
BROWSER FINGERPRINT CODING METHODS
INCREASING THE EFFECTIVENESS OF USER

IDENTIFICATION IN THE WEB TRAFFIC

Marcin Gabryel1,∗, Konrad Grzanek2, Yoichi Hayashi3

1Department of Computer Engineering,
Czestochowa University of Technology,

al. Armii Krajowej 36, 42-200 Czȩstochowa, Poland

2Information Technology Institute,
University of Social Sciences, 90 - 113 Lodz
Clark University, Worcester, MA 01610, USA

3Department of Computer Science, Meiji University, Japan

∗E-mail: marcin.gabryel@pcz.pl

Submitted: 14th October 2019; Accepted: 29th April 2020

Abstract

Web-based browser fingerprint (or device fingerprint) is a tool used to identify and track
user activity in web traffic. It is also used to identify computers that are abusing online
advertising and also to prevent credit card fraud. A device fingerprint is created by extract-
ing multiple parameter values from a browser API (e.g. operating system type or browser
version). The acquired parameter values are then used to create a hash using the hash func-
tion. The disadvantage of using this method is too high susceptibility to small, normally
occurring changes (e.g. when changing the browser version number or screen resolution).
Minor changes in the input values generate a completely different fingerprint hash, mak-
ing it impossible to find similar ones in the database. On the other hand, omitting these
unstable values when creating a hash, significantly limits the ability of the fingerprint to
distinguish between devices. This weak point is commonly exploited by fraudsters who
knowingly evade this form of protection by deliberately changing the value of device pa-
rameters. The paper presents methods that significantly limit this type of activity. New
algorithms for coding and comparing fingerprints are presented, in which the values of
parameters with low stability and low entropy are especially taken into account. The fin-
gerprint generation methods are based on popular Minhash, the LSH, and autoencoder
methods. The effectiveness of coding and comparing each of the presented methods was
also examined in comparison with the currently used hash generation method. Authentic
data of the devices and browsers of users visiting 186 different websites were collected
for the research.
Keywords: browser fingerprint, device fingerprint, LSH algorithm, autoencoder

1 Introduction

The process of identifying the users and their
behavior on the Internet is rather commonplace.

By collecting information about the user, the pages
they visit, or their planned purchases, it is possi-
ble to develop a useful profile, for example, when

JAISCR, 2020, Vol. 10, No. 4, pp. 243
10.2478/jaiscr-2020-0016

 – 253

244 Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

communicating advertising content to them. The
mechanism for user identification is that of storing
a unique identifier in a cookie on their device [1].
This type of method is widely criticized for the pos-
sibility of privacy violation. This problem has been
noticed by the European Parliament and for several
years now, information about the use of cookies has
had to be placed on websites [2]. However, despite
the obvious need for privacy, unambiguous identi-
fication of the device or the browser is extremely
helpful in ensuring security and preventing abusive
practices on the Internet. Numerous fraudulent ac-
tivities include credit card payment scams [3], ar-
tificial generation of Internet traffic, the so-called
abusive traffic [4], generating click fraud [5, 6] or
automating the collection of web site contents [7].
Based on various reports [8, 9], losses due to fraud
in online advertising alone can range from 6.5 to 19
billion dollars. Fraud prevention is primarily about
identifying the perpetrator and blocking their ac-
tions. Unfortunately, the HTTP protocol used on
the Internet only allows the user to be identified by
the imperfect cookie mechanism. It is very easy
to get around it by removing or ignoring cookies.
Other methods, such as trying to eliminate fraud by
blocking IP numbers of devices, do not give the ex-
pected results. One public IP number can be used
by multiple users simultaneously. An IP number
can also be assigned dynamically. Connections via
proxy servers or VPN are also common. Hence,
the best solution is to identify the user with the so-
called browser fingerprint [10].

A browser fingerprint is a set of information
about a given browser, device, operating system and
environmental and location settings of the user [11].
Due to a great variety of this information, finger-
print can be treated as a unique identifier. Unfortu-
nately, the values of the parameters collected may
change over time. This happens when updating the
browser or operating system version, resizing the
screen, installing a new plugin, etc. Once a finger-
print has been obtained, on average, it remains valid
for several days [12]. That is why developing a way
of comparing fingerprints taking into account the
changes occurring in them poses a rather demand-
ing challenge. Using hash functions to encode and
search for a fingerprint is no longer relevant, as hash
functions generate completely different hash values
for minor input changes, which is particularly un-
desirable in the case of fingerprinting. For example,

once the browser version is changed, the same user
will be recognized as two different persons.

The aim of this paper is to propose new meth-
ods of encoding fingerprint browser features and
a method of comparing them, taking into account
changes in the values of these features. The paper
presents a research project showing the dynamics of
changes taking place in the fingerprint during sub-
sequent visits of a given user to the website. The
features will be divided into a group of stable pa-
rameters and a group of unstable ones. This knowl-
edge will be used to develop two new methods of
comparing fingerprints:

– a new method of hash generation using the Min-
Hash technique compatible with the LSH algo-
rithm,

– a dedicated neural network with an auto-encoder
structure to encode the abovementioned two
groups of fingerprint features.

The encoding effectiveness of both methods
will be experimentally tested using the data ob-
tained over a period of 3 months from 186 different
websites.

This paper is organized as follows. Section
2 briefly discusses the related work highlighting
the proposed methods: issues connected with the
browser fingerprint, its practical applications and
the possibilities offered by neural networks with the
autoencoder structure for data encoding. Then, in
Section 3, the definition of the browser fingerprint
is given, the characteristics of the features selected
for its creation are assessed and their changes over
time are analyzed. Section 4 discusses the proposed
algorithms for comparing browser fingerprints. The
research tests showing their effectiveness are pre-
sented in Section 5. Section 6 concludes the paper
and offers suggestions for future work.

2 Related works

In paper [13], it was noticed for the first time
that there is a high likelihood of identifying the user
through using various parameters extracted from
the browser being used. However, the scale of the
research at that time remained rather limited. Only
in the next study [10], where the research was con-
ducted on a larger number of users, was it shown

245Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

communicating advertising content to them. The
mechanism for user identification is that of storing
a unique identifier in a cookie on their device [1].
This type of method is widely criticized for the pos-
sibility of privacy violation. This problem has been
noticed by the European Parliament and for several
years now, information about the use of cookies has
had to be placed on websites [2]. However, despite
the obvious need for privacy, unambiguous identi-
fication of the device or the browser is extremely
helpful in ensuring security and preventing abusive
practices on the Internet. Numerous fraudulent ac-
tivities include credit card payment scams [3], ar-
tificial generation of Internet traffic, the so-called
abusive traffic [4], generating click fraud [5, 6] or
automating the collection of web site contents [7].
Based on various reports [8, 9], losses due to fraud
in online advertising alone can range from 6.5 to 19
billion dollars. Fraud prevention is primarily about
identifying the perpetrator and blocking their ac-
tions. Unfortunately, the HTTP protocol used on
the Internet only allows the user to be identified by
the imperfect cookie mechanism. It is very easy
to get around it by removing or ignoring cookies.
Other methods, such as trying to eliminate fraud by
blocking IP numbers of devices, do not give the ex-
pected results. One public IP number can be used
by multiple users simultaneously. An IP number
can also be assigned dynamically. Connections via
proxy servers or VPN are also common. Hence,
the best solution is to identify the user with the so-
called browser fingerprint [10].

A browser fingerprint is a set of information
about a given browser, device, operating system and
environmental and location settings of the user [11].
Due to a great variety of this information, finger-
print can be treated as a unique identifier. Unfortu-
nately, the values of the parameters collected may
change over time. This happens when updating the
browser or operating system version, resizing the
screen, installing a new plugin, etc. Once a finger-
print has been obtained, on average, it remains valid
for several days [12]. That is why developing a way
of comparing fingerprints taking into account the
changes occurring in them poses a rather demand-
ing challenge. Using hash functions to encode and
search for a fingerprint is no longer relevant, as hash
functions generate completely different hash values
for minor input changes, which is particularly un-
desirable in the case of fingerprinting. For example,

once the browser version is changed, the same user
will be recognized as two different persons.

The aim of this paper is to propose new meth-
ods of encoding fingerprint browser features and
a method of comparing them, taking into account
changes in the values of these features. The paper
presents a research project showing the dynamics of
changes taking place in the fingerprint during sub-
sequent visits of a given user to the website. The
features will be divided into a group of stable pa-
rameters and a group of unstable ones. This knowl-
edge will be used to develop two new methods of
comparing fingerprints:

– a new method of hash generation using the Min-
Hash technique compatible with the LSH algo-
rithm,

– a dedicated neural network with an auto-encoder
structure to encode the abovementioned two
groups of fingerprint features.

The encoding effectiveness of both methods
will be experimentally tested using the data ob-
tained over a period of 3 months from 186 different
websites.

This paper is organized as follows. Section
2 briefly discusses the related work highlighting
the proposed methods: issues connected with the
browser fingerprint, its practical applications and
the possibilities offered by neural networks with the
autoencoder structure for data encoding. Then, in
Section 3, the definition of the browser fingerprint
is given, the characteristics of the features selected
for its creation are assessed and their changes over
time are analyzed. Section 4 discusses the proposed
algorithms for comparing browser fingerprints. The
research tests showing their effectiveness are pre-
sented in Section 5. Section 6 concludes the paper
and offers suggestions for future work.

2 Related works

In paper [13], it was noticed for the first time
that there is a high likelihood of identifying the user
through using various parameters extracted from
the browser being used. However, the scale of the
research at that time remained rather limited. Only
in the next study [10], where the research was con-
ducted on a larger number of users, was it shown

BROWSER FINGERPRINT CODING METHODS . . .

that fingerprinting can become a unique identifier.
Works on browser or device fingerprinting usually
contain comprehensive information on specific fea-
tures comprising the fingerprint [3, 10, 11, 12, 14].
The studies also focus on the analysis of stability
of particular parameters [3, 12], examining differ-
ent types of browsers [11, 12] or applied security
features limiting the possibility of obtaining finger-
print features [12]. There are also analyses of creat-
ing unique fingerprints over the years [15]. Despite
many recent changes in browsers, browser finger-
printing is still effective in user identification. The
possibilities of creating cross-browser fingerprints
when one user uses several browsers on one device
are also investigated [16].

The subject of practical use of browser finger-
printing appears in the literature in several con-
texts including web tracking [10, 14], bot and fraud
prevention [7] and augmented authentication [3].
Computer security companies commonly use this
technique to detect bots and unusual activity on
websites [17, 18]. In [7], it is shown that fin-
gerprinting is a good method of detecting crawler
robots, but at the same time it can be bypassed with
little effort. The paper [19] presents the capabilities
offered by browser fingerprinting that can be used
in order to verify the software and hardware stack
of a mobile or desktop client. The presented system
can, for example, distinguish between traffic sent by
an original smartphone running an original browser
from an emulator or desktop client deceptively sim-
ulating the same configuration.

A number of publications address issues related
to the abuse of online advertising and e-commerce.
They mainly concern the problem of click frauds
and credit card payments. Paper [4] proposes two
novel inference techniques which can isolate click
fraud attacks. One of them detects patterns of click
reuse within an ad network clickstream and the sec-
ond method, the bait-click defense, leverages the
vantage point of an ad network to inject a pattern
of bait clicks into a user’s device. Further on, the
authors in [20] deal with the problem of detecting
Internet merchant fraud. Goods or services offered
and sold at cheap rates, but never shipped is a sim-
ple example of this type of fraud. The authors sug-
gest a framework to detect such fraudulent sellers
with the help of the support vector machine ap-
proach.

Methods of detecting fraud on the Internet with
the use of deep learning neural networks are also
one of the subjects of many academic papers. In
paper [21], the authors present a method of detect-
ing credit card fraud. The main contribution of their
work is the development of a fraud detection sys-
tem that employs a deep learning architecture to-
gether with an advanced feature engineering pro-
cess based on homogeneity-oriented behavior anal-
ysis. In [22], an ensemble neural network adapted
as a hacking detection system to protect the com-
puter system against cyber-attacks is presented. The
presented ensemble neural network consists of an
autoencoder, a deep belief neural network, a deep
neural network and an extreme learning machine.
The system’s task is to monitor the activity within
a network of connected computers so as to analyze
the activity of intrusive patterns. In [23], an attempt
was made to detect fraud in biometric systems. To
detect this type of fraud, the authors propose a novel
method for fingerprint spoofing detection using the
Deep Boltzmann Machines (DBM) for the extrac-
tion of high-level features from images.

A special kind of neural networks are autoen-
coders. They make it possible to use their deepest
layer to encode input data. An example here is the
so-called semantic hashing published in [24], where
this technique of efficient information retrieval is
presented. A document is fed to the input of a neu-
ral network which generates a small binary vector.
Two similar documents will have two identical or
very similar hashes. By indexing a given document
with this hash, it is possible to find other similar
documents almost immediately – one only should
calculate the hash of a given document and search
for documents containing the same hash (or hashes
that differ from each other by from one to two bits).

3 Generating and analyzing the
browser fingerprint parameters

3.1 Definition

A browser or device fingerprint is a set of data
related to the user device. It contains information
about the hardware, operating system and browser,
and its configuration [11]. The information is col-
lected only directly from the browser of a user by
Javascript and by a web server. The user remains

246 Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

unaware that they are being identified, as the use of
browser fingerprinting leaves no trace.

For a quick search and comparison, the col-
lected data set is given onto the input of a hash algo-
rithm. The hash is an alphanumeric string of fixed
length characters which becomes a unique identi-
fier of a given browser [25]. This kind of finger-
print does not work in the case of mass-produced
devices with limited configuration and upgrade pos-
sibilities, such as smartphones. In the case of one
model of the device, the collected data is identical,
generating the same fingerprints. Another problem
is the instability of some features. For example, the
software or operating system versions are regularly
updated and then generate new fingerprints, too.

3.2 Parameters extracted from the
browser

As mentioned in Subsection 3.1, the data nec-
essary for the browser fingerprint are extracted di-
rectly from the browser. To cunduct the research
under this paper the following features were se-
lected:

– the features of the device (including device
memory, color depth, logic cores, touch support,
screen parameters, audio parameters)

– operating system parameters (i.e., its version,
list of fonts, time zone)

– features of the browser (including its version, list
of plug-ins, language list, User-agent header, ad-
block information, database information, Web
Storage mechanisms, screen resolution avail-
able, window resolution available, Do Not Track
header)

– graphics card information (canvas fingerprint,
WebGL renderer)

To calculate the level of identifying information
in each of the fingerprint features mentioned above,
the measure of entropy is used. The higher the en-
tropy is, the more unique and identifiable a finger-
print. Let H be the entropy, X - a discrete random
variable with possible values x1, . . . ,xn and P(X) –
a probability mass function. The entropy follows
this formula

H(X) =−∑
i

P(xi) logb P(xi). (1)

For b = 2 it is the Shannon entropy and the re-
sult is in bits. The fingerprint’s features, along
with the calculated entropy, are presented in Ta-
ble 1. The data came from 131,326 users
who made 365,209 visits to different websites
over a period of three months. The table does
not include parameters with the entropy below
0.1. Some parameters, such as screen_id and
User-agent , were broken down into individual
elements. For screen_id it is width , height ,
available_width and available_height . In the
case of User-agent the whole sequence was di-
vided into elements starting with prefix ua_ .

Figure 1. Changes in the browser fingerprints
recorded daily in repeat visitors.

The same dataset was used to investigate the
changes in the values of browser fingerprints. Fig-
ure 3.2 presents a graph showing the number of
times that the website was accessed again over the
following days. The graph also shows the number
of users with a change in the value of at least one
fingerprint feature. The graph shows that on the sec-
ond day about 12,000 users returned to the website,
and among them as many as 2,000 showed a change
in at least one feature. The last day of the research
recorded a return of approximately 1,000 users who
had accessed the website on the first day of the
project. All the repeat visitors displayed changes
in at least one fingerprint feature. Figure 3.2 shows
the percentage of visitors returning to the website
over the following days. It also shows the percent-
age of users visiting the website on that day when
each of them had a change in at least one feature. It
can be seen on day 20 that 56% of the repeat visi-
tors had already had a change of at least one feature.
After 40 days, the changes had occurred in 80% of
the investigated users. Table 1 shows for each fea-

247Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

unaware that they are being identified, as the use of
browser fingerprinting leaves no trace.

For a quick search and comparison, the col-
lected data set is given onto the input of a hash algo-
rithm. The hash is an alphanumeric string of fixed
length characters which becomes a unique identi-
fier of a given browser [25]. This kind of finger-
print does not work in the case of mass-produced
devices with limited configuration and upgrade pos-
sibilities, such as smartphones. In the case of one
model of the device, the collected data is identical,
generating the same fingerprints. Another problem
is the instability of some features. For example, the
software or operating system versions are regularly
updated and then generate new fingerprints, too.

3.2 Parameters extracted from the
browser

As mentioned in Subsection 3.1, the data nec-
essary for the browser fingerprint are extracted di-
rectly from the browser. To cunduct the research
under this paper the following features were se-
lected:

– the features of the device (including device
memory, color depth, logic cores, touch support,
screen parameters, audio parameters)

– operating system parameters (i.e., its version,
list of fonts, time zone)

– features of the browser (including its version, list
of plug-ins, language list, User-agent header, ad-
block information, database information, Web
Storage mechanisms, screen resolution avail-
able, window resolution available, Do Not Track
header)

– graphics card information (canvas fingerprint,
WebGL renderer)

To calculate the level of identifying information
in each of the fingerprint features mentioned above,
the measure of entropy is used. The higher the en-
tropy is, the more unique and identifiable a finger-
print. Let H be the entropy, X - a discrete random
variable with possible values x1, . . . ,xn and P(X) –
a probability mass function. The entropy follows
this formula

H(X) =−∑
i

P(xi) logb P(xi). (1)

For b = 2 it is the Shannon entropy and the re-
sult is in bits. The fingerprint’s features, along
with the calculated entropy, are presented in Ta-
ble 1. The data came from 131,326 users
who made 365,209 visits to different websites
over a period of three months. The table does
not include parameters with the entropy below
0.1. Some parameters, such as screen_id and
User-agent , were broken down into individual
elements. For screen_id it is width , height ,
available_width and available_height . In the
case of User-agent the whole sequence was di-
vided into elements starting with prefix ua_ .

Figure 1. Changes in the browser fingerprints
recorded daily in repeat visitors.

The same dataset was used to investigate the
changes in the values of browser fingerprints. Fig-
ure 3.2 presents a graph showing the number of
times that the website was accessed again over the
following days. The graph also shows the number
of users with a change in the value of at least one
fingerprint feature. The graph shows that on the sec-
ond day about 12,000 users returned to the website,
and among them as many as 2,000 showed a change
in at least one feature. The last day of the research
recorded a return of approximately 1,000 users who
had accessed the website on the first day of the
project. All the repeat visitors displayed changes
in at least one fingerprint feature. Figure 3.2 shows
the percentage of visitors returning to the website
over the following days. It also shows the percent-
age of users visiting the website on that day when
each of them had a change in at least one feature. It
can be seen on day 20 that 56% of the repeat visi-
tors had already had a change of at least one feature.
After 40 days, the changes had occurred in 80% of
the investigated users. Table 1 shows for each fea-

BROWSER FINGERPRINT CODING METHODS . . .

ture the percentage of the users who had shown the
changes. This means that the data can be divided
into a stable data group and an unstable data group.

Table 1. Obtainable device fingerprint features

Feature No. of
bits of
entropy

No. of
changes
in %

Group

device_memory 1.66 0.0 1
do_not_track_val_id 0.21 0.1 1
fonts 1.36 0.4 1
audio_params_id 0.50 1.2 2
webgl_vendor_id 1.66 0.0 1
webgl_renderer_id 5.35 0.1 1
logic_cores 1.18 0.0 1
platform 1.48 0.0 1
timezone 0.15 0.0 1
app_version 10.97 64.6 2
touch_enabled 0.68 0.0 1
max_touch_points 0.84 0.0 1
screen_id 4.78 1.7 -
width 2.60 1.2 2
height 4.32 1.1 2
av_width 2.63 1.4 2
av_height 4.58 1.4 2
adblock_enabled 0.26 0.6 1
canvas_2d_fingerprint 5.62 12.9 2
browser_plugins_hash 0.88 0.0 1
user-agent 10.98 64.7 -
br_version 4.26 62.9 2
os_version 2.8 4.9 2
app_version 10.97 64.4 2
platform 1.48 0.0 1
ua_device_brand_name 2.56 0.0 1
ua_device_model 6.51 0.0 1
ua_client_name 1.87 0.0 1
ua_client_version 4.76 63.3 2
ua_client_type 0.39 0.0 1
ua_device_type 1.08 0.0 1
ua_device_brand 2.56 0.0 1
ua_device_code 6.64 0.0 1
ua_os_name 0.78 0.0 1
ua_os_version 2.90 5.1 2
ua_preferred_client_name 2.32 0.2 1
ua_preferred_client_version 5.05 59.3 2
ua_preferred_client_type 0.31 0.2 1

Figure 2. Percentage of changes in the browser
fingerprints recorded daily in repeat visitors.

4 Browser fingerprint encoding
methods

4.1 Hashing

Hashing refers to the process of generating a
fixed-size output from an input of a variable size.
This is done through the use of mathematical for-
mulas known as hash functions (implemented as
hashing algorithms). A conventional hash function
should have collision resistance. This is a feature
that prevents the same hash value from being ob-
tained from two different input sets. These two
properties of the hash function, a fixed hash length
and collision resistance, enable a quick search of
large data sets. Instead of comparing dozens of pa-
rameters for identical values, only hash values are
compared with each other. The introduction out-
lines the disadvantages of using this solution for
searching and comparing browser fingerprints. In
the following Subsections, new methods for obtain-
ing hashes and their use in searching for similar
browser fingerprints are proposed.

4.2 The LSH algorithm

The main task of the Locality-Sensitive Hash-
ing (LSH) algorithm is to quickly compare docu-
ments in terms of their contents. The documents do
not need to be identical, as it is in the case of the
hash function, because the proposed method is not
resistant to minor changes in the document. The
LSH algorithm consists of three steps:

– transforming the document into a set of char-
acters of length k (the shingling method, also
known as k-shingles or k-grams method),

– compressing the shingles set using the "Min-
Hashing" method, so that the similarity of the
base sets of documents in their compressed ver-
sions can still be checked,

– the LSH algorithm, which allows us to find the
most similar pairs of documents or all pairs that
are above some lower bound in similarity.

Shingling is an effective method of representing
a document as a set. To generate the set, we need to
select short phrases or sentences from the document
– the so-called shingles. This causes documents to
have many common elements in their sets even if

248 Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

the sentences appear in documents in a different or-
der.

The next step consists in creating the so-called
characteristic matrix, where the columns contain
sets of shingles of individual documents, and the
consecutive lines correspond to individual shingles.
In the matrix cells at the intersection of row i and
column j, there is value 1 in the case of the i-th
shingle in the j-th document.

In the MinHash algorithm a so-called SIG sig-
nature matrix is created with the dimensions m×n,
where each of the m documents corresponds to n
signatures. The matrix is calculated by performing
random and independent n permutations of m rows
of the characteristic matrix. The MinHash value for
the column of the j-th document is the number of
the first row (in the order resulting from the permu-
tations), for which this column has value 1. These
calculations are time-consuming, therefore instead
of selecting random n row permutations, random n
hash functions h1,h2, . . .hn are selected. The signa-
ture matrix is built taking into account each row in
the given order. Let SIGk, j be an element of the sig-
nature matrix for the k-th hash function and column
j of document d j. The next steps in generating the
signatures matrix are shown in Algorithm 1.

Algorithm 1 Algorithm for generating the signa-
tures matrix.

1. Initially, set SIGk, j to ∞ for all values of k and j.

2. For each i-th row of the characteristic matrix re-
peat points 2 and 3.

3. Calculate h1(j),h2(j), . . . ,hn(j).

4. For each column j, check if there is 1 in row i.
If yes, then for each k = 1,2, . . . ,n, set SIGk, j =
min(SIGk, j,hk(j)).

The idea of the LSH algorithm allows check-
ing the similarity of two elements. As a result of
its operation, information is returned whether the
pair forms a so-called "candidate pair", i.e. whether
their similarity is greater than a specified threshold
t (similarity threshold). Any pair that hashed to the
same bucket is considered as a “candidate pair”.
Dissimilar pairs that do hash to the same bucket
are false positives. On the other hand, those pairs,
which despite being similar, do not hash to the same

bucket under at least one of the hash functions, are
false negatives. A detailed description of particular
parts of the LSH algorithm can be found in many
works including [26] and [27].

In the proposed algorithm the i-th fingerprint
parameters fi need to be divided into the stable
f si and unstable ones f ni (see Section 3.2) and
fi = { f si, f ni}. A MinHash algorithm starts operat-
ing for each set of parameters, which will generate
two signature matrixes SIGsk, j and SIGnk, j. The
algorithm starts the search process twice, i.e. for
the stable and unstable parameters. The following
steps of the algorithm are presented in Algorithm 2.
Its operation results in returning a set of fingerprints
fqn similar to fingerprint fq.

Algorithm 2 The LSH algorithm for searching for
similar browser fingerprints in relation to parameter
stability.
Initial procedure:

1. Prepare two groups of parameters: stable ones
fs = { fs1, . . . , fsm} and unstable ones fn =
{ fn1, . . . , fnm}, where m – number of finger-
prints.

2. According to Algorithm 1 determine two sig-
nature matrices SIGsk, js and SIGnk, jn (for sta-
ble and unstable parameters, respectively) for
two sets ds and dn, k = 1, . . . ,m, js = 1, . . . ,ns,
jn = 1, . . . ,nn, ns, nn – number of signatures for
stable and unstable parameters.

3. Determine the similarity thresholds ts and tn for
stable and unstable parameters, respectively.

To find fingerprints fqn similar to fingerprint fq the
following steps need to be carried out:

1. Start the LSH algorithm using the stable param-
eters fs to find similar candidate pairs fqs

fqs = LSH(SIGs(fq),SIGs(fs), ts),

where: SIGs(fq), SIGs(fs) – signature matrix
values for stable parameters obtained for the pa-
rameters of fingerprints fq and fs.

2. Having found fingerprints fqs do one more
search for a similar fingerprint, but this time us-
ing unstable parameters fn

fqn = LSH(SIGn(fq),SIGn(fqs), tn),

249Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

the sentences appear in documents in a different or-
der.

The next step consists in creating the so-called
characteristic matrix, where the columns contain
sets of shingles of individual documents, and the
consecutive lines correspond to individual shingles.
In the matrix cells at the intersection of row i and
column j, there is value 1 in the case of the i-th
shingle in the j-th document.

In the MinHash algorithm a so-called SIG sig-
nature matrix is created with the dimensions m×n,
where each of the m documents corresponds to n
signatures. The matrix is calculated by performing
random and independent n permutations of m rows
of the characteristic matrix. The MinHash value for
the column of the j-th document is the number of
the first row (in the order resulting from the permu-
tations), for which this column has value 1. These
calculations are time-consuming, therefore instead
of selecting random n row permutations, random n
hash functions h1,h2, . . .hn are selected. The signa-
ture matrix is built taking into account each row in
the given order. Let SIGk, j be an element of the sig-
nature matrix for the k-th hash function and column
j of document d j. The next steps in generating the
signatures matrix are shown in Algorithm 1.

Algorithm 1 Algorithm for generating the signa-
tures matrix.

1. Initially, set SIGk, j to ∞ for all values of k and j.

2. For each i-th row of the characteristic matrix re-
peat points 2 and 3.

3. Calculate h1(j),h2(j), . . . ,hn(j).

4. For each column j, check if there is 1 in row i.
If yes, then for each k = 1,2, . . . ,n, set SIGk, j =
min(SIGk, j,hk(j)).

The idea of the LSH algorithm allows check-
ing the similarity of two elements. As a result of
its operation, information is returned whether the
pair forms a so-called "candidate pair", i.e. whether
their similarity is greater than a specified threshold
t (similarity threshold). Any pair that hashed to the
same bucket is considered as a “candidate pair”.
Dissimilar pairs that do hash to the same bucket
are false positives. On the other hand, those pairs,
which despite being similar, do not hash to the same

bucket under at least one of the hash functions, are
false negatives. A detailed description of particular
parts of the LSH algorithm can be found in many
works including [26] and [27].

In the proposed algorithm the i-th fingerprint
parameters fi need to be divided into the stable
f si and unstable ones f ni (see Section 3.2) and
fi = { f si, f ni}. A MinHash algorithm starts operat-
ing for each set of parameters, which will generate
two signature matrixes SIGsk, j and SIGnk, j. The
algorithm starts the search process twice, i.e. for
the stable and unstable parameters. The following
steps of the algorithm are presented in Algorithm 2.
Its operation results in returning a set of fingerprints
fqn similar to fingerprint fq.

Algorithm 2 The LSH algorithm for searching for
similar browser fingerprints in relation to parameter
stability.
Initial procedure:

1. Prepare two groups of parameters: stable ones
fs = { fs1, . . . , fsm} and unstable ones fn =
{ fn1, . . . , fnm}, where m – number of finger-
prints.

2. According to Algorithm 1 determine two sig-
nature matrices SIGsk, js and SIGnk, jn (for sta-
ble and unstable parameters, respectively) for
two sets ds and dn, k = 1, . . . ,m, js = 1, . . . ,ns,
jn = 1, . . . ,nn, ns, nn – number of signatures for
stable and unstable parameters.

3. Determine the similarity thresholds ts and tn for
stable and unstable parameters, respectively.

To find fingerprints fqn similar to fingerprint fq the
following steps need to be carried out:

1. Start the LSH algorithm using the stable param-
eters fs to find similar candidate pairs fqs

fqs = LSH(SIGs(fq),SIGs(fs), ts),

where: SIGs(fq), SIGs(fs) – signature matrix
values for stable parameters obtained for the pa-
rameters of fingerprints fq and fs.

2. Having found fingerprints fqs do one more
search for a similar fingerprint, but this time us-
ing unstable parameters fn

fqn = LSH(SIGn(fq),SIGn(fqs), tn),

BROWSER FINGERPRINT CODING METHODS . . .

where: SIGn(fq), SIGn(fqs) – signature matrix
values for unstable parameters obtained for the
parameters of fingerprints fq and fn.

3. Return obtained similar fingerprints fqn.

4.3 Deep learning methods – autoencoders

An autoencoder is a neural network with at
least one hidden layer. The input and output have
the same size. The autoencoder is trained in such
a way that the values given onto its input are to
be copied onto its output. The encoder aims to
compress data to a low-dimensional representation,
while the decoder aims to reconstruct the input data
from the low-dimensional representation generated
by the encoder [28].

The learning set is X = {x1,x2, . . . ,xN} ∈ Rm

where xi is the m-dimensional feature vector, N –
the number of samples. The encoder maps input
vector xi onto the hidden representation hi ∈ Rn us-
ing function fθ as in

hi = fθ(xi) = s(Wxi +b), (2)

where W ∈ Rm×n is a set of weights, n is the num-
ber of units in the hidden layer h, b ∈ Rn is a bias
vector, θ is set {W,b}, and s(·) is the adopted ac-
tivation function (sigmoid function) determined by
the following formula

s(t) =
1

1+ exp−t . (3)

The decoder maps back values hi obtained in the
hidden layer onto the output vector yi ∈ Rm accord-
ing to the following formula

yi = gθ̇(xi) = s(Ẇhi + ḃ), (4)

where Ẇ ∈ Rn×m are weights, ḃ ∈ Rm is a bias vec-
tor and θ̇ = {Ẇ , ḃ}.

The learning of the autoencoder consists in min-
imizing the difference between input xi and output
yi. To this end a loss function is calculated as shown
in the following formula

L(xi,yi) = ∥xi−yi∥2 = ∥xi− s(Ẇ s(Wxi+b)+ ḃ)∥2.
(5)

The aim of the learning is thus finding optimum val-
ues of parameters θ and θ̇ facilitating the minimiz-
ing of the error between the input and output for the

whole training set

θ, θ̇ = argmax
θ,θ̇

L(x,y). (6)

The autoencoder presented above is discussed
in relation to continuous data x. In the case of cate-
gorical data, one-hot encoded data are given into the
input. In the case of one variable x of the categori-
cal type, input dimension m is equal to the number
of categories. Each category is numbered with con-
secutive natural numbers. Single vector xi is filled
with zeros and contains a single value 1 in place j,
where j is the category number. For this type of
data function s(·) in formula (3) will take the value
of softmax [29], where for each of the outputs k

s(t)k =
etk

∑m
j=1 et j

, (7)

where t ∈ Rm, and t j is j-th element of vector t. For
the softmax function, the loss function L(xi,yi) is
calculated by using the categorical cross-entropy

L(xi,yi) =−
m

∑
j=1

xi j log(yi j), (8)

where m is the number of outputs (number of cate-
gories).

For encoding stable and unstable fingerprint
features, there are two hashes required. The au-
toencoder will, therefore, consist of two pairs of
encoder-decoders for stable and unstable parame-
ters, respectively. The autoencoder will thus have
two hidden layers, h1 and h2, whose outputs will re-
turn the values of the fingerprint hashes given onto
the network input. The diagram of such an autoen-
coder is shown in Figure 3.

Figure 3. Dedicated structure of autoencoders.

There is a training set xi ∈ x1 j,x2k ∈ Rm, where
x1 j ∈ Rm1 , x2k ∈ Rm2 – stable and unstable input

250 Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

data, m1 – the number of stable data, m2 – the num-
ber of unstable data, m = m1 +m2. The values of
the hidden layers will then be

h1 j = fθ1(x1 j) = s(W1xs j +b1), (9)

and
h2 j = fθ2(x1 j) = s(W2xnk +b2), (10)

where: W1 ∈ Rm1×n1 , W2 ∈ Rm2×n2 – weights of the
hidden layers, n1, n2 is the number of units in the
hidden layer h1 j and h2k, b1 ∈ Rn1 , b2 ∈ Rn2 – bias
vectors, θ1 = {W1,b1} and θ2 = {W2,b2}. The out-
put value yi ∈ {y1 j,y2k} ∈ Rm of the autoencoder
will require certain calculations

y1 j = gθ̇1
(x1 j) = s(Ẇ1h1 j + ḃ1) (11)

and
y2k = gθ̇2

(x2k) = s(Ẇ2h2 j + ḃ2). (12)

where: Ẇ1 ∈ Rn1×m1 , Ẇ2 ∈ Rn2×m2 are the weights,
ḃ1 ∈ Rm1 , ḃ2 ∈ Rm2 are the bias vectors and θ̇1 =
{Ẇ1, ḃ1} and θ̇2 = {Ẇ2, ḃ2}. For this autoencoder
the loss function will be expressed by the following
formula

L(xi,yi) =
L(x1i,y1i)+L(x2i,y2i)

2

=
∥x1i − y1i∥2 +∥x2i − y2i∥2

2

=
∥x1i − s(Ẇ1h1 j + ḃ1)∥2 +∥x2i − s(Ẇ2h2 j + ḃ2)∥2

2
.

(13)

After the learning process has been completed, only
encoders are used for further research. They are
treated as hash functions. The inputs of the en-
coders are given fingerprint feature values (as one-
hot encode data). The output values obtained by the
two layers h1 and h2 are rounded to integers.

5 Experiments

For this research on browser fingerprints cod-
ing methods, authentic data were collected during
visits to 186 different types of websites including
online shops, companies offering various services
and financial institutions, including banks. For 3
months, the total number of registered clicks totaled
ca. 45 million. For the sake of the research, the data
for which the fingerprints parameters changed5 to 9

times in one user within the three months were se-
lected. The number of the data filtered in this way
amounted to ca. 213,000. About 33,000 unique
users were identified. The data containing finger-
prints were then divided in the 80/20 ratio into train-
ing and test groups. Most of the data were used to
initiate the MinHash algorithm or to learn the neural
network. The fingerprints from the test group were
used to check the effectiveness of the search.

Precision and recall were used to evaluate the
effectiveness of the tests [30]. Precision is the ratio
of the number of correctly classified data to the total
number of irrelevant and relevant data classified

precision =
t p

t p+ f p
, (14)

and recall is the ratio between the number of data
that are correctly classified to the total number of
positive data

recall =
t p

t p+ f n
, (15)

where t p – true positive, f p – false positive, f n –
false negative and they can be derived from a con-
fusion matrix [30]. The parameter which combines
the above two parameters is F1 score that it is the
harmonic mean of precision and recall

F1 score =
2 · precision · recall
precision+ recall

. (16)

The first of the conducted experiments consists in
testing the effectiveness of Algorithm 2. The ini-
tiating part of this algorithm requires that the data
that constitute the browser fingerprint are divided
into two groups, i.e. stable and unstable (according
to the results obtained in Section 3.2). The initial
values of the algorithm parameters must then be de-
termined: the number of signatures for encoding ns,
nn and threshold values ts, tn. The selection of these
values requires a number of tests with different
combinations of these parameters. The following
values have been adopted for each parameter of the
algorithm: ns, nn ∈ {2,4,8,16,24,32,64,96,128},
ts = 1, tn ∈ {1,0.9,0.8,0.7,0.6,0.5}. The best val-
ues were obtained for ns = 128. Table 2 presents
a summary of the obtained results. The following
rows show the results for different tn values, while
the columns show the results for different nn values.
The best was a set of parameters ns = 128, nn = 4,
ts = 1 and tn = 0.5 lub tn = 0.6. Here the value

251Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

data, m1 – the number of stable data, m2 – the num-
ber of unstable data, m = m1 +m2. The values of
the hidden layers will then be

h1 j = fθ1(x1 j) = s(W1xs j +b1), (9)

and
h2 j = fθ2(x1 j) = s(W2xnk +b2), (10)

where: W1 ∈ Rm1×n1 , W2 ∈ Rm2×n2 – weights of the
hidden layers, n1, n2 is the number of units in the
hidden layer h1 j and h2k, b1 ∈ Rn1 , b2 ∈ Rn2 – bias
vectors, θ1 = {W1,b1} and θ2 = {W2,b2}. The out-
put value yi ∈ {y1 j,y2k} ∈ Rm of the autoencoder
will require certain calculations

y1 j = gθ̇1
(x1 j) = s(Ẇ1h1 j + ḃ1) (11)

and
y2k = gθ̇2

(x2k) = s(Ẇ2h2 j + ḃ2). (12)

where: Ẇ1 ∈ Rn1×m1 , Ẇ2 ∈ Rn2×m2 are the weights,
ḃ1 ∈ Rm1 , ḃ2 ∈ Rm2 are the bias vectors and θ̇1 =
{Ẇ1, ḃ1} and θ̇2 = {Ẇ2, ḃ2}. For this autoencoder
the loss function will be expressed by the following
formula

L(xi,yi) =
L(x1i,y1i)+L(x2i,y2i)

2

=
∥x1i − y1i∥2 +∥x2i − y2i∥2

2

=
∥x1i − s(Ẇ1h1 j + ḃ1)∥2 +∥x2i − s(Ẇ2h2 j + ḃ2)∥2

2
.

(13)

After the learning process has been completed, only
encoders are used for further research. They are
treated as hash functions. The inputs of the en-
coders are given fingerprint feature values (as one-
hot encode data). The output values obtained by the
two layers h1 and h2 are rounded to integers.

5 Experiments

For this research on browser fingerprints cod-
ing methods, authentic data were collected during
visits to 186 different types of websites including
online shops, companies offering various services
and financial institutions, including banks. For 3
months, the total number of registered clicks totaled
ca. 45 million. For the sake of the research, the data
for which the fingerprints parameters changed5 to 9

times in one user within the three months were se-
lected. The number of the data filtered in this way
amounted to ca. 213,000. About 33,000 unique
users were identified. The data containing finger-
prints were then divided in the 80/20 ratio into train-
ing and test groups. Most of the data were used to
initiate the MinHash algorithm or to learn the neural
network. The fingerprints from the test group were
used to check the effectiveness of the search.

Precision and recall were used to evaluate the
effectiveness of the tests [30]. Precision is the ratio
of the number of correctly classified data to the total
number of irrelevant and relevant data classified

precision =
t p

t p+ f p
, (14)

and recall is the ratio between the number of data
that are correctly classified to the total number of
positive data

recall =
t p

t p+ f n
, (15)

where t p – true positive, f p – false positive, f n –
false negative and they can be derived from a con-
fusion matrix [30]. The parameter which combines
the above two parameters is F1 score that it is the
harmonic mean of precision and recall

F1 score =
2 · precision · recall
precision+ recall

. (16)

The first of the conducted experiments consists in
testing the effectiveness of Algorithm 2. The ini-
tiating part of this algorithm requires that the data
that constitute the browser fingerprint are divided
into two groups, i.e. stable and unstable (according
to the results obtained in Section 3.2). The initial
values of the algorithm parameters must then be de-
termined: the number of signatures for encoding ns,
nn and threshold values ts, tn. The selection of these
values requires a number of tests with different
combinations of these parameters. The following
values have been adopted for each parameter of the
algorithm: ns, nn ∈ {2,4,8,16,24,32,64,96,128},
ts = 1, tn ∈ {1,0.9,0.8,0.7,0.6,0.5}. The best val-
ues were obtained for ns = 128. Table 2 presents
a summary of the obtained results. The following
rows show the results for different tn values, while
the columns show the results for different nn values.
The best was a set of parameters ns = 128, nn = 4,
ts = 1 and tn = 0.5 lub tn = 0.6. Here the value

BROWSER FINGERPRINT CODING METHODS . . .

F1 = 0.35 for precision = 0.34 and recall = 0.36
was obtained.

Table 2. The F1 score obtained for ns = 128 and
ts = 1.

nn
tn 2 4 8 16 24
1 0.298 0.297 0.281 0.286 0.287
0.9 0.298 0.297 0.281 0.285 0.279
0.8 0.298 0.297 0.282 0.278 0.276
0.7 0.298 0.297 0.289 0.284 0.286
0.6 0.298 0.350 0.317 0.293 0.300
0.5 0.321 0.350 0.345 0.327 0.334
tn 32 48 64 96 128
1 0.289 0.290 0.290 0.290 0.290
0.9 0.283 0.282 0.284 0.283 0.283
0.8 0.276 0.275 0.275 0.274 0.274
0.7 0.285 0.277 0.273 0.272 0.270
0.6 0.285 0.285 0.281 0.279 0.273
0.5 0.305 0.305 0.306 0.285 0.287

The next experiment concerned the use of a
neural network with a dedicated structure consist-
ing of two autoencoders (see Section 4.3). Several
possible combinations of neural network hyperpa-
rameters were tested. Each time a different number
of encoder and decoder layers, units in each layer
and the size of the deepest coding layers h1 and h2.
were selected. The optimization parameters were
assumed as follows: categorical cross-entropy as
the loss function, stochastic gradient descent opti-
mizer, number of epochs – 250 and batch size 32.
The F1 score values for different network structures
are presented in Table 3. The subsequent rows show
the examined structures of neural networks, speci-
fied number of units for encoding layers h1 and h2,
and the F1 score value obtained for the test data.
The best results were achieved by network No. 4
considering the obtained F1 score and network size.

Table 3. The F1 score results obtained for
different structures of autoencoders.

No. Type
of the
pa-
ram-
eter
group

Structure No.
of
units
of
layer
h

F1
score

1 1 512-256-64-256-512 64 0.3272 512-256-4-256-512 4

2 1 512-256-32-256-512 64 0.3032 512-256-8-256-512 4

3 1 640-368-128-368-640 128 0.3612 256-128-8-128-256 8

4 1 640-368-96-368-640 96 0.3772 256-128-8-128-256 8

5 1 256-128-32-128-256 32 0.2982 256-128-8-128-256 8

The best results of the two coding and finger-
print benchmarking methods presented in this pa-
per are presented in Table 4. The results are com-
pared with the commonly used hashing method (see
Section 4.1). Two experiments using hash function
SHA1 were conducted. In the first case, stable and
unstable features were given onto the hash function
input. In the second case only stable features were
given. The new methods proposed in the paper give
much better results than commonly used hashing
methods.

Table 4. Comparison of the best results obtained.

Method The best F1 score
hashing stable and unstable param-
eters (see 4.1)

0.276

hashing stable parameters 0.202
MinHash algorithms with LSH (see
4.2)

0.350

autoencoders (see 4.3) 0.377

6 Conclusion

The paper presents two new methods of encod-
ing and comparing browser fingerprints: an algo-
rithm using MinHash encoding (cooperating) with
the LSH and a dedicated structure of a neural net-
work consisting of two encoders. Both methods
use the results of a previously conducted analysis
of changes in fingerprint characteristics over time.
This allowed selecting two groups of features: sta-
ble and unstable ones. The presented experimental
results showed that the effectiveness of searching
for similar fingerprints is much greater if the differ-
ence between these two groups is taken into account
when encoding.

A great advantage which the proposed meth-
ods offer is the possibility to easily save the results
of encoding in the database. This is possible both
with the hashes obtained by MinHash algorithms
and with the hashes obtained by the h1 and h2 au-
toencoder layers. This gives the possibility to put
both algorithms into practice. Both methods can
also be used when creating device fingerprints for
different browsers used by one user [16]. In this
case, it will be necessary to perform an appropri-
ate analysis of the changes occurring in the finger-
print feature values beforehand and create appropri-
ate groups of stable and unstable features.

Browser fingerprinting is a tool that helps to re-
duce the number of fraudulent activities on the In-

252 Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

ternet. The new algorithms proposed in this paper
may increase the level of detecting online fraudu-
lent activities being carried out by some users by
identifying them more accurately and efficiently.

References
[1] Kristol D.M., HTTP cookies: Standards, privacy,

and politics, ACM Trans. Internet Techn. 1 (2)
(2001) 151–198.

[2] Low C., Cookie law explained, 2016. on-line
https://www.cookielaw.org/the-cookie-law/ (re-
trieved:03/2020).

[3] Alaca, F., Van Oorschot, P. C. (2016, December).
Device fingerprinting for augmenting web authen-
tication: classification and analysis of methods. In
Proceedings of the 32nd Annual Conference on
Computer Security Applications (pp. 289-301).

[4] Nagaraja, S., Shah, R. (2019, May). Clicktok: click
fraud detection using traffic analysis. In Proceed-
ings of the 12th Conference on Security and Pri-
vacy in Wireless and Mobile Networks (pp. 105-
116).

[5] Mouawi, R., Elhajj, I.H., Chehab, A. et al. Crowd-
sourcing for click fraud detection. EURASIP J. on
Info. Security 2019, 11 (2019)

[6] Dave, V., Guha, S., Zhang, Y. (2012, August).
Measuring and fingerprinting click-spam in ad net-
works. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, ar-
chitectures, and protocols for computer communi-
cation (pp. 175-186).

[7] Vastel, A., Rudametkin, W., Rouvoy, R., Blanc,
X. (2020, February). FP-Crawlers: Studying the
Resilience of Browser Fingerprinting to Block
Crawlers. In NDSS Workshop on Measurements,
Attacks, and Defenses for the Web (MADWeb’20).

[8] 2019. https://www.emarketer.com/content/digital-
ad-fraud-2019

[9] Barker S. ,"Future Digital Advertising, Artificial
Intelligence & Advertising Fraud 2019-2023", Ju-
niper Research, 2019

[10] Eckersley P., How unique is your web browser?
in: Privacy Enhancing Technologies, 10th Interna-
tional Symposium, PETS 2010, Berlin, Germany,
July 21-23, 2010. Proceedings, 2010, pp. 1–18

[11] Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.
(2019). Browser Fingerprinting: A survey. arXiv
preprint arXiv:1905.01051.

[12] Kobusinska, A., Pawluczuk, K., Brzezinski, J.
(2018). Big Data fingerprinting information analyt-
ics for sustainability. Future Generation Computer
Systems, 86, 1321-1337.

[13] Mayer J R. 2009. Any person... a pamphleteer”:
Internet Anonymity in the Age of Web 2.0. Un-
dergraduate Senior Thesis, Princeton University
(2009).

[14] Steven E. and Arvind N. 2016. Online Tracking: A
1-million-site Measurement and Analysis. In Pro-
ceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS
’16). ACM, New York, NY, USA, 1388–1401.

[15] Gómez-Boix, A., Laperdrix, P., Baudry, B. (2018,
April). Hiding in the crowd: an analysis of the ef-
fectiveness of browser fingerprinting at large scale.
In Proceedings of the 2018 world wide web con-
ference (pp. 309-318).

[16] Cao, Y., Li, S., Wijmans, E. (2017, March). (Cross-
) Browser Fingerprinting via OS and Hardware
Level Features. In NDSS.

[17] 2020. The Evolution of Hi-Def Fingerprint-
ing in Bot Mitigation - Distil Networks.
https://resources.distilnetworks.com/all-blog-
posts/device-fingerprinting-solution-bot-
mitigation

[18] 2020. Device Tracking Add-on for
minFraud Services - MaxMind.
https://dev.maxmind.com/minfraud/device/

[19] Bursztein, E., Malyshev, A., Pietraszek, T.,
Thomas, K. (2016, October). Picasso: Lightweight
device class fingerprinting for web clients. In Pro-
ceedings of the 6th Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices (pp. 93-
102).

[20] Renjith, S. (2018). Detection of Fraudulent Sellers
in Online Marketplaces using Support Vector Ma-
chine Approach. arXiv preprint arXiv:1805.00464.

[21] Zhang, X., Han, Y., Xu, W., Wang, Q. (2019).
HOBA: A novel feature engineering methodology
for credit card fraud detection with a deep learning
architecture. Information Sciences.

[22] Ludwig, S. A. (2019). Applying a neural network
ensemble to intrusion detection. Journal of Arti-
ficial Intelligence and Soft Computing Research,
9(3), 177-188.

[23] de Souza, G. B., da Silva Santos, D. F., Pires, R.
G., Marana, A. N., Papa, J. P. (2019). Deep features
extraction for robust fingerprint spoofing attack de-
tection. Journal of Artificial Intelligence and Soft
Computing Research, 9(1), 41-49.

253Marcin Gabryel, Konrad Grzanek, Yoichi Hayashi

ternet. The new algorithms proposed in this paper
may increase the level of detecting online fraudu-
lent activities being carried out by some users by
identifying them more accurately and efficiently.

References
[1] Kristol D.M., HTTP cookies: Standards, privacy,

and politics, ACM Trans. Internet Techn. 1 (2)
(2001) 151–198.

[2] Low C., Cookie law explained, 2016. on-line
https://www.cookielaw.org/the-cookie-law/ (re-
trieved:03/2020).

[3] Alaca, F., Van Oorschot, P. C. (2016, December).
Device fingerprinting for augmenting web authen-
tication: classification and analysis of methods. In
Proceedings of the 32nd Annual Conference on
Computer Security Applications (pp. 289-301).

[4] Nagaraja, S., Shah, R. (2019, May). Clicktok: click
fraud detection using traffic analysis. In Proceed-
ings of the 12th Conference on Security and Pri-
vacy in Wireless and Mobile Networks (pp. 105-
116).

[5] Mouawi, R., Elhajj, I.H., Chehab, A. et al. Crowd-
sourcing for click fraud detection. EURASIP J. on
Info. Security 2019, 11 (2019)

[6] Dave, V., Guha, S., Zhang, Y. (2012, August).
Measuring and fingerprinting click-spam in ad net-
works. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, ar-
chitectures, and protocols for computer communi-
cation (pp. 175-186).

[7] Vastel, A., Rudametkin, W., Rouvoy, R., Blanc,
X. (2020, February). FP-Crawlers: Studying the
Resilience of Browser Fingerprinting to Block
Crawlers. In NDSS Workshop on Measurements,
Attacks, and Defenses for the Web (MADWeb’20).

[8] 2019. https://www.emarketer.com/content/digital-
ad-fraud-2019

[9] Barker S. ,"Future Digital Advertising, Artificial
Intelligence & Advertising Fraud 2019-2023", Ju-
niper Research, 2019

[10] Eckersley P., How unique is your web browser?
in: Privacy Enhancing Technologies, 10th Interna-
tional Symposium, PETS 2010, Berlin, Germany,
July 21-23, 2010. Proceedings, 2010, pp. 1–18

[11] Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.
(2019). Browser Fingerprinting: A survey. arXiv
preprint arXiv:1905.01051.

[12] Kobusinska, A., Pawluczuk, K., Brzezinski, J.
(2018). Big Data fingerprinting information analyt-
ics for sustainability. Future Generation Computer
Systems, 86, 1321-1337.

[13] Mayer J R. 2009. Any person... a pamphleteer”:
Internet Anonymity in the Age of Web 2.0. Un-
dergraduate Senior Thesis, Princeton University
(2009).

[14] Steven E. and Arvind N. 2016. Online Tracking: A
1-million-site Measurement and Analysis. In Pro-
ceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS
’16). ACM, New York, NY, USA, 1388–1401.

[15] Gómez-Boix, A., Laperdrix, P., Baudry, B. (2018,
April). Hiding in the crowd: an analysis of the ef-
fectiveness of browser fingerprinting at large scale.
In Proceedings of the 2018 world wide web con-
ference (pp. 309-318).

[16] Cao, Y., Li, S., Wijmans, E. (2017, March). (Cross-
) Browser Fingerprinting via OS and Hardware
Level Features. In NDSS.

[17] 2020. The Evolution of Hi-Def Fingerprint-
ing in Bot Mitigation - Distil Networks.
https://resources.distilnetworks.com/all-blog-
posts/device-fingerprinting-solution-bot-
mitigation

[18] 2020. Device Tracking Add-on for
minFraud Services - MaxMind.
https://dev.maxmind.com/minfraud/device/

[19] Bursztein, E., Malyshev, A., Pietraszek, T.,
Thomas, K. (2016, October). Picasso: Lightweight
device class fingerprinting for web clients. In Pro-
ceedings of the 6th Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices (pp. 93-
102).

[20] Renjith, S. (2018). Detection of Fraudulent Sellers
in Online Marketplaces using Support Vector Ma-
chine Approach. arXiv preprint arXiv:1805.00464.

[21] Zhang, X., Han, Y., Xu, W., Wang, Q. (2019).
HOBA: A novel feature engineering methodology
for credit card fraud detection with a deep learning
architecture. Information Sciences.

[22] Ludwig, S. A. (2019). Applying a neural network
ensemble to intrusion detection. Journal of Arti-
ficial Intelligence and Soft Computing Research,
9(3), 177-188.

[23] de Souza, G. B., da Silva Santos, D. F., Pires, R.
G., Marana, A. N., Papa, J. P. (2019). Deep features
extraction for robust fingerprint spoofing attack de-
tection. Journal of Artificial Intelligence and Soft
Computing Research, 9(1), 41-49.

Marcin Gabryel earned his Ph.D.
degree in computer science at Cze-
stochowa University of Technology,
Poland, in 2007. He is an assistant pro-
fessor in the Department of Computer
Engineering at Częstochowa Universi-
ty of Technology. His research focuses
on developing new methods in compu-
tational intelligence and data mining.

He has published over 50 research papers. His present re-
search interests include deep learning architectures and their
applications in databases and security.

Konrad Grzanek, scientist, pro-
grammer and lecturer. Graduate of
the Technical University of Łódź
(FTIMS). Assistant professor at the
Social Academy of Sciences. He holds
a Ph.D. from Częstochowa University
of Technology (CUT). His research
interests focus on programming lan-
guages, software quality, software de-

velopment processes, and artificial intelligence, in particular
on combining machine learning methods with static software
analysis. As a programmer, he is an advocate and promoter
of the functional programming style. Author of over 30 pub-
lications related to various problems of computer science and
software engineering.

Prof. Yoichi Hayashi received the
Dr. Eng. degree in systems engineer-
ing from Tokyo University of Science,
Tokyo in 1984. In 1986, he joined the
Computer Science Department of Iba-
raki University, Japan, as an Assistant
Professor. Since 1996, he has been
a Full Professor at Computer Science
Department, Meiji University, Tokyo.

He was a visiting professor at the University of Alabama at
Birmingham and University of Canterbury (New Zealand).
He authored over 230 published computer science papers. His
current research interests include explainable AI, deep learn-
ing, rule extraction, high-performance classifiers, and medi-
cal informatics and medical imaging. He has been the Action
Editor of Neural Networks and the Associate Editor of IEEE
Trans. Fuzzy Systems. He has served as Editor-in-Chief and
Associate Editor, Editorial Board Member, Review Board
Member, Guest Editor and Reviewer in 60 academic jour-
nals, and was involved in the work for the European Research
Council Executive Agency, National Sciences and Engineer-
ing Research Council of Canada (NSERC). He has been
a senior member of the IEEE since 2000.

BROWSER FINGERPRINT CODING METHODS . . .

[24] Salakhutdinov, R., Hinton, G. (2009). Seman-
tic hashing. International Journal of Approximate
Reasoning, 50(7), 969-978.

[25] 2020. FingerprintJS. Fraud detection API.
https://fingerprintjs.com/

[26] Leskovec J., Rajaraman A., Ullman J.D.: Mining
of Massive Datasets, Cambridge University Press,
2014

[27] Azgomi, H., Mahjur, A. (2013). A Solution for
Calculating the False Positive and False Negative

in LSH Method to Find Similar Documents. Jour-
nal of Basic and Applied Research, 3, 466-472.

[28] Goodfellow, Ian; Bengio, Yoshua; Courville,
Aaron (2016). Deep Learning. MIT Press

[29] Bengio Y., Learning deep architectures for ai
Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1–
127, Jan. 2009.

[30] Olson, D.L., Delen, D.: Advanced Data Mining
Techniques, 1st edn. Springer, Heidelberg (2008).

