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3Clark University Worcester, MA 01610, USA

∗E-mail: piotr.dziwinski@pcz.pl

Submitted: 29th September 2019; Accepted: 21st February 2020

Abstract

The social learning mechanism used in the Particle Swarm Optimization algorithm allows
this method to converge quickly. However, it can lead to catching the swarm in the local
optimum. The solution to this issue may be the use of genetic operators whose random
nature allows them to leave this point. The degree of use of these operators can be con-
trolled using a neuro-fuzzy system. Previous studies have shown that the form of fuzzy
rules should be adapted to the fitness landscape of the problem. This may suggest that
in the case of complex optimization problems, the use of different systems at different
stages of the algorithm will allow to achieve better results. In this paper, we introduce an
auto adaptation mechanism that allows to change the form of fuzzy rules when solving the
optimization problem. The proposed mechanism has been tested on benchmark functions
widely adapted in the literature. The results verify the effectiveness and efficiency of this
solution.
Keywords: hybrid methods, Particle Swarm Optimization, Genetic Algorithm, fuzzy sys-
tems, multimodal functions

1 Introduction

The solution of almost any engineering or sci-
entific problem requires optimizing the parame-
ters to find the solution that minimizes costs and
maximizes efficiency. The optimization task can
be solved using many different methods. Sim-
ple, low dimensional optimization problems can be
solved analytically, which allows to obtain an accu-
rate solution. However, many real-world optimiza-
tion problems are multidimensional, multimodal or
noisy so that they are too complex for these meth-
ods to be effective. Such a task can be solved with

the help of heuristic methods, which, allow to get
an approximate (however, not necessarily the best)
solution. These methods can be divided into two
groups:

– deterministic optimization methods,

– randomized optimization methods.

Initially, most deterministic methods often
choose from the solution space one random solu-
tion, which is then modified in a way that brings
them closer to the optimal solution. Their advan-
tage is that with the same parameters and starting
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The two literature-based approaches (a) turned
out to be better than the local rejection architec-
ture for some quality measures and (b) substantially
worse for some measures. Namely, only Foreign
Sensitivity and Native Precision are significantly
better for the SVM-based literature methods than
for the local architecture. This effect is yielded
by a very good rejection of foreign patterns. This
makes the TN parameter very high and FP parame-
ter very low. In all other cases, the local architecture
proves its superiority to the literature methods.

It is worth to notice, that literature-based ap-
proaches provide very low Accuracy measures (all
three of them). In other words, they reject far too
many native patterns. It is worth to draw atten-
tion to Fine Accuracy achieved by the collection of
ten one-class-SVMs. It is relatively high, which in-
dicates, that this mechanism was able to correctly
classify a vast majority of not rejected native pat-
terns. Severely low values of Strict Accuracy and
Fine Accuracy for the ten-centroids method results
from overlapping regions of different classes. Be-
cause of this, many native patterns were accounted
into two or more regions. In consequence, they
were not classified to any class.

6 Conclusions

In the paper, we discussed three architectures
capable to perform native patterns classification
with foreign patterns rejection. Studied models:
global, local, and embedded differ, first and fore-
most, in their complexity. Proposed approaches
have been tested in a series of experiments fo-
cused on handwritten digits recognition. We im-
plemented rejecting/classifying architectures using
random forests and SVMs and compared the out-
comes produced by different approaches. We com-
pared our approach with two standard novelty de-
tection techniques present in the literature.

Let us conclude by stating that the proposed
mechanisms perform very well. They are, all in all,
better than popular methods available in the liter-
ature. The literature-based approaches tend to re-
ject a lot of native patterns. Proposed architectures
maintain much more reasonable balance between
native patterns acceptance and foreign patterns re-
jection. Thus, we believe that the methods studied

in this paper are a valuable contribution to the area
of pattern recognition.

The study shows, that the best performance
could be achieved when using the embedded model.
However, this comes at a cost of a relatively high
model complexity. The embedded model requires
the highest computational and design effort. The
local architecture provides slightly worse perfor-
mance, but it is very easy to construct. In the future,
we plan to extend the study on rejection techniques
onto on-line learning strategies.
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from the same starting point, they allow to get the
same results every time.

In turn, randomized methods, to accelerate the
process of finding the optimal solution, introduce
different types of random modification of solutions.
The most popular solutions of this type include evo-
lutionary and swarm intelligence based algorithms,
whose representatives are, respectively, genetic al-
gorithms and PSO algorithm.

The PSO algorithm seems to be particularly
popular. In this method, when a particle is modified,
its current position, its best historical position and
the best position found so far throughout the swarm
are taken into account. This mechanism allows for
fast convergence. However, it can also cause the
global solution to get trapped in the local minimum
due to too fast transition from the exploration phase
(searching for regions that can potentially contain
an optimal solution) to exploitation (searching for a
solution in a limited space).

It can, therefore, be concluded that to im-
prove search efficiency, an appropriate compromise
should be found between exploration and exploita-
tion. For this reason, in recent years there has
been an increase in interest in hybrid methods com-
bining the PSO mechanism with other algorithms,
e.g. Local Searching Strategy [3], Harmony Search
[21], Nelder-Mead simplex search [10, 11], Simu-
lated Annealing [36], supervised learning and con-
trol [6] or population-based methods like Bat Algo-
rithm [24], Cuckoo Search Algorithm [5] and Gray
Wolf Optimization [30].

However, it seems that most often the PSO al-
gorithm is combined with the genetic algorithm, be-
cause of the random nature of the crossing and mu-
tation operations. That random nature allows this
method to leave the local minimum. This combina-
tion can be implemented in several different ways:

1. One algorithm is used to initialize the other. In
paper [33] Tang et al. proposed to run the PSO
algorithm first and use the solutions found as an
initial population for the GA algorithm. Robin-
son et al. [26] considered two ways to combine
the GA and PSO method. In the first one, the
GA population was used to start the PSO, and in
the second one, the PSO swarm was used as the
initial population of GA.

2. Different algorithms operate simultaneously in
an independent manner. Shi et al. [28] proposed
an integration scheme, where the PSO and GA
algorithms work in parallel and after reaching a
certain number of iterations, exchange individu-
als found by both methods. Valdez et al [34] hy-
bridized GA and PSO by using a fuzzy logic sys-
tem for decision-making. In this method, the au-
thors used three different fuzzy systems making
decisions based on the current value of the error
and its derivative. The first system determines
which PSO algorithm or GA algorithm should
be used in further computations. The other two
are used to choose parameters of PSO or GA al-
gorithms.

3. The main loop of the algorithm executes dif-
ferent methods sequentially. In paper [1], re-
searchers suggested an approach where PSO and
GA algorithms are run alternately on some num-
ber of iterations. The GA algorithm is also used
to co-evolve the population of infeasible individ-
uals until they become feasible.

4. In one iteration, solutions are modified by oper-
ators from different methods. This is the most
popular schema of hybridization. In paper [14],
Gong et al. demonstrated the scheme in which
the main loop of the algorithm consists of two
cascading GA and PSO layers. Kuo and Han
[20] suggested using the mutation operator if the
PSO is stagnating (the personal and global so-
lutions do not change). Other approaches from
this group can be found in [16, 12, 17, 25].

In our previous article [8], we proposed a hy-
brid method (FSHPSO-E). This method combines
PSO and genetic algorithms, while the impact of
the latter on the process of searching for the opti-
mal solution is determined by the influence factor.
Its value is determined using a fuzzy system and
changes during the operation of the algorithm.

It should be noted that various problems (or at
least their groups, e.g. unimodal and multimodal
problems) may require different ways of modifying
the influence factor. Moreover, searching for their
solution strongly depends on the selected param-
eters of PSO and genetic algorithms. In practice,
however, it is difficult to determine a priori the na-
ture of the optimization problem. From this reason,
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we believe that the introduction of a mechanism that
will allow the automatic selection of appropriate pa-
rameters of the fuzzy system and the PSO and GA
algorithms can improve the efficiency of the search
process for the optimal solution. This mechanism is
the main contribution of this work.

The proposed algorithm is explained in detail
in Section 3, after the brief introduction to the
PSO method, the Generic Algorithms and the hy-
brid FSHPSO-E method in Section 2. We validate
the proposed method on the set of well-known uni-
modal and multimodal benchmark functions. The
results of the simulation, which we show in Section
4, indicate the promising performance.

2 The Hybrid Algorithm Combin-
ing PSO and GA Controlled by
Fuzzy Logic

The PSO and GA algorithms are two very pop-
ular methods to solve nonlinear optimization prob-
lems in the form

Minimize f (x)

subjected to




gi(x)≤ 0 i=1, · · · ,P
h j(x) = 0 j=1, · · · ,Q
xd ∈ [xd ,xd ] d = 1, . . . ,D

,
(1)

where: f is an optimized objective function, x =
[x1, . . . ,xD]T is a D dimensional solution of the
problem, xd and xd are the minimum and maxi-
mum permissible values for the d-th variable re-
spectively; h j(x) and gi(x) define equality and in-
equality constraints.

2.1 The Particle Swarm Optimization Al-
gorithm

The PSO algorithm has been proposed by Eber-
hart and Russel in 1995 [9]. It is an intera-
tive method that processed the entire collection
(the swarm) of potential solutions of the problem
stated by (1). Each potential solution is repre-
sented as a particle ai(t) = (xi(t),vi(t),pi(t)) where
xi(t) is a specific position in solution space xi(t) =
[x1

i (t), . . . ,x
D
i (t)], vi(t) is a non-zero velocity vi(t)=

[v1
i (t), . . . ,v

D
i (t)] and pi(t) is a historical best per-

sonal position pi(t) = [p1
i (t), . . . , pD

i (t)].

The position and velocity of particles are mod-
ified in each iteration of the algorithm according to
the following equations

vd
i (t +1) = w · vd

i (t)

+ψ1 · r1 · (pd
i (t)− xd

i (t))

+ψ2 · r2 · (gd(t)− xd
i (t)),

(2)

xd
i (t +1) = xd

i (t)+ vd
i (t), (3)

where w is an inertia weight w ∈ (0,1], ψ1 and ψ2
are constants defined in advance and r1 and r2 are
uniform random numbers within the range (0,1].
When determining the new velocity of the parti-
cle, its best historical position (personal impact) and
globally best solution g(t) = [g1(t), . . . ,gD(t)] of
whole swarm or some topological neighbourhood
of pi (social impact) are taken into account. The ψ1
and ψ2 values allow to control the influence of the
personal and social parts of the equation (2).

As explained in [9], this method of particle
modification was inspired by the social behaviour
of animals like fish schooling or bird flocking.

2.2 The Genetic Algorithm

Another well known optimization method is the
genetic algorithm [13, 18, 27]. This method also
processes the whole collection of potential solu-
tions (the population), however, is inspired by nat-
ural evolution. At the beginning, the algorithm cre-
ates the initial population of µ random potential so-
lutions (the individuals). Then, in each iteration,
the reproduction operator randomly creates a tem-
porary population with λ individuals. Individuals
from this population are modified by the crossover
and mutation operators (ensuring exploitation and
exploration of the solution space). Afterwards, the
µ best individuals (in the sense of objective func-
tion) are passed to the next iteration. Algorithm
2 presents the general scheme of the genetic algo-
rithm. In this method, each potential solution of the
problem defined by (1) is presented as a chromo-
some C j = [c1

j , . . . ,c
D
j ],c

d ∈ [cd ,cd ],d = 1, . . . ,D,
j = 1, . . . , |P| where |P|= µ in case of parental pop-
ulation Pop and |P| = λ for the temporary popula-
tion Temp. There are many different methods of
reproducing individuals, as well as ways to imple-
ment crossover and mutation operators. In this pa-
per, we use tournament selection [4, 31], and the
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crossover and mutation operators defined by the
equations

C j1 =

{
Ck

j1 if k ∈ {k1, . . . ,knc}
Ck

j2 otherwise
,

C j2 =

{
Ck

j2 if k ∈ {k1, . . . ,knc}
Ck

j1 otherwise
,

(4)

C j =

{
ϕ·(ck−ck)+ ck if k∈{k1,. . . ,knm}
Ck

j
, (5)

where j1, j2, j are randomly chosen from the set
{1, . . . ,λ}, k = 1, . . . ,D points to the index of gene
in chromosome, {k1, . . . ,kn}, is a random set of dis-
tinct gene indexes that will be exchanged between
parents by the crossover operator or modified by
the mutation operator, n ∈ {nc,nm}, nc,nm are the
random numbers of genes that will be exchanged
or modified respectively and ϕ is a random number
from the uniform distribution U(0,1).

2.3 The FSHPSO-E Algorithm

Both of the presented algorithms allow to
achieve good results and have been successfully
used to solve problems in many different areas
(see e.g. [2, 19, 32, 38]). However, their mecha-
nisms can cause a reduction in population diversity,
which can lead to premature convergence to the lo-
cal, suboptimal extreme.

In paper [7], we presented a hybrid algorithm
(HPSO-E) that integrates the PSO method with the
genetic algorithm. In this method in one iteration of
the main loop of the algorithm, the PSO operators
are applied N times, modifying all particles from
the swarm S(t); where N means the size of the PSO
swarm. The genetic operators can be executed only
the ⌊pe ·N⌋ times where pe ∈ [0,1] means the influ-
ence factor that determines the impact of the genetic
algorithm on the search process.

In the article [8], we extended this idea and as-
sumed that the value of the influence factor should
not be constant, but it changes depending on the
current state of the PSO algorithm. We also pro-
posed using the fuzzy system to control pe and,
as a result, the impact of genetic operators on the
process of searching the global optima. Figure 1

presents the general idea of this method, which we
called FSHPSO-E.

Figure 1. The general idea of the FSHPSO-E
algorithm

To modify the pe value, after every wm it-
erations we determine the normalized efficiency
∆ENGA of genetic to PSO operators, which can be
represented by the formula

∆ENGA =
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GA
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GA +∆E ′
PSO

, (6)
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GA and PSO defined as the average improvement
(decrease) of the fitness function during the last wo
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t
∑
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EGA(t ′)

t
∑

t ′=t−wo

|CH(t ′)|
, (7)
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t
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EPSO(t ′)

wo ·N
. (8)
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and EPSO(t ′) mean the effectiveness of GA and PSO
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in the iteration t ′ and are defined as a total improve-
ment (decrease) of the fitness of the best solution

EGA(t ′) =
|CH(t)|

∑
j=1




f (g(t ′))− f (o j))

if f (g(t ′))> f (o j),

0 otherwise

(9)

EPSO(t ′)=
N

∑
i=1




f (g(t ′))− f (xi(t ′))
if f (g(t ′))> f (xi(t ′)),

0 otherwise

(10)

where o j and xi(t ′) mean the new elements obtained
as the result of genetic operators and PSO modifi-
cation, respectively. It should be noted that these
values are affected only by solutions that improve
the global best solution in the t ′ iteration.

The high value of ∆ENGA indicates that genetic
operators can create better solutions (in the sense of
fitness function) than the PSO. If such a situation
occurs in subsequent iterations, it may mean that
the PSO algorithm stagnates or is stuck in the local
minimum.

Based on information about the current value
of the pe and normalized efficiency of genetic algo-
rithm ∆ENGA the fuzzy system determines the value
∆pe which increases or decreases the influence the
genetic algorithm on the process of searching for
the optimal solution according to the following for-
mula

pe = pe +∆pe = pe +FS(∆ENGA, pe). (11)

In paper [8], we use the well-known neuro-fuzzy
system of Mamdani type. For each input, we
have defined three fuzzy sets which denote small,
medium and large value with membership func-
tion of class L [27], triangular [27] and γ [27], re-
spectively. For output, we have defined five fuzzy
sets described by the singleton membership func-
tion [27]. Figure 2 shows the graphical illustration
of initial fuzzy sets defined for each input and out-
put. Based on these fuzzy sets, we defined nine
fuzzy rules presented in Table 1.

Table 1. The set of rules of Mamdani neuro-fuzzy
system used in the proposed method.

∆ENGA
small medium large

pe

small decrease increase increase
a bit(B2) a bit (B4) (B5)

medium decrease do nothing increase
a bit(B2) (B3) a bit (B4)

large decrease decrease increase
(B1) a bit (B2) a bit (B4)

The applied defuzzification method is the cen-
tre of averages which allows to define the output of
the system as

∆pe =
∑|R|

k=1 yk ·µBk(yk)

∑|R|
k=1 µBk(yk)

, (12)

where |R| is the number of rules of the fuzzy system
and µBk(yk) and yk are a membership function and
the output result of k-th rule respectively.

The singleton membership functions simplify
the structure of the used system because the value
∆pe is independent of the type of the membership
function of the output fuzzy sets. Their use also
makes that the Mamdani type fuzzy system [27]
is equivalent to a zero-order Takagi-Sugeno type
fuzzy system [15].

It should be noted that to determine the effec-
tiveness of algorithms reliably, the results from the
observation window - the last wo iterations of the
main loop of the proposed method - are taken into
account for the calculation of ∆E ′

GA and ∆E ′
PSO.

Also, to observe how the change in the pe parame-
ter affected the process of searching for the optimal
solution, its value is modified not more often than
every wm iterations (modification window).

The significant element of the HPSO-E and
FSHPSO-E methods is the merging strategy which
is used to merge the temporary population with the
PSO swarm S(t). It allows that particle oi ∈ CH(t)
to replace its parent xi from PSO swarm S(t) if and
only if it is better (in the sense of fitness function)
than pi(t)

xi(t) =
{

oi if f (oi)< f (pi(t))
xi(t) otherwise,

. (13)
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Figure 2. The graphical illustration of fuzzy sets of th initial system used in FSHPSO-E

The purpose of this strategy is to minimize the
influence of genetic operators on swarm’s dynamic.
The pseudocode of the FSHPSO-E method is pre-
sented as algorithms 1 and 2.

3 FSHSPO-E algorithm with au-
toadaptive mechanism

Using the FSHPSO-E algorithm to solve the op-
timization problem, we will achieve the best results
by appropriately choosing the form of fuzzy sys-
tem rules and the parameters of the PSO and GA
algorithms. The combination of a fuzzy system and
parameters of the PSO and GA algorithm we call a
search strategy and define as

ST =

〈
FS, [ω,ψ1,ψ2,nc,nm, pc, pm︸ ︷︷ ︸

parameters of PSO and GA

]

〉
.

The choice of the right search strategy depends
on the specific optimization problem and is not a
trivial task. Also, it should be noted that some prob-
lems can be solved more effectively by changing the
strategy used while the algorithm is running.
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and ∆E′
PSO. Also, to observe how the change in

the pe parameter affected the process of search-
ing for the optimal solution, its value is modified
not more often than every wm iterations (modi-
fication window).

The significant element of the HPSO-E and
FSHPSO-E methods is the merging strategy
which is used to merge the temporary popula-
tion with the PSO swarm S(t). It allows that
particle oi ∈ CH(t) to replace its parent xi from
PSO swarm S(t) if and only if it is better (in the
sense of fitness function) than pi(t):

xi(t) =

{
oi iff(oi) < f(pi(t))
xi(t) otherwise,

(13)

The purpose of this strategy is to minimize
the influence of genetic operators on swarm’s
dynamic. The pseudocode of the FSHPSO-E
method is presented as algorithms 1 and 2.

3 FSHSPO-E algorithm with
autoadaptive mechanism

Using the FSHPSO-E algorithm to solve the op-
timization problem, we will achieve the best re-
sults by appropriately choosing the form of fuzzy
system rules and the parameters of the PSO and
GA algorithms. The combination of a fuzzy sys-

Algorithm 1 FSHPSO-E algorithm

/* Initialization */
1: t ← 0
2: for i ← 1 to N do
3: Randomly initialize xi(t) and vi(t)
4: pi(t) ← xi(t)
5: Evaluate f(xi(t))

6: Set g(t)

7: while Term. cond. has not been met do

8: for i ← 1, N do � Particle update
9: Modify vi(t+ 1)

10: Modify xi(t+ 1)
11: Evaluate f(xi(t))
12: Update pi(t)

13: CH(t) ←CreateTemp(S(t), pe, pm, pc, T )

14: Combine S(t) with CH(t)
15: Update pi(t) and g(t)

16: Compute EGA(t) and EPSO(t)
17: if t mod wm = 0 then
18: Compute ∆EGA

19: pe ← pe +∆pe = pe + FS(∆EGA, pe)

20: t ← t+ 1

21: Select the best global solution g(tmax)

tem and parameters of the PSO and GA algo-

7

Algorithm 2 Create Temporary Population
function CreateTemp(S(t), pe, pm, pc, T )

Set CH = ∅
for m ← 1, �pe ·N� do

if (pm > r(0, 1)) then � Mutation
pi(t) ← Tournament(S(t), T )
oi ← Mutate(pi(t))
Evaluate f(oi)
Insert oi into CH

if (pc > r(0, 1)) then � Crossover
pi1(t) ← Tournament(S(t), T )
pi2(t) ← Tournament(S(t), T )
(oi1,oi2) = Crossover(pi1, pi2)
Evaluate f(oi1), f(oi2)
Insert oi1 and oi2 into CH

return CH

rithm we call a search strategy and define as:

ST =

〈
FS, [ω, ψ1, ψ2, nc, nm, pc, pm︸ ︷︷ ︸

parameters of PSO and GA

]

〉

.
The choice of the right search strategy depends

on the specific optimization problem and is not
a trivial task. Also, it should be noted that
some problems can be solved more effectively by
changing the strategy used while the algorithm
is running.

In this section, we introduce a simple mecha-
nism for automatic selection of a strategy from
a set of available strategies (we will limit our-
selves to two strategies only, although extending
to more number can be implemented easily).

Let’s assume that we have two search strate-
gies ST 1 and ST 2. In each iteration of the al-
gorithm, the potential solutions can be modi-
fied by a randomly selected strategy according
to the specified probability P (ST 1) = η and
P (ST 2) = 1 − η. If we have more strategies,

we can apply some more advanced selection pro-
cedure like the roulette wheel method [13]. At
the beginning η = 0.5, and then it is modified
during the progress of the algorithm based on
the effectiveness of strategies determined by the
following formulas:

η =
∆E′

ST 1

2∑
k=1

∆E′
ST k

(14)

where ∆E′
ST k

determine the efficiency of k-th
strategy; k = 1, 2, computed according to equa-
tions:

∆E′
ST k

=

t∑
t′=t−wn

EST k
(t′)

TST k

(15)

EST k
(t′) is the total improvement of the fitness

of the best solution computed with formula:

EST k
(t′) =

|O(t′)|∑
l=1




f(g(t′))−f(ol))

if f(g(t′)) > f(ol)

and ST k = ST t′

0 otherwise

(16)

TST k
is the number of evaluations of the fitness

function during the application of the strategy
ST k defined as

TST k
=

t∑
t′=t−wn

{
|O(t′)| if ST k = ST t′

0 otherwise
, (17)

and O(t′) = S(t′)∪CH(t′) is the set of solutions
created in the t-th iteration.

Just like when evaluating the effectiveness
of the PSO and GA algorithms in FSHPSO-E
method, to obtain reliable statistics determined
using formulas (14) - (16), they are calculated in
wn iterations.

The pseudocode of the proposed
FSHPSO-E-AA method is presented as Al-
gorithm 3.

8
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The purpose of this strategy is to minimize the
influence of genetic operators on swarm’s dynamic.
The pseudocode of the FSHPSO-E method is pre-
sented as algorithms 1 and 2.

3 FSHSPO-E algorithm with au-
toadaptive mechanism

Using the FSHPSO-E algorithm to solve the op-
timization problem, we will achieve the best results
by appropriately choosing the form of fuzzy sys-
tem rules and the parameters of the PSO and GA
algorithms. The combination of a fuzzy system and
parameters of the PSO and GA algorithm we call a
search strategy and define as

ST =

〈
FS, [ω,ψ1,ψ2,nc,nm, pc, pm︸ ︷︷ ︸

parameters of PSO and GA

]

〉
.

The choice of the right search strategy depends
on the specific optimization problem and is not a
trivial task. Also, it should be noted that some prob-
lems can be solved more effectively by changing the
strategy used while the algorithm is running.
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In this Section, we introduce a simple mecha-
nism for automatic selection of a strategy from a
set of available strategies (we will limit ourselves
to two strategies only, although extending to more
number can be implemented easily).

Let’s assume that we have two search strategies
ST 1 and ST 2. In each iteration of the algorithm,
the potential solutions can be modified by a ran-
domly selected strategy according to the specified
probability P(ST 1) = η and P(ST 2) = 1−η. If we
have more strategies, we can apply some more ad-
vanced selection procedure like the roulette wheel
method [13]. At the beginning η = 0.5, and then
it is modified during the progress of the algorithm
based on the effectiveness of strategies determined
by the following formulas

η =
∆E ′

ST 1

2
∑

k=1
∆E ′

ST k

, (14)

where ∆E ′
ST k

determine the efficiency of k-th strat-
egy; k = 1,2, computed according to equations

∆E ′
ST k

=

t
∑

t ′=t−wn

EST k(t
′)

TST k

, (15)

EST k(t
′) is the total improvement of the fitness

of the best solution computed with formula

EST k(t
′) =

|O(t ′)|

∑
l=1





f (g(t ′))− f (ol))

if f (g(t ′))> f (ol)

and ST k = ST t ′

0 otherwise

. (16)

TST k is the number of evaluations of the fitness
function during the application of the strategy ST k
defined as

TST k =
t

∑
t ′=t−wn

{
|O(t ′)| if ST k = ST t ′

0 otherwise
, (17)

and O(t ′) = S(t ′)∪ CH(t′) is the set of solutions
created in the t-th iteration.

Just like when evaluating the effectiveness of
the PSO and GA algorithms in FSHPSO-E method,
to obtain reliable statistics determined using formu-
las (14) - (16), they are calculated in wn iterations.

The pseudocode of the proposed FSHPSO-E-AA
method is presented as Algorithm 3.

4 Simulation results

To estimate the performance of the proposed
auto-adaptive mechanism we have used the set
of fifteen well-known benchmarks functions taken
from [37]. This set includes continuous unimodal
functions (F1 - F4), a step function (F6), a noisy
function (F7), multimodal functions (F5, F8-F13),
shifted multimodal functions (F14-F15). After the

Algorithm 3 FSHPSO-E-AA algorithm

/* Initialization */
1: t ← 0
2: for i ← 1 to N do
3: Randomly initialize xi(t) and vi(t)
4: pi(t) ← xi(t)
5: Evaluate f(xi(t))

6: Set g(t)

7: while Term. cond. has not been met do

8: if U(0, 1) < η then
9: ST t ← ST 1

10: else
11: ST t ← ST 2

12: for i ← 1, N do � Particle update
13: Modify vi(t+ 1)
14: Modify xi(t+ 1)
15: Evaluate f(xi(t))
16: Update pi(t)

17: CH(t) ← CreateTemp(S(t),
pe, p

ST t
m , pST t

c , T )

18: Combine S(t) with CH(t)
19: Update pi(t) and g(t)

20: Compute EGA(t) and EPSO(t)
21: if t mod wm = 0 then
22: Compute ∆EGA

23: pe ← pe +∆pe = pe + FSST t(∆EGA, pe)

24: Compute EST t(t) and EST t(t)
25: if t mod wn = 0 then
26: Compute ∆E′

ST k
, k = 1, 2

27: Compute η

28: t ← t+ 1

29: Select the best global solution g(tmax)

4 Simulation results

To estimate the performance of the proposed
auto-adaptive mechanism we have used the set

of fifteen well-known benchmarks functions taken
from [37]. This set includes continuous uni-
modal functions (F1 - F4), a step function (F6),
a noisy function (F7), multimodal functions (F5,
F8-F13), shifted multimodal functions (F14-F15).
After the work [37], the Rosenbrock function (F5)
is included in the group of unimodal functions (in
order to maintain the same numbering). How-
ever, it should be remembered that for D > 3
this function is a multimodal function. The equa-
tions and search ranges of used functions as well
as the positions of global optima are presented
in the Appendix.

4.1 Selection of the best combination
of two strategies

In the first experiment, we want to determine
which combination of two strategies can achieve
the best results. For this purpose, for functions
F1-F13, the GPSO algorithm sets the parame-
ters of fuzzy system and parameters of the GA
and PSO algorithms according to procedure de-
scribed in [8].

Then we checked the performance of all possi-
ble pairs of different strategies. To obtain reliable
results, the simulation for each benchmark func-
tion has been repeated 30 times. It should be
noted that because all benchmark functions can
be divided into unimodal and multimodal, the
number of simulations can be reduced by combin-
ing only strategies prepared for different groups.

Figures 3-4 show the obtained simulation re-
sults. The heat maps presented in 3 and 4 are
based on the p-value obtained in the hypothesis
test. If the p-value is less than the significance
level α = 0.05, the difference of results is sta-
tistically significant. Figure 3 depicts how many
times a given connection was statistically better
than others (p > 0.95), and Figure 4 how many

9
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work [37], the Rosenbrock function (F5) is included
in the group of unimodal functions (in order to
maintain the same numbering). However, it should
be remembered that for D> 3 this function is a mul-
timodal function. The equations and search ranges
of used functions as well as the positions of global
optima are presented in the Appendix.

4.1 Selection of the best combination of
two strategies

In the first experiment, we want to determine
which combination of two strategies can achieve the
best results. For this purpose, for functions F1-F13,
the GPSO algorithm sets the parameters of fuzzy
system and parameters of the GA and PSO algo-
rithms according to procedure described in [8].

Then we checked the performance of all possi-
ble pairs of different strategies. To obtain reliable
results, the simulation for each benchmark function
has been repeated 30 times. It should be noted that
because all benchmark functions can be divided into
unimodal and multimodal, the number of simula-
tions can be reduced by combining only strategies
prepared for different groups.

Figures 3-4 show the obtained simulation re-
sults. The heat maps presented in 3 and 4 are based
on the p-value obtained in the hypothesis test. If the
p-value is less than the significance level α = 0.05,
the difference of results is statistically significant.
Figure 3 depicts how many times a given connec-
tion was statistically better than others (p > 0.95),
and Figure 4 how many times this connection was
significantly worse.
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Figure 3. Comparison of different connections -
significantly best (bigger value is better)
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Figure 4. Comparison of different connections -
significantly worse (lower value is better)

Table 3. Parameters of the PSO and GA
algorithms contained in selected strategies

ω ϕ1 ϕ2 cp nc mp nm wm wo

F3 0.55 1.75 1.7 0.14 7 0.24 14 274 262
F8 0.71 1.74 1.67 0.32 16 0.45 2 450 66

Table 4. The results obtained by the proposed
FSHPSO-E-AA with F3 and F8 strategies and

FSHPSO-E algorithm using fuzzy systems F3 and
F8

Function F3 F8 FSHPSO-E-AA
F1 Mean 2.04e-002 2.47e-113 3.13e-166

Best 3.31e-027 3.28e-130 1.98e-323
F2 Mean 7.41e-002 3.13e-062 4.47e-040

Best 1.18e-004 1.76e-069 4.20e-084
F3 Mean 2.19e-021 6.49e-009 1.17e-019

Best 1.42e-029 1.89e-011 4.09e-035
F4 Mean 1.52e-003 1.84e-005 1.18e-007

Best 5.33e-010 4.14e-007 5.86e-010
F5 Mean 3.00e+001 1.48e+001 1.22e+000

Best 1.64e+001 1.59e-001 2.45e-004
F6 Mean 1.87e+000 0.00e+000 0.00e+000

Best 0.00e+000 0.00e+000 0.00e+000
F7 Mean 9.47e-003 3.09e-003 3.56e-003

Best 2.09e-003 1.35e-003 1.61e-003
F8 Mean 4.53e+000 1.34e-002 1.34e-002

Best 1.34e-002 1.34e-002 1.34e-002
F9 Mean 4.85e+000 1.59e+000 1.01e-015

Best 1.49e-006 0.00e+000 0.00e+000
F10 Mean 2.07e+000 2.72e-001 8.63e-002

Best 4.16e-005 7.55e-015 8.63e-002
F11 Mean 4.61e-002 3.84e-002 3.75e-002

Best 0.00e+000 0.00e+000 0.00e+000
F12 Mean 1.93e-001 3.57e-002 1.63e-032

Best 4.33e-011 1.62e-032 1.62e-032
F13 Mean 1.14e-001 1.15e+004 1.85e-003

Best 3.46e-020 1.35e-032 1.35e-032
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maintain the same numbering). However, it should
be remembered that for D> 3 this function is a mul-
timodal function. The equations and search ranges
of used functions as well as the positions of global
optima are presented in the Appendix.

4.1 Selection of the best combination of
two strategies

In the first experiment, we want to determine
which combination of two strategies can achieve the
best results. For this purpose, for functions F1-F13,
the GPSO algorithm sets the parameters of fuzzy
system and parameters of the GA and PSO algo-
rithms according to procedure described in [8].

Then we checked the performance of all possi-
ble pairs of different strategies. To obtain reliable
results, the simulation for each benchmark function
has been repeated 30 times. It should be noted that
because all benchmark functions can be divided into
unimodal and multimodal, the number of simula-
tions can be reduced by combining only strategies
prepared for different groups.

Figures 3-4 show the obtained simulation re-
sults. The heat maps presented in 3 and 4 are based
on the p-value obtained in the hypothesis test. If the
p-value is less than the significance level α = 0.05,
the difference of results is statistically significant.
Figure 3 depicts how many times a given connec-
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and Figure 4 how many times this connection was
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Table 3. Parameters of the PSO and GA
algorithms contained in selected strategies
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Table 4. The results obtained by the proposed
FSHPSO-E-AA with F3 and F8 strategies and
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F6 Mean 1.87e+000 0.00e+000 0.00e+000

Best 0.00e+000 0.00e+000 0.00e+000
F7 Mean 9.47e-003 3.09e-003 3.56e-003

Best 2.09e-003 1.35e-003 1.61e-003
F8 Mean 4.53e+000 1.34e-002 1.34e-002

Best 1.34e-002 1.34e-002 1.34e-002
F9 Mean 4.85e+000 1.59e+000 1.01e-015

Best 1.49e-006 0.00e+000 0.00e+000
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Best 4.16e-005 7.55e-015 8.63e-002
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Figure 5. The graphical illustration of membership functions for the fuzzy systems trained by F3 and F8
benchmark functions

The presented results show that the combination
of F3 and F8 strategies, the least often achieved sig-
nificantly worse results and the most often signifi-
cantly better. Therefore we used this combination
for further experiments.

The Figure 5 depicts the graphical representa-
tion of the membership functions for input and out-
put fuzzy sets of the F3 and F8 fuzzy systems. The
rest of the parameters of these two strategies are
presented in Table 3.

The comparison of the results of the pro-
posed FSHPSO-E-AA algorithm that automatically
switches between F3 and F8 strategies with the
FSHPSO-E algorithm, using fuzzy systems F3 and
F8 separately, is presented in Table 4.

This Table shows that the strategy switching
in the proposed FSHPSO-E-AA algorithm for the
functions F1, F4, F9, F12, F13 allows to obtain much
better average results than using these strategies
separately. In the case of functions F1, F2, F3, F5
the best solution was also found definitely closer to
the optimal one. In other cases, the solutions were
comparable. It should be noted that in the case of
function F12 the proposed algorithm found the clos-
est solution in each of the 30 repetitions of the ex-
periment.

4.2 Comparison With Other PSO-based
Algorithms

In this Section the performance of the
FSHPSO-E-AA algorithm is compared with several
well-known methods. The algorithms used for com-
parison are listed as follows:

1. PSO with interia weight (GPSO) [29],

2. Fully informed PSO (FIPSO) [23],

3. Comprehensive learning PSO (CLPSO) [22],

4. Dynamic Tournament Topology PSO (DT-PSO)
[35],

5. A Hybrid PSO-GA algorithm (HPSO-GA) [12],

6. A Hybrid of GA and PSO (HGAPSO) [16],

The researchers use different benchmark func-
tions with various configurations (search range and
number of dimensions), so in order to compare the
results, all the mentioned algorithms have been im-
plemented in C# language. Other hybrid methods,
where in one iteration of the PSO algorithm, parti-
cles are modified also by genetic operators, were
not included in the simulations because their de-
scriptions did not allow for trustworthy implemen-
tation. During the simulations their parameters have
been set at the values proposed in the corresponding
articles and are presented in Table 5.
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Table 5. The parameters of algorithms.

Algorithm Parameters Source
GPSO w: 0.75, ψ1: 1.5, ψ2: 1.7 [29]
FIPSO χ: 0.7298, ψ: 4.1 [23]
CLPSO w0: 0.9, w1: 0.4, c: 1.49445, m: 7, T : 2 [22]
DT-PSO w: 1, ψ: 4.1, K: 0.1, M: 6, P: 0.05 [35]

HPSO-GA

w: 0.828, ψ1: 1.5, ψ2: 1.5,

[12]
pc: 0.85, pm: 0.02, γ: 10, β: 15,
GANumMax: 20, GANumMin: 1,
GAMinIter: 10, GAPsMax: 20
GAPsMin: 10, GAMaxIter: 20

HGAPSO χ: 0.8, ψ1: 1, ψ2: 1, pc: 0.8, pm: 0.1, T : 2 [16]

Table 6. Average time of calculation in seconds for
the F1-F15 functions and D = 30

Function GPSO FIPSO-F CLPSO DT-PSO
F1 0.34 6.61 0.33 1.16
F2 0.35 6.58 0.57 1.17
F3 0.53 6.72 0.82 1.33
F4 0.35 6.64 0.59 1.18
F5 0.34 6.58 0.43 1.17
F6 0.08 1.12 0.09 0.04
F7 0.63 6.59 1.01 1.21
F8 0.59 6.83 0.98 1.43
F9 0.57 6.75 0.79 1.36
F10 0.54 6.71 0.54 1.34
F11 0.36 6.78 0.67 0.22
F12 0.93 7.07 0.91 1.72
F13 0.68 6.83 0.67 1.46
F14 0.74 8.22 1.07 2.00
F15 0.52 8.08 1.03 1.41

HPSO-GA HGAPSO FSHPSO-E-AA
F1 8.93 1.70 0.39
F2 9.01 1.70 0.50
F3 9.52 1.76 0.62
F4 8.96 1.72 0.42
F5 9.01 1.68 0.43
F6 9.69 0.41 0.09
F7 9.18 1.73 0.77
F8 9.77 1.70 0.89
F9 9.77 1.76 0.40
F10 9.74 1.77 0.82
F11 9.77 1.81 0.83
F12 9.87 1.96 1.40
F13 9.81 1.84 1.24
F14 9.73 1.85 0.48
F15 8.18 1.62 0.37

The population size for all PSO variants has
been set to N = 50 except for the DT-PSO algo-
rithm where Wang et al. [35] recommended set the
population size to N = 60. For all algorithms the
dimensionality of optimized function has been set
to D = 30 and the maximum number of function
evaluations has been set to FE = 10000 ·D.

Table 7 shows the results obtained by each algo-
rithm. The best value in each row is marked in bold.
This Table also reports the p-value obtained in the
hypothesis test. In Table 7 the "+" sign means that
the compared algorithm is significantly better than
FSHPSO-E-AA, the "–" sign that algorithm is sig-
nificantly worse than FSHPSO-E-AA and "#" that
the two algorithms obtain the same results.

Table 7 points out that the proposed algorithm
allows to find the best solution for ten benchmark
functions and the best average solution for the seven
benchmark functions.

Table 6 reports the average time of calculations
in seconds. This Table shows that this algorithm
is very efficient and its average time is comparable
with classical GPSO and CLPSO methods.

The average performance of the algorithms in
the function of the number of evaluations is shown
in Figure 6.

4.3 The inverted pendulum problem

In this Section we show the performance of
the proposed FSHPSO-E-AA method on real-world
modelling problem. We choose the inverted pendu-
lum on the cart because it arises as a model of many
real systems like Sagway, bicycles, unicycles and
rockets (during liftoff). The inverted pendulum is a
pendulum that has its center of mass above its pivot
point, and it is unstable without additional help.
Graphical representation of this model is presented
in Figure 7. The model of the inverted pendulum
can be defined with the following state variables
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population size to N = 60. For all algorithms the
dimensionality of optimized function has been set
to D = 30 and the maximum number of function
evaluations has been set to FE = 10000 ·D.

Table 7 shows the results obtained by each algo-
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in seconds. This Table shows that this algorithm
is very efficient and its average time is comparable
with classical GPSO and CLPSO methods.

The average performance of the algorithms in
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In this Section we show the performance of
the proposed FSHPSO-E-AA method on real-world
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lum on the cart because it arises as a model of many
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A NEW AUTO ADAPTIVE FUZZY HYBRID . . .

Table 7. Comparison of the algorithms for F1 - F15 benchmark functions and D = 30

Function GPSO FIPSO-F CLPSO DT-PSO HPSO-GA HGAPSO FSHPSO-E-AA
F1 Mean 1.22e-094 4.87e-003 4.22e-024 2.33e-143 5.33e+003 3.79e-005 3.13e-166

Best 3.36e-100 3.38e-033 8.13e-025 1.86e-145 2.51e+003 2.75e-006 1.98e-323
p-Val *0.000001- *0.000001- *0.000001- *0.000001- *0.000001- *0.000001-

F2 Mean 1.95e-053 3.12e-002 9.07e-007 2.26e-070 3.62e+001 1.26e-003 4.47e-040
Best 6.05e-060 1.18e-026 7.29e-015 3.91e-071 2.73e+001 5.53e-004 4.20e-084
p-Val *0.040205- *0.000001- *0.000001- 0.516407+ *0.000001- *0.000001-

F3 Mean 1.95e-008 3.36e+003 1.13e+002 2.02e-006 2.64e+004 4.47e-001 1.17e-019
Best 1.28e-009 1.27e+003 7.12e+001 4.64e-008 1.85e+004 8.99e-002 4.09e-035
p-Val *0.000001- *0.000001- *0.000001- *0.000001- *0.000001- *0.000001-

F4 Mean 5.19e-004 1.58e+000 5.83e-002 4.21e-017 4.30e+001 1.04e-001 1.18e-007
Best 1.59e-005 4.17e-001 2.53e-002 1.45e-031 3.18e+001 7.55e-002 5.86e-010
p-Val *0.000001- *0.000001- *0.000001- 0.999999+ *0.000001- *0.000001-

F5 Mean 1.34e+001 2.82e+001 2.36e+001 1.35e+001 3.55e+002 1.82e+001 1.22e+000
Best 1.16e-002 2.66e+001 1.74e+001 1.30e+001 1.88e+002 1.49e+001 2.45e-004
p-Val *0.000001- *0.000001- *0.000001- *0.000001- *0.000001- *0.000001-

F6 Mean 3.33e-002 1.67e-001 0.00e+000 0.00e+000 4.75e+003 0.00e+000 0.00e+000
Best 0.00e+000 0.00e+000 0.00e+000 0.00e+000 2.11e+003 0.00e+000 0.00e+000
p-Val 0.500000# 0.050174- # # *0.000001- #

F7 Mean 3.19e-003 2.67e-002 4.36e-003 1.03e-003 1.69e+000 2.29e-003 3.56e-003
Best 1.14e-003 9.45e-003 2.05e-003 4.03e-004 8.52e-001 1.08e-003 1.61e-003
p-Val 0.744791+ *0.000001- *0.001529- 0.999999+ *0.000001- 0.999333+

F8 Mean 3.69e+003 5.16e+003 7.62e+002 3.86e+003 6.87e+003 3.29e+002 1.34e-002
Best 2.74e+003 2.71e+003 2.79e+002 2.17e+003 6.35e+003 5.17e-001 1.34e-002
p-Val *0.000001- *0.000001- *0.000001- *0.000001- *0.000001- *0.000001-

F9 Mean 4.38e+001 1.86e+001 9.86e-009 8.59e+000 2.43e+002 2.02e-004 1.01e-015
Best 2.49e+001 1.09e+001 7.50e-013 3.98e+000 2.08e+002 7.93e-006 0.00e+000
p-Val *0.000001- *0.000001- *0.000001- *0.000001- *0.000001- *0.000001-

F10 Mean 2.90e-001 6.32e-004 5.31e-014 4.00e-015 1.31e+001 1.36e-003 8.63e-002
Best 7.55e-015 4.00e-015 2.89e-014 4.00e-015 1.08e+001 4.42e-004 8.63e-002
p-Val 0.919041+ 0.999999+ 0.999999+ 0.999999+ *0.000001- 0.999999+

F11 Mean 1.83e-002 1.38e-002 1.17e-013 3.29e-004 4.48e+001 2.44e-002 3.75e-002
Best 0.00e+000 1.19e-012 0.00e+000 0.00e+000 2.16e+001 1.51e-005 0.00e+000
p-Val 0.976668+ 0.996475+ 0.999993+ 0.999991+ *0.000001- 0.681919+

F12 Mean 1.29e-001 6.49e-002 5.94e-027 3.57e-003 7.31e+005 1.10e-007 1.63e-032
Best 1.62e-032 4.27e-005 1.45e-027 1.62e-032 6.04e+004 1.16e-008 1.62e-032
p-Val *0.001263- *0.000001- *0.000001- 0.500000# *0.000001- *0.000001-

F13 Mean 5.54e-003 1.46e-003 2.17e-024 1.35e-032 5.35e+006 2.83e-006 1.85e-003
Best 1.35e-032 4.88e-011 3.40e-025 1.35e-032 8.91e+005 1.83e-007 1.35e-032
p-Val *0.009706- *0.001167- *0.001430- 0.998552+ *0.000001- *0.001430-

F14 Mean 2.22e+001 1.99e+001 3.33e-002 1.16e+001 2.17e+002 1.34e-004 2.84e-014
Best 5.97e+000 1.10e+001 0.00e+000 6.99e+000 1.82e+002 1.01e-005 0.00e+000
p-Val *0.000001- *0.000001- *0.000002- *0.000001- *0.000001- *0.000001-

F15 Mean 4.06e+002 3.13e+003 3.14e+003 4.73e+002 7.08e+009 2.88e+010 4.00e+002
Best 3.90e+002 4.18e+002 9.56e+002 3.91e+002 2.35e+009 3.93e+002 3.90e+002
p-Val *0.005705- *0.000001- *0.000001- *0.000400- *0.000001- *0.000001-

Better-Mean 45 28 54 66 1 47 68
Sig-Better 60 27 51 72 0 46 74
Sig-Worse 46 69 39 19 90 46 17
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Figure 6. The average performance of the algorithms for F1 - F15 benchmark functions (D = 30).

x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇, (18)

where x1 is the cart position in the direction of the
x-axis, x2 is derivative of movement (velocity), x3 is
the angle of the inverted pendulum from the y-axis
(θ), and x4 is the angular velocity of the pendulum
(θ̇).

Figure 7. A schematic drawing of the inverted
pendulum on a cart

The state transition is described by the formulas
(19)-(22)

ẋ1 = ẋ = x2, (19)

ẋ2 =ẍ =
−mgsinx3 cosx3 +mlx2

4 sinx3

M+(1− cos2 x3)m

+
fθmx4 cosx3 +F

M+(1− cos2 x3)m
,

(20)

ẋ3 = θ̇ = x4 (21)

ẋ4 =θ̈ =
(M+m)(gsinx3 − fθx4)

l · (M+(1− cos2 x3) ·m)

−
(
lmx2

4 sinx3 +F
)

cosx3

l · (M+(1− cos2 x3) ·m)
,

(22)

where m means the inverted pendulum mass, M is
the mass of the cart, l is the pendulum length, fθ is
the friction in the rotational link, F determines the
normal force applied to the cart, and g is the gravity
constant.

The MISO Neuro-Fuzzy System (NFS) is used
for maintaining the inverted pendulum in the sta-
ble pivot point. The NFS is responsible for the de-
termination of the force F based on the x3 and x4
state variables. It has five membership functions for
each input, which gives in total the 25 fuzzy rules.
The conclusion of each rule contains the required
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Figure 6: The average performance of the algorithms for F1 - F15 benchmark functions (D = 30).

without additional help. Graphical representa-
tion of this model is presented in Fig. 7. The
model of the inverted pendulum can be defined
with the following state variables:

x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇ (18)

where x1 is the cart position in the direction of
the x-axis, x2 is derivative of movement (veloc-
ity), x3 is the angle of the inverted pendulum
from the y-axis (θ), and x4 is the angular veloc-
ity of the pendulum (θ̇).

The state transition is described by the formu-
las (19)-(22):

ẋ1 = ẋ = x2 (19)

m

l

M
F

Figure 7: A schematic drawing of the inverted
pendulum on a cart

14
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Figure 6. The average performance of the algorithms for F1 - F15 benchmark functions (D = 30).

x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇, (18)

where x1 is the cart position in the direction of the
x-axis, x2 is derivative of movement (velocity), x3 is
the angle of the inverted pendulum from the y-axis
(θ), and x4 is the angular velocity of the pendulum
(θ̇).

Figure 7. A schematic drawing of the inverted
pendulum on a cart

The state transition is described by the formulas
(19)-(22)

ẋ1 = ẋ = x2, (19)

ẋ2 =ẍ =
−mgsinx3 cosx3 +mlx2

4 sinx3

M+(1− cos2 x3)m

+
fθmx4 cosx3 +F

M+(1− cos2 x3)m
,

(20)

ẋ3 = θ̇ = x4 (21)

ẋ4 =θ̈ =
(M+m)(gsinx3 − fθx4)

l · (M+(1− cos2 x3) ·m)

−
(
lmx2

4 sinx3 +F
)

cosx3

l · (M+(1− cos2 x3) ·m)
,

(22)

where m means the inverted pendulum mass, M is
the mass of the cart, l is the pendulum length, fθ is
the friction in the rotational link, F determines the
normal force applied to the cart, and g is the gravity
constant.

The MISO Neuro-Fuzzy System (NFS) is used
for maintaining the inverted pendulum in the sta-
ble pivot point. The NFS is responsible for the de-
termination of the force F based on the x3 and x4
state variables. It has five membership functions for
each input, which gives in total the 25 fuzzy rules.
The conclusion of each rule contains the required
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value of force F . The task of the evaluated opti-
mization algorithms is the determination of the pa-
rameters of the membership functions for the fuzzy
rules. To evaluate solutions we used the following
fitness function

Fit(θ,T,∆t) =
T−∆t

∑
t=0

|θ(t) ·∆t| , (23)

where ∆t is the integration time.

The parameters of the inverted pendulum model
used during the simulations are presented in Ta-
ble 8.

Table 8. The parameters of the inverted pendulum
model

M m fθ l θ F
0.5 0.2 0.1 0.3 ±0.2 ±5

We assume that T = 5 and the begging value of
θ = 0.2 radians.

As in the experiments described in the previous
Section of this article, simulations were repeated 30
times for each optimization algorithm. The results
are presented in Table 9.

Table 9. The average results obtained for the
inverted pendulum problem in the 30 repetitions.

Mean Best p-Val
GPSO 0.027 0.019 0.2552-
FIPSO-F 0.086 0.038 *0.0001-
CLPSO 0.038 0.026 *0.0001-
DT-PSO 0.023 0.016 0.8875+
HPSO-GA 0.087 0.046 *0.0001-
HGAPSO 0.031 0.021 *0.0189-
FSHPSO-E-AA 0.026 0.018

The proposed FSHPSO-E-AA algorithm ob-
tains very similar results as the best one (DT-PSO),
however, according to the p-value obtained in the
hypothesis test, the differences are statistically in-
significant.

Changes of the θ angle during one of the simu-
lations are shown in Figure 8. As can be seen, the
FSHPSO-E-AA algorithm obtains the best results -
the fastest moving to the stable pivot point without
any oscillations.
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Figure 8. Changes in the θ angle of the inverted
pendulum controlled by the NFS trainded by the

different algorithms.

5 Conclusions

In this paper, we proposed the incorporating of
the auto adaptation mechanism into the FSHPSO-E
algorithm. It allows to change the form of fuzzy
rules when solving optimization problems. The
performance of the proposed FSHPSO-E-AA algo-
rithm was confirmed on the set of benchmark func-
tions and one real-world modelling problem. The
presented results show that, our method allows for
better performance than the FSHPSO-E algorithm
and other analysed algorithms for most benchmark
functions.
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Appendix

The detailed description of the problems that
have been used in this paper is given below:
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1. Sphere problem:

min
x

F1(x) =
D

∑
i=1

x2
i ,

where x ∈ [−100,100]D with known global min-
imum F1(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D,

2. Schwefel 2.2

min
x

F2(x) =
D

∑
i=1

|xi|+
D

∏
i=1

|xi|,

where x ∈ [−10,10]D with known global mini-
mum F2(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

3. Schwefel 1.2

min
x

F3(x) =
D

∑
i=1

(
i

∑
j=1

x j

)2

,

where x ∈ [−100,100]D with known global min-
imum F3(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

4. Schwefel 2.21

min
x

F4(x) = max
i

{|xi|,1 ≤ i ≤ D} ,

where x ∈ [−100,100]D with known global min-
imum F4(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

5. Rosenbrock

min
x

F5(x) =
D−1

∑
i=1

(
100

(
x2

i −xi+1
)2
+(xi−1)2

)
,

where x ∈ [−2,2]D with known global minimum
F5(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

6. Step Function

min
x

F6(x) =
D

∑
i=1

(⌊xi +0.5⌋)2 ,

where x ∈ [−100,100]D with known global min-
imum F6(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

7. Noise

min
x

F7(x) =
D

∑
i=1

ix4
i + random[0,1),

where x ∈ [−1.28,1.28]D with known global
minimum F7(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

8. Generalized
Schwefel 2.26

min
x

F8(x) =−
D

∑
i=1

(xi sin(
√

|xi)),

where x ∈ [−500,500]D with known global
minimum F8(x∗) = −12569.5 at x∗i = 0 for
i = 1, . . . ,D

9. Rastrigin

min
x

F9(x) =
D

∑
i=1

(
x2

i −10cos(2πxi)+10
)
,

where x ∈ [−5,5]D with known global minimum
F9(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

10. Ackley

min
x

F10(x) =−20e−0.2
√

1
D ∑D

i=1 x2
i

− e
1
D ∑D

i=1 cos(2πxi) +20+ e,

where x ∈ [−32,32]D with known global mini-
mum F10(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

11. Griewank

min
x

F11(x) =
D

∑
i=1

x2
i

4000
−

D

∏
i=1

cos(
xi√

i
)+1,

where x ∈ [−600,600]D with known global min-
imum F11(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

12. Generalized Penalized Function 1

min
x

F12(x) =
π
D

{
10sin2(πy1)

+
D−1
∑

i=1
(yi −1)2 ·

[
1+10sin2(πyi+1)

]

+(yD −1)2
}
+

D
∑

i=1
u(xi,10,100,4),

where yi = 1+0.25(xi +1) and
x ∈ [−50,50]D with known global minimum
F12(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D
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13. Generalized Penalized Function 2

min
x

F13(x) = 0.1
{

sin2(3πx1)

+
D−1
∑

i=1
(xi −1)2

[
1+ sin2(3πxi+1)

]

+(xD −1)2
[
1+ sin2(2πxD)

]}

+
D
∑

i=1
u(xi,10,100,4),

where x ∈ [−50,50]D with known global mini-
mum F13(x∗) = 0 at x∗i = 1 for i = 1, . . . ,D

In problems 12 and 13, the penalty function u is
given by the following expression

u(xi,a,k,m) =




k(xi −a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi −a)m, xi <−a,

14. Shifted Noncontinuous Rastrigin

min
x

F14(x) =
D

∑
i=1

(
y2

i −10cos(2πyi)+10
)
,

where

yi =

{
xi |xi|< 1

2
round(2xi)

2 |xi| ≥ 1
2
,

and x ∈ [−5,5]D with known global minimum
F14(x∗) = 0 at x∗i = 0 for i = 1, . . . ,D

15. Shifted Rosenbrock

min
x

F15(x) =
D−1

∑
i=1

(
100(z2

i −zi+1)
2+(zi−1)2)

+390,

where zi = xi−oi+1 and x ∈ [−200,200]D with
known global minimum F15(x∗) = 390 at x∗i = 0
for i = 1, . . . ,D
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