x

k
n}, the distance table in this

group is (table 1):

Step4: Selecting the maximum distance from each
distance table of groups. If dk

i j is maximum distance
of k-th group, find the mean value Mk of the ele-
ments xi and x j then assign centroid of k-th cluster
as Mk, and k=1,2,. . . c.

2.3 Proposed Fast FCM

As mentioned, high speed algorithms such as
clustering ones are required in medical applications.
Moreover, standard FCM doesn’t have enough con-
vergence speed especially in emergency conditions.
FCM assigns c membership grades to every pixel.
By iteratively updating the cluster centers and mem-
bership grades for each data point, FCM moves the
cluster centers to the right location within a data
set. However, updating membership matrix with
c×n member is a time consuming procedure. In
FCM, centroids are updated by fuzzy memberships
which need much time because cluster centers are
selected as a fuzzy quantity. Whereas cluster cen-
ters are similar feature vectors and can be calculated
by a hard membership. Hence to reduce time and
amount of computations in FCM, a hard member-
ship can be assigned to pixels for updating cluster
centers in each iteration step. however, segmenta-
tion will be a fuzzy procedure. Applying hard mem-
bership, the new algorithm to update centroids is
proposed as following:

Step1: For p-dimensional input data, rearrange
ui jto d1×d2 matrix; where d1 and d2 are input di-
mensions.

Step2: Set new fuzzy membership as u∗i j and label
matrix asL = {L1,L2, ...Lc}; where Lk is label ma-
trix of k-th cluster in current iteration.

Step3: Set all data points which are correspond to
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Table 1. distance matrix within each data group

Lk label matrix as Ik.

Step4: Define Ik = Ik
1 , I

k
2 , ...,x

k
cnk

for k-th cluster,
where nck is number of data points in k-th cluster

Step5: Update centroid of k-th cluster by the fol-
lowing equation:

v∗k =
∑nck

j=1 Ik
j

nck
(4)

2.4 Spatial FCM/FFCM

Neighborhood pixels have many similarities
and analogous feature properties therefore they are
members of the unique clusters with great prob-
ability. Nevertheless it has not been exploited in
the FCM/FFCM algorithm successfully. To utilize
neighborhood spatial information in image process-
ing, the spatial function can impressively be repre-
sented as [15]:

hi j = ∑
k∈NB(x j)

uik (5)

The spatial function hi j just like the member-
ship function ui j, indicates the possibility that pixel
x j belongs to i-th cluster. The lattice window NB(x j)
represents a 5×5 square lattice with a linear spatial
function and x j is a pixel in center of lattice window.

If the majority of pixels in the local lattice be-
longs to the similar cluster, the spatial function hi j

will denote that the pixel with great possibility is a
member of the cluster [17]. Therefore incorporation
of the spatial function into membership function is
as follows [15]:

u∗i j =
up

i j ×hq
i j

∑c
k=1 up

k j ×hq
k j
. (6)

Where u∗i j is new membership function, and

the parameters p and q signify the comparative in-
fluence of both membership and spatial functions
ui j and hi j respectively. The improved spatial
FCM/FFCM with parameter p and q is represented
as sFCMp,q/sFFCMp,q.

Hence new spatial fuzzy clustering is summa-
rized in two stage process at each iteration step. In
the ?rst stage FCM /FFCM technique is simulated
and in each iteration step membership function is
updated. In the second stage spatial information
of neighboring pixels are exploited in FCM /FFCM
with spatial function. Therefore the new member-
ship function in spatial domain for all pixels is up-
dated by mapping all pixels membership functions
to the spatial domain.

The proposed sFCM/sFFCM can be summa-
rized as follows:

Step1: Select the number of clusters (c), fuzziness
value (m=2); initialize V (0)/V ∗(0).

Step2: Update the membership matrix U/U∗ by
Eq.(6).

Step3: Update cluster center matrix V/V ∗ for
sFCM/sFFCM by Eq.(3)/ Eq.(4).

Step4: Repeat steps 3–4 until
∥∥∥v(t+1)

i − v(t)i

∥∥∥ < ε,
where ε is a small positive constant.

3 Validation functions for fuzzy
clustering

Mostly two types of validity functions are used
to evaluate the performance of clustering: fuzzy
partition and geometric structure. Partition coeffi-
cient Vpc and partition entropy Vpe are fuzzy parti-
tion functions and defined as following [18, 19]:

 

3 
 

cluster, vi is the centroid of i-th cluster, and  
is Euclidean norm.  
Since the cost function must be minimized, 
pixels which are close to their clusters center 
should have high membership values. Vice 
versa low membership values are assigned to 
pixels with data far from cluster center. In the 
other hand, the maximum distance between the 
cluster centroids leads to the optimum 
clustering. Membership function and cluster 
centers are updated by the following equations: 

2
( 1)

1

1 .ij
mc

j i

k j k

u
x v
x v





 
 
  


 

(2) 
 

1

1

.
n m

ij jj
i n m

ijj

u x
v

u






 

(3) 

Starting with an initial value for each cluster 
center, the FCM converges to a solution for vi 
representing the local minima or a saddle point 
of the cost function [15]. Convergence rate can 
be determined by comparing the differences 
between the membership function or cluster 
centers in two successive iterations. 
Convergence time depends on computing time 
of membership functions and cluster centers in 
the iterations. 
 

2-2- Cluster center initialization 
In order to avoid the random initialization, the 
dist-max algorithm for the center initialization 
has been offered [14]. In FCM/FFCM 
algorithm random initialization consumes 
more time to algorithm be converged. Cluster 
center initialization algorithm for FCM/FFCM 
is as follows [14]: 
Step1: Sorting mi’s in ascending order where 

1

1 p
k iss

m x
p 

   and i=1,2,…n for input vector  

1 2{ , ,..., }nX x x x  which  is p-dimensional data.  
Step2: Relabeling and reorganizing the dataset 
matrix as ' ' ' '

1 2{ , ,..., }nX x x x ; Partition the 

data in to c groups and Find knc n c    , 

where knc  is number of data points in k-th 
cluster; such that the (j-1)th group contains the 
(j-1)th knc  data of 'X , and the c-th group 
contains the remaining all elements; where  
j=1,2,..., c. The number of cluster c is specified 
according to the nature of the dataset (1<c<n). 
Step3: Making a distance tables that show the 
distance between the elements within each 
group. (ie) if group 1 2{ , ,..., }k k k

nk x x x , the 
distance table in this group is: 

 Table 1: distance matrix within each data group 

 

 
Step4: Selecting the maximum distance from 
each distance table of groups. If k

ijd  is 
maximum distance of k-th group, find the 
mean value Mk of the elements xi and xj then 
assign centroid of k-th cluster as Mk, and 
k=1,2,…c. 

2-3- Proposed Fast FCM  
As mentioned, high speed algorithms such as 
clustering ones are required in medical 
applications. Moreover, standard FCM doesn’t 
have enough convergence speed especially in 
emergency conditions. FCM assigns c 
membership grades to every pixel. By 
iteratively updating the cluster centers and 

membership grades for each data point, FCM 
moves the cluster centers to the right location 
within a data set. However, updating 
membership matrix with c×n member is a time 
consuming procedure. In FCM, centroids are 
updated by fuzzy memberships which need 
much time because cluster centers are selected 
as a fuzzy quantity. Whereas cluster centers 
are similar feature vectors and can be 
calculated by a hard membership. Hence to 
reduce time and amount of computations in 
FCM, a hard membership can be assigned to 
pixels for updating cluster centers in each 
iteration step. However, segmentation will be a 
fuzzy procedure. Applying hard membership, 

1st



19A. Biniaz and A. Abbasi

Table 1. distance matrix within each data group
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Vpc =
∑n

j=1 ∑c
i=1 u2

i j

n
. (7)

Vpe = (−1)×
∑n

j=1 ∑c
i=1 ui j log(ui j)

n
. (8)

In these equations less fuzziness shows better
performance of the algorithm. As a result, the
best clustering is achieved when Vpc has maximum
value (close to one) or Vpe has minimum value
(close to zero). these functions can only measure
the fuzzy partition and don’t have a direct access to
the intensity vector. This problem can be solved us-
ing validity functions based on the geometric struc-
ture. To optimum clustering in validity functions
based on the geometric structure, samples within
one partition should be compacted and samples be-
tween different clusters should be separated [19].
To quantify the ratio of total variation within clus-
ters, V f s and Vxb are defined as following [18]:

Vf s =
n

∑
j=1

c

∑
i=1

um
i j(
∥∥x j − vi

∥∥2 −‖vi − v‖2). (9)

Vxb =
∑n

j=1 ∑c
i=1 um

i j(
∥∥x j − vi

∥∥2
)

n∗ (mini,k

{
‖xk − vi‖2

}
)
. (10)

Where, vi �= vk and minimized V f s or Vxb lead
to optimal clustering.

4 Results and discussion

To verify the effectiveness of the presented
FCM techniques, they were evaluated on both syn-
thetic and real MR images. in the simulations,
images were corrupted by additive Gaussian white
noise then segmented by FCM techniques. In all ex-
periments cluster centers are initialized by dist-max
algorithm.

similar results in the presence of noise show
similar performances of FCM and FFCM tech-
niques. Since T1 weighted images of the human
brain use the longitudinal component of magnetic
resonance imaging, they have high contrast and res-
olution; therefore they are proper for medical image
segmentation.

Figure 1(a) is a simulated T1weighted MR im-
age [15] which in Figure 1(b) is corrupted by addi-
tive Gaussian white noise (σ = 0.002); gray levels
are 50, 100, 150, and 200. Each gray level repre-
sents a living tissue on MR image and should be
specified as a separate cluster. result of clustering
by FCM, FFCM, sFCM1,1, sFFCM1,1, sFCM0,2 ,
and sFFCM0,2 techniques have been represented re-
spectively in Figure 1 (c)-(h).

Figure 2(a) shows the simulated T1 weighted
MR image of human brain corrupted by additive
Gaussian white noise (σ = 0.001) in (b). segmen-
tation results, including white matter (WM), gray
matter (GM), and the cerebrospinal fluid (CSF)
using standard FCM techniques have been repre-
sented in Figure 2 (c)-(h).

Real MR images also used to assess perfor-
mance of proposed FFCM and sFFCM techniques.
Experiments show that real MR images can be seg-
mented efficiently by sFFCM method. In Figure 3
(a) real MR image acquisitioned from 3T scanner is
portrayed; this image is corrupted by additive Gaus-
sian white noise (σ = 0.001) in Figure 3 (b). seg-
mentation results using FCM techniques have been
represented in Figure 3 (c)-(h).

To do quantitative comparison between perfor-
mances of all presented FCM techniques, results of
different validation functions are tabulated in con-
tinue. Table 2 and 3 represents quantitative com-
parison of FCM, sFCMp,q , FFCM, and sFFCMp,q

approaches by the conventional fuzzy validity func-
tions. In most cases, the validity functions based
on the fuzzy partition show high similarity for the
standard and fast FCM techniques. Moreover, dif-
ferences between two approaches are insignificant.
Most close to one in Vpc, most close to zero in Vpe

and Vxb, and greatest negative value in V f s demon-
strate better clustering results.

In Figure 4 simulation time and iteration num-
bers using FCM techniques are shown. elapsed time
and number of iterations are significantly decreased
by the proposed FFCM and sFFCM approaches
in diverse images. Moreover, in all FCM/sFFCM
techniques, cluster centers were initialized by dist-
max algorithm.
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figure1.jpg

Figure 1. Segmentation results on synthetic MR image; (a) Synthetic MR image (b) corrupted by Gaussian
white noise(σ = 0.002); segmented images by (c) FCM (d) FFCM, (e) sFCM1,1, (f) sFFCM1,1, (g)

sFCM0,2 , and (h) sFFCM0,2.
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Figure 2. Segmentation results on simulated MR image; (a) simulated T1 weighted image, (b) corrupted
by additive Gaussian white noise (σ = 0.001); segmented images by (c) FCM, (d) FFCM, (e)sFCM1,1, (f)

sFFCM1,1, (g) sFCM0,2 , and (h) sFFCM0,2.
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proper for medical image segmentation. 
Fig. 1(a) is a simulated T1weighted MR image 
[15] which in Fig.1(b) is corrupted by additive 
Gaussian white noise ( 0.002  ); Gray levels 
are 50, 100, 150, and 200. Each gray level 

represents a living tissue on MR image and 
should be specified as a separate cluster. 
Result of clustering by FCM, FFCM, sFCM1,1 , 
sFFCM1,1 , sFCM0,2 , and sFFCM0,2 techniques 
have been represented respectively in Fig.1 
(c)-(h). 
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figure3.jpg

Figure 3. Segmentation results on real MR image ; (a) real T1 weighted image, (b) corrupted by additive
Gaussian white noise (σ = 0.001); segmented images by (c) FCM (d) FFCM, (e) sFCM1,1 , (f) sFFCM1,1 ,

(g) sFCM0,2 , and (h) sFFCM0,2.
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acquisitioned from 3T scanner is portrayed; 
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have been represented in Fig.3 (c)-(h). 
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Figure 3. Segmentation results on real MR image ; (a) real T1 weighted image, (b) corrupted by additive
Gaussian white noise (σ = 0.001); segmented images by (c) FCM (d) FFCM, (e) sFCM1,1 , (f) sFFCM1,1 ,

(g) sFCM0,2 , and (h) sFFCM0,2.
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Figure 4. Figure 4: Simulation time (up) and iteration numbers (down) for FCM, FFCM, sFCM1,1,
sFFCM1,1, sFCM0,2 and sFFCM0,2 on various images.
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Table 2 
Fuzzy partition (Vpc and Vpe) for various images using FCM/FFCM techniques. 

 

technique simulated 4 level MRI (σ=0.002) simulated MRI (σ=0.001)          Real MRI (3T)       
.           

 Vpc Vpe Vpc Vpe Vpc Vpe 
FCM 0.847 0.135 0.847 0.131 0.852 0.117 
FFCM 0.847 0.135 0.848 0.132 0.842 0.129 
sFCM1,1 0.975 0.024 0.943 0.044 0.931 0.051 
sFFCM1,1 0.973 0.025 0.944 0.043 0.932 0.051 
sFCM0,2 0.969 0.031 0.916 0.064 0.907 0.068 
sFFCM0,2 0.967 0.032 0.916 0.064 0.905 0.069 

 
Table 3 
Geometric structure (Vxb and Vfs) for various images using FCM/FFCM techniques. 

 

technique simulated 4 level MRI (σ=0.002)    simulated MRI (σ=0.001) 
.            Real MRI (3T)          

. 
 Vxb Vfs×(-106) Vxb Vfs×(-106) Vxb Vfs×(-106) 
FCM 0.038 145 0.047 163 0.065 306 
FFCM 0.038 143 0.051 154 0.078 248 
sFCM1,1 0.046 160 0.053 176 0.069 320 
sFFCM1,1 0.048 157 0.058 167 0.087 266 
sFCM0,2 0.054 156 0.067 170 0.083 306 
sFFCM0,2 0.056 154 0.070 163 0.099 254 

In Fig4 simulation time and iteration numbers 
using FCM techniques are shown. Elapsed 
time and number of iterations are significantly 
decreased by the proposed FFCM and sFFCM 

approaches in diverse images. Moreover, in all 
FCM/sFFCM techniques, cluster centers were 
initialized by dist-max algorithm. 
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Figure 4: Simulation time (up) and iteration numbers (down) for FCM, FFCM, sFCM1,1, sFFCM1,1, 

sFCM0,2 and sFFCM0,2 on various images. 
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5 Conclusion

In medical imaging especially in emergency sit-
uations, using high speed agents such as clustering
ones are very important. standard FCM may not
have required convergence rate especially in emer-
gency conditions. Hence this paper proposed a Fast
FCM technique. by new approach, time and itera-
tion numbers relatively decreased to half of tradi-
tional FCM. Synthetic and real MR images were
used in the experiments. Proposed FFCM tech-
nique decreased the computational amount and time
in comparison with standard FCM. Moreover a lin-
ear spatial function was used to incorporate spa-
tial neighborhood information in FCM/FFCM algo-
rithm. The sFFCM algorithm decreased noise in-
terference and handled nuisance factors effectively.
Proposed sFFCM technique segmented brain MR
images with the same quality of the sFCM approach
whereas reduced its elapsed time. Furthermore, to
more increase convergence rate and more dimin-
ish iteration numbers, cluster centers were initial-
ized by an algorithm. Quantitative assessments of
FCM/FFCM techniques were evaluated by common
fuzzy validation functions. Simulation results ver-
ify efficient performance of proposed techniques.
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