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Abstract

In real-world approximation problems, precise input data are economically expensive.
Therefore, fuzzy methods devoted to uncertain data are in the focus of current research.
Consequently, a method based on fuzzy-rough sets for fuzzification of inputs in a rule-
based fuzzy system is discussed in this paper. A triangular membership function is applied
to describe the nature of imprecision in data. Firstly, triangular fuzzy partitions are intro-
duced to approximate common antecedent fuzzy rule sets. As a consequence of the pro-
posed method, we obtain a structure of a general (non-interval) type-2 fuzzy logic system
in which secondary membership functions are cropped triangular. Then, the possibility of
applying so-called regular triangular norms is discussed. Finally, an experimental system
constructed on precise data, which is then transformed and verified for uncertain data, is
provided to demonstrate its basic properties.

Keywords: general type-2 fuzzy logic systems, fuzzy-rough fuzzification, regular type-2

t-norms, cropped triangular secondary membership functions

1 Introduction

Suboptimal control and erroneous decisions
made from inaccurate data are extremely costly.
However, precise input data are also economically
expensive. Poor data quality in working approxi-
mation or control systems may not be a major eco-
nomic problem if they are trained on precise data.
For four decades, automatic control has been the
main application area of the fuzzy set theory (e.g.
[2]). Although fuzzy controllers operate on fuzzy
values, data presented at inputs and data produced

at outputs should have accurate values (crisp) as it
is the case in the input and output values of con-
trolled systems. Various fuzzification methods are
employed to transform the accurate value to the
fuzzy values, among which the simplest transfor-
mation, called singleton fuzzification, is the most
popular. Nevertheless, to model uncertain or noisy
data within a fuzzy logic framework, non-singleton
fuzzification of inputs is used (eg. [19]). Non-
singleton Fuzzy Logic Systems (FLSs) have shown
their capability to make determined efforts to deal
with uncertainty. A formal derivation of general
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non-singleton fuzzy logic systems has been pro-
vided by Mouzouris and Mendel [15].

Recent works have demonstrated that type-2
fuzzy sets, i.e. sets characterised by fuzzy subsets
of the truth range (see e.g. [1, 22]), are flexible in
capturing uncertainty due to their extra degrees of
freedom. Also, our previous work [17, 27] has con-
firmed that type-2 fuzzy logic systems can outper-
form type-1 FLSs, especially when the fuzzification
type of inputs is adequate to uncertainty in applica-
tions.

Numerous approaches for identification and
modeling nonlinear systems, usually in the presence
of uncertainty, have been based on non-singleton
fuzzification of interval type-2 fuzzy logic systems
IT2FLS [13, 14, 21]. Sahab and Hagras proposed
an automatic generation of non-singleton type-2
fuzzy inputs from data without an assumption of a
specific shape about the uncertainty distribution as-
sociated with the input [23]. Pekaslan et al. pre-
sented a method for dynamic update of interval
type-2 fuzzy input sets capturing varying levels of
uncertainty affecting systems’ inputs [18].

None of the authors has proposed fuzzification
of inputs with the help of both the fuzzy and rough
set theories combined. This paper relies on the ob-
servation that membership functions form triangu-
lar fuzzy partitions which approximate antecedent
fuzzy sets of rules with the use of the notion of
a fuzzy-rough set. To adequately describe the na-
ture of imprecision in data, triangular membership
functions are applied in this paper. A triangular
membership function is defined by three points: the
left boundary, the mode value, and the right bound-
ary. The simplest approach is to estimate these pa-
rameters from sample data using the sample maxi-
mum and the minimum for the boundaries and mak-
ing use of any reasonable statistic (e.g. statistical
mode, mean, or median) as an estimator for the
mode value. Otherwise, expert knowledge can be
helpful to estimate the parameters of the triangle,
e.g. [5].

As a result, we obtain a structure of a non-
interval fuzzy system of type-2, hence it is called a
general type-2 fuzzy logic system. The fuzzy-rough
method produces quasi-triangular secondary mem-
bership functions which are cropped by the limit
of any fuzzy truth value. Such memberships can
hardly be processed by extended t-norms, evolved

from t-norms using the extension principle. We
propose to apply so-called regular triangular norms;
consequently, their particular forms for cropped tri-
angular membership functions will need to be de-
rived and discussed. To demonstrate the abilities of
the whole approach, we construct a fuzzy system of
type-1 and train it on precise data, then transform
it into its type-2 version using fuzzy-rough approx-
imation. Verification for poor and uncertain data
shows the basic properties of the proposed method.

The paper is organized as follows. Section 2
covers essential elements from the fuzzy set theory
and the rough set theory, especially type-2 fuzzy
sets, type-2 FLSs and fuzzy-rough sets. Section
3 presents a mathematical bacground for the main
idea to use fuzzy-rough sets in triangular fuzzifica-
tion of triangular system inputs. A new class of sec-
ondary membership functions characterizing type-2
fuzzy sets, further on referred to as cropped triangu-
lar membership functions, is introduced in Section
4. Consequently, regular t-norms that operate on
cropped membership functions and axiomatic justi-
fication for defined t-norms are provided in subsec-
tions. Section 5 delivers details for type reduction
and final defuzzification of triangular type-2 fuzzy
conclusions. Experimental results are summarized
in Section 6, while conclusions are drawn in Sec-
tion 7.

2 Preliminaries

In this Section, we describe essential elements
from the fuzzy set theory and the rough set theory
which are important to the discussion that follows.

2.1 Type-2 fuzzy sets and systems

Fuzzy sets of type-2 have been introduced by
Zadeh as sets whose membership grades are fuzzy
subsets of the unit interval [32].

Definition 1 A type-2 fuzzy subset of a set X (called
also a general type-2 fuzzy set), denoted by A, is
a vague collection of elements characterized by
membership function uz: X — F([0,1]), where
F ([0,1]) is a set of all classical fuzzy sets in the
unit interval [0,1].

X is called a primary domain. A function
fr € F([0,1]) mapping fy: [0,1] — [0, 1], associ-
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ated with each x € X is called a secondary member-
ship function. The fuzzy membership grade uj; (x)
is a fuzzy truth value, since it belongs to the power
set of fuzzy subsets of the truth interval [0, 1].

Generally, a fuzzy truth value, F, is a fuzzy sub-
set of the unit interval [0,1]. Only convex fuzzy
truth values have linguistic interpretation like some-
how high, more or less medium, and definitely low.
Therefore, we often restrict ¥ ([0,1]) to fuzzy truth
numbers which are additionally normal.

Definition 2 A fuzzy truth value F with a mem-
bership function f is called a fuzzy truth inter-
val if it is normal at a unique number, i.e. 3lu €
[0,1] f(u) =1, and convex, i.e. Yuj,uz, A €
[0,1], f Ay + (1 = A uz) = min (f (1) , f (u2)).

It is important to emphasize that fuzzy truth
numbers are a more general concept than intervals
in interval type-2 fuzzy sets. In this paper, we char-
acterize fuzzy truth numbers by triangular member-
ship functions.

The set-theoretic intersection is derived as the
minimum transformed by the extension principle.
Let A be characterized by its fuzzy membership
grades uj;(x), and B is characterized by ug(x),
Yug (x),uz (x) € F(]0,1]), x € R. The standard in-
tersection AN B is defined via its fuzzy membership
grades calculated by the extension of the minimum
operator, denoted by min, i.e.,

min (uz (x) , 15 (x)) (1)
sup  min (f; (1), 8 () (2)

min(u,v)=w

where f, and g, are bounded membership functions
of fuzzy membership grades ujz (x) and g (x), re-
spectively. More forms of the intersection can be
derived on extensions of other t-norms 7.

The fundamental structure of a type-2 fuzzy
logic system [7] consists of four basic blocks, i.e.
the fuzzifier, rule base, inference engine and de-
fuzzifier that have to deal with type-2 fuzzy sets.
The rule base is formed by K rules Re: IF A is
Ay THEN B is By, where A is a type-2 fuzzi-
fied N-dimensional input x, B isa type-2 conclu-
sion fuzzy set, Ay is an N-dimensional antecedent
fuzzy set of type-2, and By is a consequent fuzzy
set, k =1,...,K. The most particular is the type-2

defuzzifier, which usually is decomposed into two
sub-blocks: a type reducer and the type-1 (ordinary)
defuzzifier.

crisp inputs

TYPE-2 FUZZIFIER

(optional)
+ RULE
BASE
TYPE-2 INFERENCE [«4q type-2

antecedents

+ type-2/-1
consequents

q

TYPE-REDUCER
y type-1output
DEFUZZIFIER

v

crisp output

Figure 1. Fuzzy logic system of type-2

The individual rule conclusion, given by the
compositional rule of inference B = Ao (Zk —
Ek), can be obtained using an extended version of
sup-T composition, i.e.

i, () = sup { T (s () R (15, ()15, ) ) }-

3)
If input values X' are singleton type-2 fuzzy sets
without any special form of fuzzification, relations
are realized by conjuctions and consequents are sin-
gletons (or taken using the extended height type de-
fuzzification), then composition (3) reduces to the
following form

up, = a5 () =T (g, () @
2.2 Fuzzy-rough sets

A rough set is an approximation of an object
in a crisp approximation space. This concept has
been linked to the concept of a fuzzy set in a gen-
eral and flexible interpretation of a fuzzy-rough set
proposed by Nakamura [16]. An equivalence rela-
tion has been extended to a fuzzy relation R on X,
which is reflexive (ug (x,x) = 1 Vx € X), symmet-
ric (ug (x,y) = ug (y,x) Vx,y € X), and transitive
(ug (x,2) = supymin (ug (x,y),ur (y,2)) Vx,y,2 €
X). Thus, it can be decomposed into o-cuts. In
the original definition, the fuzzy-rough set is an o-
composition of rough-fuzzy sets. However, many
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fuzzy equivalence relations form a fuzzy partition
on X by fuzzy sets F;. The fuzzy partition ® has to
cover the whole X, i.e.,

infmax ug, (x) > 0. (5)

Therefore, a fuzzy-rough set may also be inter-
preted as a pair {®(A),® (A) } of the lower and up-
per approximations of A by a family of fuzzy parti-
tion sets {F; }.

Definition 3 Let X be a set, X be a subset of X and
F; form fuzzy equivalence relations on X. A fuzzy-
rough approximation of a fuzzy set A is a composi-
tion of upper and lower rough approximations of A,
by a-cuts of F;, characterized by

i, 0L (A) =
0L (A) =

sup {ua (x) [x € [Filg ), (6)
inf{us (x) [x € [Filo}, (D

i B

In [26], we have noticed that the composition of
a-cuts Uge o, (@, (A), @i (A)] formally repre-
sents a fuzzy grade of type-2. Such fuzzy-rough
sets are usually defined on weak fuzzy partitions @
on X with disjoint subpartition fuzzy sets F; satisfy-
ing sup, min (uf, (x) ,ur, (x)) < 1Vi# j. The parti-
tions are much stronger if we consider a continuous
family of fuzzy partitions, e.g. triangular, which is
a key to a particular fuzzification method.

3 Triangular fuzzy-rough set based
fuzzification

A key approach to non-singleton fuzzification
is to represent it by a generalized fuzzifcation func-
tion ur (x,x") = ur, (x) which is written as an explicit
membership function of the mode x’. This represen-
tation allows us to derive all constructions of fuzzy-
rough sets for a continuous spectrum of x’ values.
The definition of fuzzy-rough sets [16] leads us di-
rectly to non-singleton fuzzification, where triangu-
lar fuzzy partitions F; reflect the uncertainty of input
data around an input value x’. Assuming the an-
tecedent fuzzy set Ax , and the partition F; are fuzzy
numbers, i.e. continuous, single-peak and mono-
tone on slopes, the triangular fuzzy-rough set is ex-

pressed as in [26, 27]:

In (”>x;t)
e 90) . 5, 04))

where k stands for a rule number and # is an input.
The equation represents the secondary membership
function of the antecedent Ay, after fuzzification.
In the case of symmetric and monotone-on-slopes
continuous fuzzy truth numbers, the same function
can be expressed by cases [26, 27], i.e.

pE, By, (u),x, ) if my, < x;
AR e ")

ur, (M (u),x),) otherwise,
where my,, is the mode of Ay ,.

3.1 Triangular Fuzzification of Triangular
MFs

In our approach, both A, and F, are sym-
metric triangular fuzzy numbers, i.e. wa,, (X)) =

/xn_mg.n"‘sk.n , mkgl_sxn""ak‘,n/ and
k,n k.n

Xn—Xy+Dn X=Xy +Ay
An ) An

modes, &, and A, denote spreads of triangular
membership functions. A boundary operator intro-
duced as /z/ = max (0, min(1,z)) preserves the out-
put of the functions to be in [0, 1]. Consequently,
the secondary membership function of the fuzzified
antecedent can be expressed as follows

Sp n My y—Xp Ay — Oyt
. A )
min Sk ntt—Op X, —my y+A,
An

if Mg p S x;,

S ptt— Ok p+ 1y —x+A,
. An I
min 6k.n+xil _mkgl""An _Sk.nu
Ay

otherwise.

ME,(Xn) =

/ ., where my, and x|, denote

fk,n (er;l) =

(10)

This function has a triangular shape for x), €
(M — Ok s M + Ok n]. However, it is not a general
case, for now, let us exclude the case when the result
is not triangular. The principal membership func-
tion is an original, not fuzzified antecedent function
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We search for the support of the secondary member-
ship function, then, we observe that fi , (u,x") =0
for all u € [0, 1] whenever my , — &, > x], + A, or
Mg+ O n < x), — A,. Therefore, the upper mem-
bership function is characterized by the trapezoidal

membership function
/ . (12)

having a trivial kernel [my , — A,,mi , +A,]. Con-
sequently, the lower membership function is trian-
gular and supported by [my , — Ok +An, My n+0 —
A,] and subnormal. It has a mode at x), = my., that
can be calculated in the following way

/
Xy —Mpgn +An +8k,n

- /N 1 61\'.,)1 ?
:uAkﬁ,,(xn) —/Il’lln My +An =X+
8k.n

hk,n = MA;, (mkm + An) (13)
_ /mk,n - (mk,n +An) + 6k,rl/ (14)

8k,n
An
= /1 — S . (15)

Therefore, the lower membership function is com-
posed of the two following slopes scaled by #hy ,,
ie.

)Hn_mkAn_An"'Sk,n
N . IR TP
HAk.n (xn) o hkﬂ /mln mk,n*Anfnx;l‘Fak.ﬁ /
(16)
= / 1— An / .
8k,n
)Hrz_mkm_AnJ"Bk,n
. T7
/mln mk,n*An*x:fFSk,n / (17)
T

The construction of secondary membership
functions is demonstrated in Figure 2. Three exem-
plary x’ values have served to construct three exem-
plary secondary membership functions. To obtain a
continuous type-2 fuzzified antecedent set, up (x, x)
should take arguments in the whole spectrum of x’
values.

Pt

X7

Figure 2. Construction of fuzzy-rough sets: a) A*
— antecedent membership function (solid line), uf,
— placement of non-singleton premise
membership functions (dashed lines), b) f (u,x’)
— corresponding secondary membership
functions.

Unfavorably, for x}, & [my, — O n, M+ Ok nl,
the intersection between the fuzzy partition set and
the antecedent fuzzy set is not sufficient; hence, sec-
ondary memberships of the result are no longer tri-
angular. In the sequel, however, when using new
operations on type-2 fuzzy sets, we will lose this
non-triangularity, as we used triangular approxima-
tions for the clipped secondary membership func-
tions.

4 Cropped Triangular Secondary
MFs

Suppose x], > my , + &, when the secondary
membership function of the fuzzy-rough set is no
longer triangular. In such a case, the secondary
membership function is cropped by the f-axis and
10 for u > 0 becomes

- 8k,n + M *x; +A, — Sk,n”

Jien (u,x),) = n . (18)

Obviously, the secondary membership function is
normal when u = 0, since py,, (x),) = 0, and there-
fore it is not continuous. Although the principal
membership grade is equal to zero, a line along
the slope of the secondary membership function
crosses f-axis at ug, (my, + 8 ,). The function fi ,
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on an extended u-range reaches 1 at some nega-
tive point

/
i, (1) = Pttt
k,n n 8](7”

; (19)
thus it is not a membership grade; however, it
allows for the exact calculation of the secondary
membership when the fuzzification function ug,
does not sufficiently overlap the antecedent func-
tion uy, . Therefore, we formalize a new type of a
quasi-triangular function which includes all possi-
ble results of the triangular fuzzy-rough fuzzifica-
tion method.

Definition 4 Consider ordered real parameters
A<m<vwithv>0, and v > 1 whenever T <
1, and A < 0 whenever 1 > 0 or A=7. A
cropped triangular secondary membership function
O (u): [0,1] — [0,1] such that

O(u) = crptrg (u,\,T,0) (20)
max (0,2=%) ifu>7w>0
= {max (o, ﬁ) ifu<m 1)
1 ifu=0and ® <O0.

With regard to semantics, v is an upper member-
ship grade and 7 will be called an improper princi-
pal membership since there is no condition for 7 to
be greater than zero. Analogically, A will be called
an improper lower membership grade.

Theorem 1 The following properties are true:

— ¢ is normal (at a unique point),
— 0 is a convex fuzzy set,

— O is left semi-continuous.

Proof — For non-positive T, ¢ yields exactly 1
for u = 0. In the case of positive T, the function
is normal at the peak of a triangle.

— ¢ is a convex fuzzy set due to the linearity of
slopes.

— In the case of positive 7, the function is con-
tinuous since the left slope and the right slope
yield the same value at 7. In the case of T = 0,

the function is also continuous since the limit
of the right slope is equal to 1 as u approaches
0. Otherwise, the function returns 1 at 0 and
lim,,_,o+ max (O, L’:g) =lim, o+ =5 < 1, there-
fore it is left semi-continuous.

Normality and fuzzy-convexity restrict fuzzy
truth values to the class of fuzzy truth numbers,
which is required for the implementation of ex-
tended operations as type-2 operations [25, 27],
such as extended t-norms or t-conorms; however,
semi-continuity will complicate this kind of imple-
mentation.

4.1 T-norm approximation

To extend set-theoretical operations of classical
fuzzy set theory, many scientists employ the gen-
eralized extension principle. This approach gives a
general framework for calculating secondary mem-
bership grades, e.g. fuzzy grades of a t-norm oper-
ation on fuzzy truth values.

Definition 5 Let F' and G be fuzzy truth values,
with their membership functions f and g, respec-
tively, at x € R, where for simplicity x is omitted,
and let T and T, be arbitrary t-norms. An extended
t-norm T based on T, according to the generalized
extension principle, denoted by 7~"<T*> (F,G), is char-
acterized by the following membership function,

e o) W) = s T(£(0),8(1). @2

We treat this framework as a basic reference for
developing alternative engineering operations to be
computationally efficient and convergent to the ba-
sic ones. The simplest formulation relies on the use
of, so-called, regular operations by calculating only
three vertex points of triangular as well as quasi-
triangular functions. This approach relieves oper-
ations computationally and, more importantly, pre-
serves the shape of the result so that it does not ex-
ceed the class of input functions, which in this paper
are cropped triangular secondary membership func-
tions. In this paper, we extend the scope of regular
t-norms [27, 29] to cropped triangular arguments.

An uncomplicated formulation of the regular
minimum t-norm of type-2 for cropped triangular
membership functions can compute both proper and
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improper membership parameters using the mini-
mum t-norm. Let the input type-2 fuzzy sets be
characterized for each x € R by fuzzy truth val-
ues, whose secondary membership functions are
cropped triangular.

Definition 6 Having cropped triangular member-
ship functions f = crptrg (u,Ap, 77, 0¢) and g =
crptrg (u, Mg, Tg, V), a regular minimum t-norm of
type-2, denoted by I/I’HI/I(F, G), is characterized by
crptrg (u, A, T, V) for each x € R with parameters

vV = min(Vs,V,), (23)
T = min(Ts,T,), (24)
A = min(As,Ay), (25)

where the dependence of secondary membership
functions on x has been omitted for simplicity rea-
sons.

< o —
0.2 0 0.2 0.4 0.6 0.8 1
u
b
1 (b)
AN
0.5 - - —
W O — . —
0.2 0 0.2 0.4 0.6 0.8 1
u
C
o ©
0.5 - - ~
4 0 L /‘ —~
-0.2 0 0.2 0.4 0.6 0.8 1

u
Figure 3. Regular minimum t-norm (dotted) for

cropped triangular functions (dashed); extended
minimum (solid)

In most cases, there is no difference be-
tween the regular minimum t-norm and the ex-
act (minimum-based) extension of the minimum t-
norm on cropped triangular membership functions
(e.g. Fig.figrminTcropp c)). Two peculiar cases are
shown in Figure3 a) and b). Using the minimum
t-norm, concerning improper membership grades,
raises no objections; however, an application of the
product t-norm is no longer straightforward. In the
case of cropped triangles, only proper membership
parameters can be directly calculated with the use
of a type-1 t-norm, e.g. the product t-norm can be
used for upper membership grades as it can be ob-
served in Fig.fig:prodTcropp c).

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2 0 0.2 0.4 0.6 0.8 1

Figure 4. Regular product t-norm (dotted) for
cropped triangular functions (dashed); extended
product t-norm (solid)

Basically, we have to make an approximating
assumption that the operation preserves the cropped
triangular shape at the output. Then, we observe
that the product can be directly applied only to
proper upper membership grades and positive val-
ues of principal and lower grades. In the case of
at least one negative input value of the improper
principal membership grades, the output principal
parameter is negative and could be calculated as
the argument of the linear function along the up-
per slope of the resultant secondary membership
function reaching value 1. The function should in-
tersect the primary membership axis at the same
point (0,b) as one of the input upper slopes does
it as well. The case can be observed in Figure4 a).
Suppose there exists at least one of the intersection
points of the lines along input upper slopes and the
secondary membership axis

L
by = —1_ifn; <0, (26)
Ly =Ty
L)
by, = £

Vg — T

if T, <O0. 27)

By the definition of the extended t-norm, the mini-
mal intersection point has to be chosen, i.e.

b=min (by,by). (28)

A line along the upper slope of the resultant mem-
bership function intersects with the f-axis at b, i.e.

f= %bqub. (29)
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The function reaches 1 at the following improper
principal grade

fm = 1

(i)

In the case of proper output principal member-
ship grades and at least one negative improper input
lower membership grade, the output lower grade is
negative and could be calculated as the zero of the
linear function along the lower slope of the resul-
tant secondary membership function. The function
should intersect the primary membership axis at the
same point (0,c) as one (the greates) of the input
lower slopes does it as well. This case can be ob-
served in Figure 4 b). Suppose there exists at least
one of the intersection points of lines along input
lower slopes and the secondary membership axis

(30)
(3D

e

= if 0 32

s TCf—)\.fl <9 (32)
A

= if 0. 33

‘s T, —kgl Mg < (33)

By the definition of the extended t-norm, the maxi-
mal intersection point has to be chosen,

(34)
A line along the lower slope of the resultant mem-
bership function intersects with the f-axis at ¢ and
has the zero at the following improper lower grade:

po T
1—

c=max(cy,cq).

. (35)

1
c

Definition 7 Having cropped triangular member-
ship functions f = crptrg(u, s, ms,0¢) and g =
crptrg (u, Mg, T,V ), a regular product t-norm of
type-2, denoted by ﬁ(F, G), is characterized by
crptrg (u, A, T, V) for each x € R with parameters

V= VsV, (36)
- ifﬂ?f >0
17 and Tty > 0
T = Vg 37)
-t i
(1 min(b i 7%> ) otherwise,
f Ry 0y
wy if?\,f >0
17 and Ay >0
A= T . (38)
- £ otherwise.
Yy Y
L max(ﬁ N ﬂg*ig )

where the dependence of secondary membership
functions on x has been omitted for simplicity rea-
sons.

4.2 Axiomatic justification for t-norms

Suppose we have two fuzzy truth values F
and G characterized by their membership functions
f:10,1] = [0,1] and g: [0,1] — [0,1]. Mizu-
moto and Tanaka [12] introduced a relation order-
ing fuzzy truth values using the extended minimum
min and the extended maximum max in the forms
of

min(F,G) =  sup min(f(u),g(v))(39)
min(u,v)=w
max(F,G) =  sup min(f(u),g())(40)

max (u,v)=w
Thereby, the ordering relation is defined as

FCG < min(F,G)=F
and max (F,G) =G

(41)
(42)

In the case of fuzzy truth numbers, e.g. cropped
triangles, it can be easily verified that the ordering
relation defined by both (41) and (42) is equivalent
to the following both (not equivalent) inequalities

(w) ifwe[0,mp],
(w) if we [mg,1],

(43)
(44)

where mp and mg are the peak values of F' and G,
respectively.

Let £ = (¥ ([0,1]),C) denote an underlying
lattice of the fuzzy set theory, where 7 (]0,1]) is
the power set of fuzzy truth values. We indicate the
smallest element of L as 0 = 1/0, and the largest
element as 1 = 1/1. An axiomatic definition of tri-
angular norms on £ can be summarized as follows:

Definition 8 A t-norm on the complete lattice L =
(F ([0,1]),C) (a type-2 t-norm for short) is a func-
tion of two variables T: F ([0,1]) x F ([0,1]) —
F ([0,1]) that satisfies
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4. existence of the unit element: T (F,1) = F,
while F,G,H € F ([0,1]).

Type-2 t-norms which preserve the triangular
shape have been studied in [24]. Let a complete
lattice £ = (. ([0,1]),E) of cropped triangular
fuzzy truth numbers be bounded by the unity ele-
ment expressed as 1 = crptrg (1, 1,1, 1) and the zero
element expressed by 0 = crptrg (u,0,7,v). The
following theorems substantiate the application of
regular t-norms in type-2 fuzzy logic systems.

Theorem 2 The  regular  minimum  t-norm
min (F,G) expressed by (23 - 25) is a t-norm on
L= (Fes ([0,1]),E) (of type-2).

Proof Inclusion of cropped triangular fuzzy truth
numbers, denoted by F T G, means that Ay < A,
Ty < T and vy < V. For every fuzzy truth number
H, Mg, = min(As,Ay) and Ay, = min (Ag,Ay), the
inequality min (Af,A,) < min(Ag,A;) is satisfied by
the property of any non-extended t-norm whenever
Ar < Ag; similarly g, < Ty, and vy < Vg There-
fore, monotonicity is proved.

Commutativity and associativity of the
minimum-based type-2 t-norm are satisfied since
the minimum t-norm is commutative and associa-
tive.

The unit element does not change F since Tty =
Ty l,DfZDf-l and?uf:lf-l.

Theorem 3 The regular product t-norm I1(F,G)
expressed by (36 - 38) is a t-norm on L =

(fFCA ([O’ 1]) ) E) (of type-2).

Proof For every fuzzy truth number H, Vs, = Vpyy
and Vg, = VL, the inequality LV, < VL 1S sat-
isfied by the property of any non-extended t-norm
whenever vy < Vg. The inequality 71, < Ty is
satisfied by the property of any t-norm whenever 7t/
< T, and Ty > 0 and 7, > 0. In the cases of at least
one negative Ty Or T,

1
. i Vy
min (Df*TCf ? VT )

1
<veu, [ 1 45)

. 0 0
g h
min (Dg—TEg ? 'L)h—TEh>

LV Vp 1—

i Vg
: V—Tp : Vy—T,
min Ton” < min o’ (46)
Vp =T V=T,

) )
< % @7
Vf =Ty Vg —Ty
Vr—T V,—T
f f 2 8 8 (48)
Vy Vg
T T
L= (49)
Vr Vg

where (46) is valid since vs < v, and the compo-
nent of H is omitted in (47). At least 7y is negative,
Ty < T, both sides in the inequality vy < v, are
positive; therefore, (49) and thus 7z, < T, is valid.

The inequality AsA, < AgAy, is satisfied by the
property of any t-norm whenever Ay <A, and A5 >
0 and A, > 0. In the cases of at least one negative
A or possibly A, we demonstrate that v, < Vg,
ie.

T,

I S P S
A g My )
f Nt max(
max iy b P
<7‘/—7‘f’7‘h_7‘h> Tg—hg TNy

—Ay A
N -] — )
max( “f_}f;f ) > max( “g_,f;g ) (51)
Tth—An =M,

Moo

T Ty

1— (50)

Tp—Ar = Tg—Ag 62
Ty —Ay S T — A
VR (53)
ﬁ < &. 54)
Ty Ty

Therefore, monotonicity is proved.

Commutativity and associativity of the product-
based type-2 t-norm are satisfied since the product
t-norm is commutative and associative.

The unit element does not change F since Tty =
Ty l,l)f:Df‘ 1 and?»f:ljw 1.

Although the analyzed regular t-norms on
cropped triangular fuzzy truth numbers represent
only approximate extensions of the minimum t-
norm and the product t-norm, they are still t-norms
of type-2, and consequently, their use is justified for
the conjunction of type-2 antecedents as well as for
the Cartesian product.



280

Janusz T. Starczewski, Piotr Goetzen, Christian Napoli

5 Type reduction and defuzzifica-
tion

Type reduction is the first phase to defuzzify
type-2 fuzzy conclusions, i.e., to transform a type-
2 fuzzy set into a type-1 fuzzy set. Exact methods
rely on the use of the extension principle applied to
the centroid or height type-2 defuzzification method
[6, 8, 33].

A computationally efficient method has been
proposed in [27, 28]. It is fully coincident with the
extended centroid that includes the Karnik-Mendel
type-reduction algorithm (KM algorithm in its basic
[7] or enhanced version saving about 50% of com-
putations [30]).

Theorem 4 [27] Suppose we have a triangular
fuzzy-valued (type-2) fuzzy set of ordered discrete
primary values y; with their secondary member-
ship functions specified by the upper, principal
and lower membership grades, w, > uy > My k=
1,2,...,K. Let us assume that the KM algorithm
determined an interval centroid fuzzy set [Ymin, Ymax|
for the interval-valued fuzzy set constituted by the
upper and lower membership grades. Moreover,
let ypr be a centroid of the principal membership
grades calculated by

K -~
Yor = Z HicYk (55)

Then, the centroid of the triangular type-2 fuzzy set
is characterized by the following membership func-
tion:

Y Vleft (y) . ,
( ) = (lfql ()’))Y‘H]l (Y)Ypr*yleﬁ(y) l‘fy S [ymlnyypr]
uly Y—Yright () ify e [ ]
(1—(Ir(y))y+(1r(y)ypr_yrjght(y) y ypr,Ymax 5
(56)
where the parameters are expressed by
i Fik
aly) = —=== 57)
Y ()
it Fik
q: (y) e (58)
Y k()
and
Vet (y) = m
e e
Y k()
K
Yright (y ) = w

25:1 7k )

with
e i<y
Hi(y) = .
M, otherwise
i e iz
() = .
M, otherwise.

08 - A

=
= 06
= o

04 -

0.2

t o
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y
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Figure 5. Exemplary quasi-triangular centroid of
type-2 fuzzy sets with triangular secondary
membership functions: (a) A — upper, ¢ —

principal and V — lower membership grades; (b)

centroid fuzzy set

The second phase of the process is to defuzzify
into a crisp value, which can be approximated lin-
early by:

/ Vieft T Ypr 1 Yright
y = 3
A detailed discussion on a hyperbolic type of ap-
proximation which is closer to the exact centroid is
presented in [27].

The proposed type-reduction algorithm is ac-
tually independent of an interval type-reduction
method. Without any modification, we can employ
other methods like [10, 31, 4, 3]; however, some of
them as the Nie-Tan method [9] or its improvement
[11] calculate the centroid directly, without the in-
termediate type-reduction phase, and are not always
good approximations [20].

6 Experiments

To conduct experiments showing the essence of
fuzzification, we had to train a fuzzy system on
non-fuzzified data. In laboratories, we usually have
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available exact data of some approximation or con-
trol tasks. Alternatively, we can use an expert ap-
proach to construct a base of type-1 fuzzy rules, es-
pecially in classification. It is fundamentally impor-
tant that the thus created system should have max-
imum accuracy since it is used to initialize a type-
2 fuzzy logic system, which is more equipped to
deal with distorted data. Actually, the initial type-1
fuzzy system becomes the principal component of
the type-2 fuzzy system that will not be subject to
learning from now on.

Real industrial systems work on uncertain data.
Estimating knowledge about the shape of the dis-
tortion, we can apply the fuzzy-rough fuzzification
method presented in this paper to obtain cropped
triangular type-2 fuzzy rules, which completes the
transformation of the type-1 fuzzy system into the
type-2 fuzzy system. It needs to be noted that this
transformation is carried out once ahead-of-time.
Consequently, our experiments can be carried out
in the following order:

1. As an initial system, the type-1 fuzzy logic
system is trained on whole sets of laboratory
(exact) data with the use of Back Propagation
method (10 folds cross-validation, the system
of the highest accuracy is chosen); however,
in the cases of unsatisfactory accuracy, more
sophisticated methods can be used. The sys-
tem is constructed on asymmetric-triangular an-
tecedent membership functions (with the sin-
gleton fuzzification), rules are fired by the al-
gebraic Cartesian product, and singleton conse-
quents are used in the height type defuzzifica-
tion. Systems in the problems of the Nonlinear
Dynamic Plant approximation and the Kinemat-
ics prediction consist of 6 and 13 rules, respec-
tively. The trained system is a reference single-
ton fuzzy system for further comparisons.

2. As input data are assumed to be distorted by ad-
ditive noise with a symmetrical triangular distri-
bution, adequate upper and improper principal
and lower membership functions are computed
for cropped triangular secondary memberships
according to the proposed fuzzification method.

3. The data distorted by white additive noise
with the triangular distribution and symmetrical
spread values A; (for particular i-th input) are

used for testing of the systems being compared
as in the real-time environment. All results are
averaged from 10 epochs of generations of dis-
torted samples.

Errors for type-2 fuzzy logic systems obtained
via the triangular fuzzy-rough fuzzification of trian-
gular membership functions in the Nonlinear Dy-
namic Plant approximation are summarized in Ta-
bles 1 and 2. The main comparison is made in
relation to the type-1 fuzzy logic system. The re-
sults are also referenced to a corresponding inter-
val type-2 fuzzy system composed of the upper and
lower membership functions of the triangular type-
2 fuzzy system, which is equivalent to a rough-
fuzzy approach to fuzzification. It can be observed
that the cropped triangular fuzzy system gives lower
root mean square error (RMSE) than singleton and
interval fuzzy systems at low levels of data distor-
tion.

Table 1. Nonlinear Dynamic Plant approximation
with triangular type-2 fuzzy (fuzzy-rough) sets
induced by triangular fuzzification of triangular
membership functions and additional triangular

noise applied to a single input X

A Singleton Interval Cropped triangular
' RMSE RMSE RMSE
0.1 0.813 0.812 0.811
0.2 0.853 0.865 0.850
0.3 0.916 0.995 0.925
0.4 1.022 1.191 1.061
0.5 1.150 1.463 1.268
0.6 1.273 1.807 1.481
0.7 1.344 2.203 1.723
Ay
0.1 0.823 0.819 0.820
0.2 0.896 0.870 0.872
0.3 1.008 0.952 0.951
0.4 1.144 1.065 1.050
0.5 1.278 1.178 1.145
0.6 1.477 1.349 1.277
0.7 1.649 1.499 1.393
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Table 2. Nonlinear Dynamic Plant approximation Table 4. Kinematics predictions with triangular
with triangular type-2 fuzzy (fuzzy-rough) sets type-2 fuzzy (fuzzy-rough) sets induced by
induced by triangular fuzzification of triangular triangular fuzzification of triangular membership
membership functions and additional triangular functions and additional triangular noise applied to

noise applied to all inputs a single input Xs_g
A, Singleton Interval Cropped triangular As Sgﬁgtgn Ig;rg;l Cropp}e;cll\/}rslgngular
! RMSE RMSE RMSE
0.1 0.837 0.845 0.840 0.1 0.097 0.097 0.097
0.2 0.960 0.992 0.964 0.2 0.098 0.098 0.097
0.3 1.107 1.238 1.134 0-5 0.103 0.107 0.103
0.4 1.311 1.599 1.367 0.7 0.107 0-119 0.108
0.5 1.522 1.960 1.625 L0 0.118 0.147 0.122
0.6 1.733 2.405 1.903 (?61 0.098 0097 0097
0.7 1.931 2.865 2.155 0 0.099 0.099 0.098
0.5 0.108 0.119 0.107
Table 3. Kinematics predictions with triangular 0.7 0.119 0.141 0.121
type-2 fuzzy (fuzzy-rough) sets induced by 1.0 0.143 0.178 0.147
triangular fuzzification of triangular membership A7
functions and additional triangular noise applied to 0.1 0.098 0.097 0.097
a single input X;_4 0.2 0.099 0.099 0.099
0.5 0.107 0.116 0.106
. . 0.7 0.119 0.141 0.120
1 Singleton Interval Cropped triangular 1.0 0.140 0.177 0.143
RMSE RMSE RMSE As
0.1 00970097 0.097 0.1 0097  0.098 0.097
0.2 0097 0097 0.097 02 0098  0.099 0.098
0.5 0098 0103 0.100 0.5 0107  0.114 0.106
0.7 0.1000.15 0.103 07 0115  0.130 0.114
20 0.104  0.145 0.119 10 0133 0.163 0.135
2
0.1 0.097 0.097 0.097
0.2 0.097 0.098 0.097 Table 5. Kinematics predictions with triangular
0.5 0.099 0.113 0.103 type-2 fuzzy (fuzzy-rough) sets induced by
0.7 0.104 0.133 0.109 triangular fuzzification of triangular membership
1.0 0.129 0.168 0.131 functions and additional triangular noise applied to
As all inputs
T e T el
0.5 0.106 0.110 0.106
07 0112 0127 0113 0.1 0.099 0.109 0.100
1.0 0.125 0.162 0.129 0.2 0.105 0.151 0.121
A, 0.5 0.141 0.259 0.189
01 0.097 0.097 0.097 0.7 0.180 0.264 0.203
0.2 0.098 0.098 0.098 1.0 0.250 0.265 0.262
83 8183 81;2 81(1):; Experimental results in the Kinematics approx-
1: 0 0: 122 0: 159 0: 129 imation are shown in Tables 3-5. For single in-

puts fuzzified, the cropped triangular type-2 fuzzy
system gives slightly fewer errors than the single-
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ton type-2 fuzzy system; however, its performance
is much better in comparison to the interval fuzzy
system. Unfortunately, when the disturbance is ap-
plied to all inputs, the cropped triangular type-2
fuzzy system cannot outperform the singleton rel-
evant system.

6.1 Conclusions

In this paper, we have presented a method for
fuzzification of inputs in the fuzzy logic system.
The method is based on the construction of fuzzy-
rough sets. Triangular fuzzy partitions were in-
troduced to approximate common antecedent fuzzy
rule sets. As a result, we obtained a general
form of the type-2 fuzzy logic system. We ap-
plied the cropped version of the triangular mem-
bership function to adequately model distortion of
data. Such cropped triangular secondary member-
ship functions required a suitable and preserving
shape t-norm operator. Consequently, we proposed
regular triangular norms for cropped triangular ar-
gument functions. The regular minimum t-norm,
as well as the regular product t-norm, turned out to
be good approximations of extended t-norms and,
which is likely to justify it better, they fully satisfy
axiomatics for t-norms of type-2.

The experimental approach was based on the
construction of a type-1 fuzzy logic system using
precise data and transforming it into its type-2 ver-
sion via the proposed fuzzification method. Such an
approach is dedicated to real-world approximation
problems, in which precise input data for working
systems are economically expensive. We observed
that the cropped triangular type-2 fuzzy system has
the best performance when the corresponding inter-
val system has a better performance than the sin-
gleton system. Otherwise, the performance of the
cropped triangular type-2 fuzzy system is not much
worse than the results of the singleton fuzzy sys-
tem. This makes the proposed system highly reli-
able. When all inputs are distorted and require a tri-
angular fuzzification, the cropped triangular type-2
fuzzy system no longer outperforms the singleton
system, which is consistent with our previous theo-
retical research on the approximate equivalence of
type-2 and type-1 fuzzy logic systems [27]. If we
have poor data available for all system inputs, the
quality of the whole approximation process should
also be questioned.
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