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Abstract

In this paper we tackle the problem of vehicle re-identification in a camera network uti-
lizing triplet embeddings. Re-identification is the problem of matching appearances of
objects across different cameras. With the proliferation of surveillance cameras enabling
smart and safer cities, there is an ever-increasing need to re-identify vehicles across cam-
eras. Typical challenges arising in smart city scenarios include variations of viewpoints,
illumination and self occlusions. Most successful approaches for re-identification involve
(deep) learning an embedding space such that the vehicles of same identities are projected
closer to one another, compared to the vehicles representing different identities. Popular
loss functions for learning an embedding (space) include contrastive or triplet loss. In this
paper we provide an extensive evaluation of triplet loss applied to vehicle re-identification
and demonstrate that using the recently proposed sampling approaches for mining infor-
mative data points outperform most of the existing state-of-the-art approaches for vehicle
re-identification. Compared to most existing state-of-the-art approaches, our approach
is simpler and more straightforward for training utilizing only identity-level annotations,
along with one of the smallest published embedding dimensions for efficient inference.
Furthermore in this work we introduce a formal evaluation of a triplet sampling variant
(batch sample) into the re-identification literature. In addition to the conference version
[24], this submission adds extensive experiments on new released datasets, cross domain
evaluations and ablation studies.

Keywords: convolutional neural networks, re-identification, triplet networks, siamese
networks, embedding, hard data mining, contrastive loss

1 Introduction

Matching appearances of objects across multi-
ple cameras is an important problem for many com-
puter vision applications, e.g. object retrieval and
object identification. This problem of object re-
identification is closely related to object recognition
and fine grained classification. In the realm of video
understanding, most higher level algorithms such as
event recognition and anomaly detection rely upon

Multiple Camera Multiple Object Tracking (MC-
MOT). An important component for a MC-MOT is
an object verification (i.e. re-identification) mod-
ule for expressing confidence to associate objects
across multiple videos [40]. Re-identification ap-
proaches can also be used in a single camera setup,
wherein the task would be to determine if the same
object has re-appeared in the scene [23, 56, 48].



28 Ratnesh Kumar, Edwin Weill, Farzin Aghdasi, Parthasarathy Sriram

The task of vehicle re-identification is to iden-
tify the same vehicle across a camera network.
With the deployment of camera sensors for traf-
fic management and smart cities, there is an im-
minent need to perform vehicle search from video
databases [38]. Previous works [47, 17] have shown
that automatic recognition of license plates as a
global unique identifier have given state-of-the-art
identification performance. However in general
traffic scenes at streets, license plates are practi-
cally invisible in many views to recognize due to
their top view installations. Therefore, a vision-
based re-identification has a great practical value
in real world scenarios. Re-identification of ob-
jects is challenging due to significant appearance &
viewpoint shifts, lighting variations and varied ob-
ject poses. Figure 1 shows some typical challenging
intra-class variations.

Figure 1. Each row is a separate identity (samples
taken from VeRi [29] and VRIC [20] datasets).
Despite large intra-class variations for views,
vehicle-model could be discerned from most
views. Other challenges to this task include
occlusion, motion blur (3rd row).

Compared to person and face re-identification,
vehicle re-identification is a relatively under-
studied problem. A few of the unique charac-
teristics pertaining to the problem of vehicle re-
identification which make it a difficult task are:

— Multiple views of the same vehicle are visually
diverse and semantically (i.e. color and model)

correlated, meaning that the same identity must
be deduced no matter which viewpoint of the ve-
hicle is given.

— In real world scenarios, a re-identification sys-
tem is expected to extract subtle physical cues
such as the presence of dust, written marks, or
dents on vehicle surfaces, to be able to distin-
guish between vehicles which are the same color
and model.

— The vehicle labels are less fine-grained than per-
son (or face)-identity labels. Given that there are
a finite number of vehicle colors and models, the
diversity in a given dataset is less than that of a
person or face re-identification dataset.

In order to match appearances of objects, firstly
we need to obtain an embedding for the objects,
also denoted as a feature vector or signature. A
match is then performed by using a suitable dis-
tance metric expressing the closeness of two objects
in an embedding space. A good embedding should
be invariant to illumination, scale and viewpoint
changes. Prior to the advancements in deep learn-
ing, most embedding learning approaches focus
on handcrafting using mixture of multiple feature
extractors and/or learning suitable ranking func-
tions to minimize distance across objects of simi-
lar identities. Some of the notable approaches are
[51, 3, 34, 33, 6, 26, 59].

In this paper we focus on the embedding part of
the re-identification process and make the following
contributions:

— Utilizing the recent advances in sampling infor-
mative data points for learning embedding for
the person re-identification task [12], we exten-
sively evaluate their application to the vehicle re-
identification problem, and demonstrate state-
of-the-art performance across diverse datasets
on various performance metrics.

— We introduce a formal evaluation of a triplet
sampling variant, batch sample, into the re-
identification literature.

— In addition to the conference version [24] we
add evaluations on three more recently proposed
datasets with exhaustive cross dataset evaluation
experiments establishing domain gap in these
datasets.
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The rest of the paper is organized as: in the
following Section we provide an overview of re-
lated works and the subsequent Section will elabo-
rate on triplet and contrastive losses, including pop-
ular sampling techniques to optimize these losses.
Section 4 details on datasets and hyperparameters
used for various experimental settings. Results and
discussions are presented in Section 5.

2 Related Works

In recent years with the evolution of end-to-
end learning using Convolutional Neural Networks
(CNN), significant improvements have been made
in feature representations using large amounts of
training data. These approaches outperform all pre-
vious baselines using handcrafted features. A CNN
learns hierarchical image features by stacking con-
volutional layers with downsampling layers. The
outputs from one convolutional layer is fed to a non-
linearity layer before being fed to the subsequent
convolutional layer.

[4] proposed one of the first approaches to learn
visual relationships using CNN. Siamese CNN [4]
computes an embedding space such that similar ex-
amples have similar embeddings and vice versa. [5]
uses contrastive loss on Siamese CNN to learn em-
bedding for face verification. One of the recent
prominent works using CNNss for learning face em-
bedding [41] uses triplet loss to train a CNN for
learning face embeddings for identification. While
triplet loss considers three samples jointly for com-
puting a loss measure, contrastive loss requires only
two samples. Contrastive loss is computationally
more efficient than triplet, however, several ap-
proaches [35, 9, 40, 2, 12, 14] have reported state-
of-the-art performances using triplet loss. This su-
periority of triplet loss is attributed to the additional
context using three samples. Section 3 in this paper
elaborates on these losses.

Another method for obtaining an embedding
for an object is utilizing a traditional softmax layer
[57, 19], wherein a fully-connected (embedding)
layer is added prior to the softmax-loss layer. Each
identity is considered as a separate category and the
number of categories is equal to the number of iden-
tities in the training set. Once the network is trained
using classification loss (e.g. cross-entropy), the
classification layer is stripped off and an embed-

ding is obtained form the new final layer of the net-
work. [19] proposed a similar approach to learn-
ing vehicle embedding based on training a network
for vehicle-model classification task. Since the net-
work is not directly trained on embedding or met-
ric learning loss, usually the performance of such
a network is poor when compared to networks in-
corporating embedding loss. Cross entropy loss en-
sures separability of features but the features may
not be discriminative enough for separating unseen
identities. Furthermore learning becomes compu-
tationally prohibitive when considering datasets of
e.g. 10° identities. Some recent works [56, 39, 42]
unify classification loss with metric learning.

Vehicle Classification: Fine grained vehicle classi-
fication is a closely related problem to vehicle re-
identification. Notable works for vehicle classifica-
tion are [25, 8, 16, 27, 46, 32]. The general task
is to predict vehicle model, e.g. BMW-i3-2016,
Toyota-Camry-1996. Vehicle re-identification is a
relatively finer grained problem than vehicle-model
classification: a re-identification approach should
be able to extract visual differences between two ve-
hicles belonging to the same model category. The
visual differences could include subtle cosmetic and
color differences making this problem more diffi-
cult. Furthermore a re-identification method is ex-
pected to work without any a priori knowledge of
all possible vehicle models in the city or a geo-
graphical entity.

Vehicle Re-identification: Some notable ap-
proaches prior to deep learning are [30, 59].
Popular deep learning approaches for vehicle re-
identification are [52, 28, 58, 2, 29, 9, 43, 53, 61,
19, 62]. [29] proposed fusion of handcrafted fea-
tures e.g. color, texture along with high level at-
tribute feature obtained using CNN. [52] proposed a
progressive refinement approach to searching query
vehicles. A list of candidates is obtained for a query
using embeddings from a siamese-CNN trained us-
ing contrastive loss. This list is then pruned using
a siamese network to match license plates. In order
to get reliable query for visually similar vehicles,
authors factor in the usage of spatio-temporal dis-
tance comparison in addition to visual embedding
distances.

[9] presents a structured deep learning loss
comprising a classification loss term (based on ve-
hicle model) as well as coarse and fine grained rank-
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ing terms. [28] proposed a modification of triplet
loss by replacing anchor samples with correspond-
ing class center in order to suppress effects of us-
ing poor anchors. Furthermore the deep model is
trained for both vehicle model classification and
identity labels in a multi-level process. [58] fo-
cuses on the relationship between different vehicle
images as multiple grains by using diverse vehicle
attributes. The authors proposed ranking methods
incorporated into multi-grain classification.

In a recent work [2], the authors propose to in-
clude group-based sub-clustering in a triplet loss
framework. This helps in explicitly dealing with
intra-class variations of vehicle identification prob-
lem. During training an online grouping method
is used to cluster samples within each identity into
disparate clusters. The authors demonstrate state-
of-the-art results in different datasets. Moreover
we also add recently proposed algorithms in eval-
uations.

[61] proposes to use a view-point synthesis ap-
proach to predict embedding for unknown views
given a true view image. These synthetic embed-
dings for unknown views are generated using bi-
directional LSTM [13]. The complete network is
trained using a combination of contrastive, recon-
struction and generative adversarial loss [7]. Sim-
ilar to the objective of [61] for inferring a global
feature vector using view-synthesis, authors in [62]
propose a viewpoint attentive multi-view frame-
work. Utilizing attentive [37] and adversarial loss,
authors transform a single view feature into a global
multi-view feature representation.

[53] develops a framework utilizing keypoint
annotations on vehicles to learn viewpoint invari-
ant features from a CNN. To further enhance the
retrieval of matching vehicles the authors use prob-
abilistic spatio-temporal regularization using ran-
dom variables representing camera transition prob-
abilities. The authors demonstrate superior results
by adding this regularization during retrieval proce-
dure. [43] formulate these camera transition prob-
abilities by generating proposals of path (trajecto-
ries) and employing a LSTM and Siamese CNN to
obtain a robust re-identification performance. FDA-
net proposed by [31] introduced a novel hard data
generator coupled with an end to end training with
feature distance adversarial scheme.

In order to deal with lack of fine grained data
to include vehicle attributes for re-identification,
[49] proposed PAMTRI (Pose-Aware Multi-Task
Re-Identification), which explicitly reason about
vehicle pose and shape via keypoints, heatmaps and
segments from pose estimation. Training is per-
formed in multi-task learning fashion. [20] pro-
posed a multi-scale matching approach (MSVR) to
vehicle re-identification by learning more discrimi-
native feature representations from multi-resolution
images.

3 Loss functions for embedding

For a reliable re-identification of objects, the
following are some desired characteristics of an em-
bedding function:

— An embedding should be invariant to view-
points, illumination and shape changes to the ob-
ject.

— For a practical application deployment, compu-
tation of embedding and ranking should be effi-
cient.

Consider a dataset X = {(x;,y;)}, of N train-
ing images x; € RP and their corresponding class
labels y; € {1---C}. Re-identification approaches
aim to learn an embedding f(x;0) : R? — RF
to map images in R” onto a feature (embedding)
space in R such that images of similar identity are
metrically close in this feature space. 6 corresponds
to the parameters of the learning function.

0" =argmin L(f(0,X)). (1)
8

Let D(x;,x;) : RF x R — R be a metric mea-
suring distance of images x; and x; in embedding
space. For simplicity we drop the input labels and
denote D(x;,x;) as D;j. yij = 1 is both samples i
and j belong to the same class and y;; = 0 indicates
samples of different classes.

3.1 Contrastive Loss

Contrastive loss (2) was employed in [5] for the
face verification problem, wherein the objective is
to verify if two presented faces belong to the same
identity. This discriminative loss directly optimizes
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(1) by encouraging all similar class distances to ap-
proach O while keeping all dis-similar class dis-
tances to be above a pre-defined threshold a.

lcr)ntrastive(i7j) :yijD%/‘_'_ (1 _yij>[a’_D12j}+' (2)

Notice that the choice of o is same for all dis-
similar classes. This implies that for dissimilar
identities, visually diverse classes are embedded in
the same feature space as the visually similar ones.
This assumption is stricter when compared to triplet
loss, and restricts the structure of the embedding
manifold thereby impairing discriminative learning.
The training complexity is O(N?) for a dataset of N
samples.

3.2 Triplet Loss

Inspired from the seminal work on metric learn-
ing for nearest neighbor classification by [54],
facenet [41] proposed a modification suited for re-
trieval tasks i.e. equation (3), termed: triplet loss.
Triplet loss forces the data points from the same
class to be closer to each other than a data point
form any other class. Notice that contrary to con-
trastive loss in (2), triplet loss adds context to the
loss function by considering both a positive and
negative pair distances from the same point.

ltriplet (a,p, I’l) = [Dap —Dgp + (x]+' 3)

Training complexity of triplet loss is O(N?)
which is computationally prohibitive. High compu-
tational complexity of triplet and contrastive losses
have motivated a host of sampling approaches for
an efficient optimization.

Dataset Sampling

As triplet and contrastive losses are computa-
tionally prohibitive for practical datasets, most pro-
posed approaches resort to sampling effective data
points for computing losses. This is important as
computing loss over trivial data points could only
impair convergence of the algorithm. In the context
of vehicles, it will be more informative for a loss
function to sample from different views (e.g. side
or front-view) for the same identity, than consider-
ing samples of similar views repeatedly.

A popular sampling approach to find informa-
tive samples is hard data mining, and is employed

in many computer vision applications e.g. object
detection. Hard data mining is a bootstrapping tech-
nique which is used in iterative training of a model,
wherein at every iteration the current model is ap-
plied on a validation set to mine hard data on which
this model is performing poorly. Only these hard
data are then presented to the optimizer which in-
creases the ability of the model to learn effectively
and converge faster to an optimum. On the flip side,
if a model is only presented with hard data, which
could comprise outliers, its ability to discriminate
outliers w.r.t. normal data would suffer.

In order to deal with the outliers during hard
data sampling, facenet [41] proposed semihard
sampling which mines moderate triplets that are
neither too hard nor too trivial for getting mean-
ingful gradients during training. [12] proposed an
efficient and effective approach to mine samples di-
rectly on GPU. They emphasize on having good
batch statistics to encourage mining efficient data
samples. The authors construct a data batch by ran-
domly sampling P identities from X and then ran-
domly sampling K images for each identity, thus re-
sulting in a batch size of PK images. In a batch size
of PK images, the authors [12] proposed two sam-
pling techniques, namely batch hard (BH) (also in
[36]) and batch all (BA). Another sampling tech-
nique batch sample (BS) is actively discussed in
the implementation webpage of [12], however to
the best of our knowledge we could not find a for-
malized study and evaluation for this sampling tech-
nique.

[40] unifies different batch sampling techniques
in [12] under one expression. Let a be an anchor
sample and N(a) and P(a) represent a subset of
negative and positive samples for the correspond-
ing anchor a. The triplet loss can then be written
as:

ltriplet (a) = [(X—I— Z WpDap - Z WnDan]+-
peP(a) neN(a)
4)

With respect to an anchor sample a: w), rep-
resents the weight (importance) of positive sample
p and similarly w,, signifies the importance of the
negative sample n.

The total loss in an epoch is then obtained by

L(G,X) = Z Z ltriplet(a)'

all batchesacB
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Table 1. Various ways of mining good samples in a batch, for better optimization of embedding loss

‘ Sampling variant H Positive weight: w, Negative weight: w, H Comments ‘
Batch all (BA) 1 1 Uniformly weighted
Batch hard (BH) [xp ==arg max Dy | [x, ==arg min D, | Hardest sample

x€P(a) XEN(a)
Batch sample (BS) [ x, == multinomial {Dg} | || [ x, == multinomial {—D,,} ] || Multinomial sampling
xeP(a) xeN(a)
. eDzzp e_Dan . .
Batch weighted (BW) W W Adaptive weights
xeP(a) x€N(a)

Table 1 summarizes different ways of sampling
positives and negatives. We formalize BS method
in this regime. BH is hard data mining in the batch,
using only the hardest positive and negative sam-
ples for every anchor. BA is a straightforward sam-
pling which gives uniform weights to all samples.
Uniform weight distribution can ignore the contri-
bution of important tough samples as these sam-
ples are typically outnumbered by the trivial easy
samples. In order to mitigate this issue with BA,
[40] employs a weighting scheme batch weighted
(BW), wherein a sample is weighted based on its
distance from the corresponding anchor, thereby
giving more importance to the informative harder
samples than trivial samples.

BS uses the distribution of anchor-to-sample
distances to mine a positive and negative data for
an anchor. This technique thereby avoids sampling
outliers when compared with BH, and also hopes to
find out the most relevant sample as the sampling is
done using distances-to-anchor distribution.

A sample illustration of our approach to com-
pute an embedding is shown in Figure 2.

00000

o
Embedding

Figure 2. During inference an image is passed
through a CNN and the final layer provides the
corresponding embedding.

In the following Sections, we evaluate the em-
bedding losses, along with the sampling variants
presented in Table 1.

4 Experiments

For our evaluation purposes we use three popu-
lar publicly available datasets: VeRi, VehicleID and
PKU-VD.

VeRi: This dataset is proposed by [29] and is one of
the main datasets used in vehicle re-identification
literature for comparative study. This dataset en-
compasses 40,000 bounding box annotations of 776
cars (identities) across 20 cameras in traffic surveil-
lance scenes. Each vehicle is captured in 2-18 cam-
eras in various viewpoints and varying illumina-
tions. Notably the viewpoints are not restricted to
only front/rear but also side views, thereby mak-
ing it one of the challenging datasets. The anno-
tations include make and model of vehicles, color
and inter-camera relations and trajectory informa-
tion.

VehicleID: This dataset [28] comprises 221,763
bounding boxes of 26,267 identities, captured
across various surveillance cameras in a city. Anno-
tations include 250 vehicle models and this dataset
has an order of magnitude more images than VeRi
dataset. However the viewpoints only include front
and rear views for vehicles.

PKU-VD: [58] proposed a large dataset for fine
grained vehicle analysis including re-identification
and classification. To this date this is the largest
dataset comprising about two million images and
their fine grained labels including vehicle model
and color. This dataset is split into two sub-datasets,
namely VD1 and VD2 based on cities from which
they were captured. The images in VD1 are cap-
tured from higher resolution cameras than VD?2.
There are about 71k and 36k identities in VD1 and
VD2, respectively.

CityFlow: Presented at CVPR 2019 [50], this large
scale dataset is the biggest city-wide dataset col-
lected in USA. The dataset comprises annotations
for the tasks of re-identification, multi-camera-
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multi-target vehicle tracking, containing more than
200K annotated bounding boxes covering a wide
range of scenes, viewing angles, vehicle models,
and urban traffic flow conditions. For our purposes
we utilize the subset of the dataset annotated for im-
age based re-identification. This set contains 333
identities over 36.935 bounding boxes for training,
and 333 identities for testing.

Veri-Wild: This dataset [31] was also presented
at CVPR 2019, comprising about 30,000 identities
over 277,797 images for training. The test set is
split into three subsets: small, medium and large.
This large city-wide dataset is captured from a net-
work of 174 cameras spanning 200 square kilo-
meters.

VRIC: This dataset [20] Vehicle Re-identification
in Context, was presented at GCPR 2018. VRIC is
uniquely characterised by vehicle images subject to
more realistic and unconstrained variations in reso-
lution (scale), motion blur, illumination, occlusion,
and viewpoint. It contains 60,430 images of 5,622
vehicle identities captured by 60 different cameras
in both day-time and night-time.

4.1 Training and Hyperparameters

For all our experiments, we fix our backbone or
meta-architecture to mobilenet-vI [15] owing to its
better efficiency (parameters, speed) as compared
to ResNet-variants [11] and VGG [45]. The ima-
genet [18] retrieval accuracy for these architectures
are in similar ranges. Mobilenet-v1 has 569 million
Multiply Accumulates (MACs) which measures the
number of fused multiplication and addition opera-
tions. This architecture has 4.24 million parameters
and achieves a top-1 accuracy of 70.9 on imagenet’s
image classification benchmark, with input image
size of 224x224.

We use Adam optimizer [22] with default hy-
perparameters (€ = 1073, B; = 0.9, B, = 0.999).
Depending upon if the training is done from scratch
or fine-tuned using an imagenet [18] based trained
model, we employ different learning rate sched-
ulers. When training from scratch, we use standard
learning rate of 0.001. We reduce this rate to 0.0003
when using an imagenet based pre-trained model.
For online data augmentation a standard image-flip
operation is used. We use Nvidia’s Volta GPU for
hardware and Tensorflow [1] as the software plat-
form.

We replace the margin ¢ in triplet loss (4) by
softplus function: [n(1+ exp(-)) which avoids the
need of tuning this margin [12]. For contrastive loss
we follow standard practice of hard margin of 1.0.
Using a softplus function produced poorer results
for contrastive loss.

For the batch construction, unless otherwise
specified, we follow the default batch sizes as in
[12, 40]. A batch consists of 18 (P) randomly cho-
sen identities, and for each identity, 4 (K) sam-
ples are chosen randomly, thereby selecting a total
of 72 (PK) images. Samples are chosen such that
we iterate over all train set during the course of an
epoch. Following the standards in face-verification
and person re-identification [40], [41] we set the
embedding dimension to /28 units.

4.2 Evaluation Metrics

We use mean-average-precision (mAP) and top-
k accuracy for evaluating and comparing our pre-
sented approaches. In a typical re-identification
evaluation setup, we have a query set and a gallery
set. For each vehicle in a query set the aim is to re-
trieve a similar identity from the test set (i.e. gallery
set). AP(q) for a query image ¢ is defined as

Zk‘,P(k) X O
APlg) = Ngt(Q) 7

where P(k) represents precision at rank k, Ng(q) is
the total number of true retrievals for g. &, is 1 when
the matching of query image ¢ to a test image is cor-
rect at rank <= k. mAP is then computed as average
over all query images

YAP(q)

mAP = 2 ,
0

where Q is the total number of query images.

5 Results and Discussions

We present our results on the datasets men-
tioned in the previous Section. Different datasets
have different ways of constructing test sets which
we elaborate in the respective Sections. Each model
presented below is trained separately on the corre-
sponding dataset using its standard train set.
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5.1 VeRi

We follow the standard evaluation protocol by
[52]. The total number of query images is 1,678
while the gallery set comprises 11,579 images. For
every query image, the gallery set contains im-
ages of same query-identity but taken from different
cameras. This is an important evaluation exclusion
as in many cases the same camera samples would
contain visually similar samples for the same vehi-
cle.

Table 2. VeRi accuracy results (%) using triplet
and contrastive loss for different batch sampling
variants outlined in Table 1.

Sampling H mAP H top-1 H top-2 H top-5
Triplet, Not-Normalized

BH 65.10 || 87.25 || 91.54 || 94.76

BA 66.91 || 90.11 || 93.38 || 96.01

BS 67.55 || 90.23 || 92.91 || 96.42

BW 67.02 || 89.99 || 93.15 || 96.54

Triplet, Normalized

BH 53.72 || 72.65 || 80.27 || 86.83

BA 27.60 || 4291 || 53.16 || 67.76

BS 33.79 || 48.75 || 58.64 || 73.54

BW 44.29 || 60.91 | 69.85 || 80.63
Contrastive, Normalized

BH 59.21 || 80.51 || 85.52 || 90.64

BS 52.09 || 71.51 || 78.84 || 86.95

Contrastive, Not-Normalized
BH 56.84 || 75.33 || 82.30 || 90.29
BS 48.85 || 65.49 || 74.55 || 85.76

Table 2 summarizes our results for various sam-
pling configurations, and we can draw following in-
ferences:

— Adding a normalized layer performs poorly for
the triplet loss. This is also reported by [12]
wherein using a normalized layer could result in
collapsed embeddings.

— Siamese (contrastive) loss under performs rela-
tive to triplet loss. We attribute this to the ad-
ditional context provided by using both positive
and negative samples in the same term for the
triplet loss [35].

— For the best performing set, i.e. triplet loss with
no-normalization layer: all four sampling vari-
ants reach about similar accuracy ranges, with
BS outperforming others in a close range.

— Figure 3 shows some visual results with embed-
dings learned from batch-sampling triplet loss.
Good top-k retrievals indicate stability of our
embeddings across different views and cameras.
Notice that query and gallery images are con-
strained to be from different cameras following
the standard evaluation protocol.

Comparison to the state-of-the-art approaches:
Table 3 outlines comparisons with the state-of-the-
art approaches. Notice that our approach performs
close to the state-of-the-art. GSTE [2] achieves
better top-k accuracy but in terms of mAP our
approach performs better indicating robustness at
all ranks. Furthermore GSTE [2] has an embed-
ding dimension of 8x more (i.e. 1024) than ours,
and GSTE includes a complicated training pro-
cess which requires tuning an additional intra-class
clustering parameter. PAMTRI (All) achieves the
best results, while we outperform its basic version
PAMTRI (RS). PAMTRI (RS) uses mix of real
and synthetic data for learning embedding, while
PAMTRI (All) additionally utilizes vehicle key-
points and attributes in a multi-task learning frame-
work.

Table 3. Comparison of various proposed
approaches on VeRi dataset. (*) indicates the usage
of spatio-temporal information.

Method mAP | top-1 || top-5
BS (Ours) 67.55 || 90.23 || 96.42
GSTE [2] 59.47 || 96.24 | 98.97
VAMI [62] 50.13 || 77.03 || 90.82
VAMI+ST * [62] 61.32 || 8592 || 91.84
OIFE [53] 48.00 || 89.43 -

OIFE+ST *[53] 51.42 | 92.35 -

PROVID * [52] 27.77 || 61.44 || 78.78
Path-LSTM * [43] || 58.27 || 83.49 || 90.04
PAMTRI (RS) [50] || 63.76 || 90.70 || 94.40
PAMTRI (All) [49] || 71.88 || 92.86 || 96.97
FDA-Net [31] 55.49 || 84.27 || 92.43
MSVR [20] 49.30 || 88.56 -

AAVER [21] 61.18 || 88.97 || 94.70

AAVER [21] is a recent work presented at
ICCV 2019. Authors construct a dual path network
for extracting global and local features. These are
then concatenated to form a final embedding. The
proposed embedding loss is minimized using iden-
tity and keypoint orientation annotations. For a fair
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comparison, we include the results from AAVER
without re-ranking. Our straightforward approach
outperforms AAVER, and noticeably the best re-
sults by AAVER uses Resnet-101 with embedding
dimension of 2048.

The VeRi dataset includes spatio-temporal (ST)
information and [62, 61, 53, 52] utilize ST infor-
mation in either embedding or in retrieval stages.
Noticeably without using any ST information, we
outperform these approaches using ST. Contrary to
us, OIFE [53] requires extra annotations of key-
points during training for their orientation invariant
embedding learning. Training procedure for VAMI
[62] include generative adversarial network (GAN)
and multi-view attention learning. Path-LSTM [43]
employ generation of several path-proposals for
their spatio-temporal regularization and requires an
additional LSTM to rank these proposals. It is
worth noting that our training procedure is more
straightforward than most of the approaches pre-
sented in Table 3, with an efficient embedding di-
mension of 128. Table 4 outlines some important
differences w.r.t. competitive approaches.

Table 4. Summary of some important
hyperparameters and labeling used during training.
ED indicates embedding dimension. K, A denotes
keypoints and attributes respectively. OIFE merges
four datasets to form one large training set. Notice

that our ED is the least among other approaches.
PAMTRTI’s both approaches use synthetic data
(details in Section 5.4).

Referring to the best results in Table 2, in the
subsequent Sections we consider only triplet loss
without embedding-normalization.

5.2 PKU-VD

PKU-VD is a large dataset combining two sub-
datasets, VD1 and VD2. Both of these comprise
about 400k training images. The test set of each
of the sub-dataset is split into three reference sets:
small, medium and large. Table 5 shows the number
of test images in each sub-dataset. For evaluation,
we use the same dataset files for each reference set
as provided by the authors [58] of this dataset.

Table 5. Number of images in each reference

test-set.
Dataset || Small | Medium | Large
VD1 106,887 | 604,432 | 1,097,649
VD2 105,550 | 457,910 | 807,260

Table 6. mAP (%) for retrievals on various
reference sets. Training is performed from scratch
without using pretrained weights.

Method || Small | Medium | Large
VD1

BW (18x16) || 87.48 | 67.28 [ 58.77

MGR [58] | 79.10 | 58.30 | 51.10
VD2

BW (18x16) | 84.55 | 69.87 [ 63.64

MGR [58] [ 7470 | 60.60 | 55.30

Table 7. mAP (%) for retrievals on various

Method ED | Annotations reference sets of different sizes. Training is
Ours 128 ID performed without pretrained weights with batch
GSTE [2] 1024 ID size of 18x16.
VAMI [62] 2048 ID+A _ _
OIFE [53] 756 DK Dataset, Sampling || S.mall | Medlum Large
No pretrained weights
MGR [58] 1024] ID+A VDI, BA 85.02 | 62.84 | 54.68
ATT [58] 1024 ] ID+A VDI, BH 0.00 | 000 | 0.0
C2F [9] 1024 ID+A VDI, BS 87.24 | 66.62 | 5826
CLVR [19] 1024 A VD2, BA 83.39 68.58 62.34
PAMTRI (All)* [49] | 1024 | ID+ K+ A VD2, BH 0.00 0.00 0.00
MSVR [20] 2048 ID VD2, BS 83.30 68.45 62.36
FDA-Net [31] 1024 ID Compared to VeRi and VehicleID datasets,
AAVER [21] 2048 ID+ K PKU-VD dataset has an order of magnitude more

images, hence a deep network can be trained from
scratch on this dataset. Furthermore with more
intra-class samples, one can increase the batch size
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Figure 3. Qualitative results on VeRi dataset using BS based triplet embedding. Each row indicates query
image and top-10 retrievals for this query image. Red border indicates an incorrect retrieval and Green
indicates a correct retrieval. These demonstrate good embedding quality as the top retrievals include
different views and cameras.
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of triplets. Tables 6, 7 and 8 show results for various
configurations. For the BW sampling in Table 6,
the numerics following illustrate the P and K val-
ues, described previously, which create the batch.
Table 7 adds results for the other three sampling
variants when training from scratch. Table 8 shows
results with default setting (batch size of 18x4 and
a pretrained mobilenet-v1).

Table 8. mAP (%) for retrievals on various
reference sets of different sizes. Training is
performed using imagenet pretrained weights with
default batch size of 18x4.

Dataset, Sampling | Small | Medium | Large
With pretrained weights
VD1, BW 82.66 60.15 52.10
VDI, BS 81.36 58.91 50.68
VDI, BA 79.46 56.79 49.26
VDI, BH 82.04 60.40 52.17
VD2, BW 80.93 65.44 58.94
VD2, BS 75.52 58.35 51.71
VD2, BA 70.07 50.56 43.46
VD2, BH 78.95 62.32 55.86

Using more triplets in the batch improves the
accuracy, which is intuitively satisfying. Noticeably
using the hardest sample (BH) does not kick-off the
training (c.f. Table 7). This is expected and also
noted in [41], as with BH due to random initializa-
tion, the network never learns any understanding to
separate hard data from easy samples. One way to
deal with this is to start training with a few iden-
tities in a multi-class setting in-order to pre-train
the network and then proceed with the standard BH
procedure. Alternatively one could start from an
imagenet trained network (c.f. Table 8). Interest-
ingly training from scratch results in a better accu-
racy than training from a pre-trained network. This
observation is similar to [10], wherein the authors
report using pre-trained weights (from imagenet)
obtains similar results on large datasets when ran-
dom initialization is used (for the base CNN archi-
tecture).

BW sampling with bach size of 18x16 outper-
forms the precious state-of-the-art by [58]. Multi-
grain ranking (MGR) uses permutation probability
based ranking method and include vehicle attributes
during training process. Noticeably our training
procedure is straightforward without using vehicle
attributes. Furthermore MGR uses an embedding

dimension of 1024 as opposed to 128 for our em-
bedding, thus calling for higher computation cost
during inference in [58].

5.3 VehicleID

VehicleID [28] is a larger dataset than VeRi con-
taining front and rear views for the vehicles. We
follow the standard evaluation protocol of [28] and
provide results on four reference query sets. Refer-
ence sets: small, medium. large and X-large contain
800, 1600, 2400 and 13164 identities, respectively.
For each reference set, an exemplar for an identity
is randomly chosen, and a gallery set is constructed.
This process is repeated ten times to obtain aver-
aged evaluation metrics. For training we use mo-
bilenet network, pretrained using imagenet dataset,
without normalization-layer for embedding. Sim-
ilarly to the PKU-VD dataset training we set the
batch size (PK) to 18x16 images. For the sake of
completeness we provide the results with default
PK batch size of 18x4.

Table 9. Accuracy results on VehiclelD using
mAP metric (%). Batch size for our experiments is
set to 18x16 samples.

Method Small | Medium | Large | X-Large
BA 84.65 79.85 75.95 59.74
BS 86.19 81.69 78.16 62.41
BW 85.92 81.41 78.13 62.12
BH 85.59 80.76 76.87 60.33
C2F [9] 63.50 60.00 53.00 -
GSTE [2] 75.40 74.30 72.40 -
ATT [58] 62.80 62.30 58.60 -
CCL [28] 54.60 48.10 45.50 -
FDA-Net [31] - 65.33 61.84 -

Table 10. Accuracy results on VehicleID using
mAP metric (%). This is with default PK batch

size of (18x4).
Method | Small | Medium | Large | X-Large
BA 81.90 76.57 72.60 54.95
BS 84.17 79.05 75.52 59.10
BW 84.90 80.80 77.20 60.92
BH 83.34 78.72 75.02 57.97

Tables 9, 10 and 11 show comparative results
for mAP and top-k metrics, respectively. Similarly
to the PKU-VD results, using a larger batch size in-
creases the retrieval rankings, however the margin
of improvement is smaller. This could be due to
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limited variability in this dataset in terms of view-
points and number of vechicle-models, owing to
which increasing the batch size does not necessarily
increase informative statistics.

Table 11. Results on VehicleID dataset using
top-k metric (%). Batch size for our experiments is
set to 18x16 samples.

to our method, other approaches [9, 28, 58], all uti-
lize model annotations (in addition to identity an-
notations) from the training set for re-identification.
Similarly to OIFE [53], AAVER [21] uses identitiy
and orientation information for training the embed-
ding network.

5.4 CityFlow dataset

BS and BW outperform other sampling vari-
ants, including all state-of-the-art approaches in the
mAP metric. Table 4 and Section 5.1 summarizes
important differences of state-of-the-art approaches
w.r.t. our approach. GSTE [2] achieves better per-
formance in terms of top-1 accuracy, but their ac-
curacy drops for top-5. Lower mAP and top-5 in-
dicates GSTE’s sub-par retrieval performances for
ranks k > 1. OIFE+ [53] achieves close accuracy
in top-5 to ours. As opposed to our approach,
OIFE+ requires keypoint annotations and a sepa-
rate metric learning module from [60]. Furthermore
OIFE combines VeRi, VehicleID, CompCars [32]
and Cars21k [46] into one large train set. Contrary

Method ‘ Small ‘ Medium ‘ Large ‘ X-Large )

Top-1 Table 12. Comparison of proposed and
BA 76.69 | 7120 | 6671 50.22 state-of-the-art methods on CityFlow dataset.
BS 78.80 73.41 69.33 53.07
BW 7849 | 73.10 | 6941 | 5282 Method mAP | top-1 || top-5
BH 7790 | 7214 | 67.56 | 50.67 BA 31.72 || 49.62 || 65.02
OIFE [53] - - 67.00 - BH 32.44 | 48.38 || 65.25
SE\I/IE; [[65223] G| 58 Sggg : BS SL73 | 4905 || 63.12
CCL [28] 49.00 42.80 38.20 - BW 31.25 || 50.10 || 64.92
C2F [9] 6110 | 35620 | 5140 - PAMTRI (All) [49] || 40.39 || 59.70 || 70.91
GSTE [2] 75.90 | 74.80 74.00 B PAMTRI (RS) [49] || 31.41 || 50.37 || 61.48
CLVR [19] 6200 | 56.10 | 50.60 - We consider the image-to-image search (or im-
MSVR [20] - _ 63.02 - age based re-identification) subset of this dataset.
FDA-Net [31] - 59.84 55.53 - . .
AAVER 21] | 7469 | 68.62 | 63.54 - The query set cons1§ts of ?052 images and -the test

Top-5 set comprises 333 identities over 18,290 images.
BA 9526 1 91.17 | 8775 | 7048 Table 12 shows results of various sampling ap-
BS 96.17 | 9257 89.45 73.06 proaches and comparisons with state-of-the-art ap-
BW 95.83 | 9248 | 89.36 | 72.72 proaches. Our straightforward approach to training
BH 95.74 92.03 88.81 71.23 outperforms PAMTRI (RS) [49] uses synthetic data
OIFE [53] - - 82.90 - in conjunction with real data. Figure 4 shows qual-
VAMI [62] 8325 | 7512 | 70.29 - itative assessment on our best performing sampling
CCL [28] 7350 | 66.80 61.60 - variant on this dataset. PAMTRI (All) performs best
C2r 81.70 | 7620 | 72.20 - b ignificant margin, utilizes annotations for key-
GSTE [2] 8420 | 83.60 | 82.70 - y asignticant margin, . ) %4
CLVR [19] 7600 T 7130 1 63.00 - points and vehicle-attributes in a multi-task learning
MSVR [20] N N 73.05 n employing additional synthetic data. Furthermore
FDA-Net [31] _ 77.09 74.65 _ the embedding dimension of PAMTRI is 1024 as
AAVER [21] | 93.82 | 89.95 85.64 - opposed to 128 for our approaches.

5.5 VRIC

Table 13. Comparison of various approaches on
VRIC dataset. We use our default network training

scheme.
Method mAP || top-1 || top-5
BA 75.11 || 64.18 | 89.4
BH 77.99 || 67.77 || 91.32
BS 76.78 || 66.83 | 90.64
BW 78.55 || 69.09 || 90.54
MSVR [20] - 46.61 || 65.58
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Figure 4. Qualitative results on CityFlow dataset. Red border indicates an incorrect retrieval and Green

indicates a correct retrieval. Last row shows a failure case - due to a subtle shape mismatch on the trunk,

and the presence of background-structure leading to poor embedding of the foreground object. In future
work we would investigate incorpoating segmentation information in training and retrievals.
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[20] proposed this dataset comprising large
variations in scale, motion, illumination, occlusion
and viewpoint. Authors [20] also proposed a multi-
scale re-identification algorithm, termed MSVR.

Following the standard in [20], the query and
probe splits are set to 2811 identities. Evaluation
results from various sampling techniques are pre-
sented in Table 13. Our standard experimental set-
tings outperform MSVR by a good margin, while
also being efficient w.r.t. to the embedding dimen-
sion (128 vs. 2048 for MSVR).

5.6 Veri-Wild

Table 14. Results on Veri-Wild dataset using top-k
metric (%) and mAP. Batch size for our
experiments is set to 18x4 samples. Default
experimental settings were used (embedding
dimension at 128).

Method \ Small \ Medium \ Large
Top-1
BA 82.83 78.06 69.72
BH 83.30 76.90 69.10
BS 82.90 77.68 69.59
BW 84.17 78.22 69.99
FDA-Net [31] | 64.03 57.82 49.43
Top-5
BA 95.27 93.02 88.32
BH 95.20 92.66 87.74
BS 95.00 92.90 87.89
BW 95.30 93.06 88.45
FDA-Net [31] | 82.80 78.34 70.48
mAP
BA 68.21 60.69 49.28
BH 69.37 61.47 50.27
BS 68.79 61.11 49.79
BW 70.54 62.83 51.63
FDA-Net [31] | 35.11 29.80 28.78

Veri-Wild [31] is the largest dataset as of CVPR
2019. This dataset comprises 416,314 vehicle im-
ages of 40,671 identities. Evaluation on this dataset
is split across three subsets: small, medium and
large; comprising 3000, 5000 and 10,000 identities
respectively (in probe and gallery sets).

In addition to this large scale dataset, [31] also
proposes a novel adversary algorithm termed FDA-
Net, which generates online hard-negatives to guide
re-identification training. FDA-Net uses an embed-

ding dimension of 1024 and is based on VGG [44]
CNN meta-architecture.

Table 14 demonstrates our results on this
dataset. Compared to FDA-Net [31], we achieve
significantly better results on all test sets. Qualita-
tive visual results are shown in Figure 5.

6 Cross domain evaluation

Owing to the importance of vehicle re-
identification task, there is a host of dataset pro-
posed in the recent years. The presented approach
in this paper achieves state-of-the-art results on
most of these datasets. However we train a sepa-
rate network in a fully supervised fashion on each
dataset, which is cumbersome and hinders wider
deploy-ability. This can be improved by approaches
such as domain adaptation or mixing domains to
make a wider domain which can be used as a base-
line, hopefully performing reasonably well on a
large set of test-domains. In order to design and de-
velop a model which is widely applicable, it is im-
perative to understand the domain gap between the
datasets. To this end we do a full extent cross do-
main evaluation of the models developed for each
dataset. The results are presented in Table 6. Sev-
eral inferences can be drawn from this cross domain
evaluation:

— Unsurprisingly, accuracy is at best when a model
is trained and tested on the same dataset.

— Datasets: VDI, VD2, VehicleID demonstrates
less domain gap between them (as opposed to
comparing with other datasets).

— VeRi and VehicleID datasets seem to perform
reasonably well when tested on each other.
Similarly Veri-Wild has reasonable performance
when tested on VehicleID and VeRi.

— CityFlow and VRIC datasets appear most chal-
lenging in terms of cross domain testing. This
gap could be due to the fact that these two
datasets were captured in USA (different cities),
as opposed to other datasets which were col-
lected outside USA. VRIC is a subset of UADE-
TRAC dataset [55].
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Figure 5. Qualitative results on VeRi-Wild dataset. Each row indicates query image and top-10 retrievals
for this query image. Red border indicates an incorrect retrieval and Green indicates a correct retrieval. We
obseve that embeddings are robust to viewpoints. Most incorrect results look visually correct, and
underlines the need for incorporating temporal aspect in retrievals.
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Table 15. Cross domain evaluations: S, T indicates source and target dataset domains respectively. Best
mAP numbers are in red and the second best accuracy is colored in blue. For Veri-Wild and VehiclelD, we
use the large test set for cross domain testing.

ST (=) | VeRi VehicleID VD-1

VD-2 CityFlow

VRIC Veri-Wild

mAP Top-1 | mAP Top-1 | mAP Top-1

mAP Top-1 | mAP

Top-1 | mAP Top-1 | mAP Top-1

CityFlow 18.29 48.81 | 27.49 20.75 | 7.70  14.15

6.09 15.15 | 32.80 51.05 | 8.61 4.70 8.05 3092

VD-1 16.47 5930 | 64.70 60.99 | 58.77 57.40 | 52.53 62.80 | 2.05 10.08 | 236 092 | 2516 58.96
VD-2 13.31 5221 | 64.11 60.03 | 41.21 48.75 | 63.64 69.55 | 1.70  8.75 3.09 146 18.33  50.11
VehicleID | 24.75 57.75 | 78.41 69.63 | 27.32 3535 | 3949 4935 | 2.60 1036 |3.75 1.85 18.81 48.76
VeRi 67.55 90.23 | 40.04 30.69 | 10.60 18.25 | 894 18.15 | 741 14.16 | 16.67 10.17 | 13.17 41.5

VRIC 737 20.08 | 1576 11.67 | 489 1040 |3.85 1060 | 1.56 3.80 | 78.55 69.09 | 3.2 16.56

Veri-Wild | 46.93 7449 | 63.42 5101 | 17.17 23.45

1690 25.05 | 6.80 20.44 | 7.53  4.52 51.63  69.99

7 Conclusion and Future Work

In this paper we propose a strong baseline for
vehicle re-identification using the best practices in
learning triplet embedding [12]. The core ideas be-
hind this set of best practices lie in constructing a
batch to facilitate extracting meaningful statistics in
order to guide training and convergence. We intro-
duced a formal exposition and evaluation of a sam-
pling variant batch sample to the re-identification
literature.

We compared our baselines with the state-of-
the-art approaches on three datasets and outperform
almost all of them in a wide range of evaluation
criteria. The sampling variants: batch sample and
batch weighted proved generally more effective and
robust than batch hard and batch all.

In terms of parameters’ for training, the default
setting (i.e. batch size of 18x4 samples, mobilenet-
vl with imagenet weights) performs reasonably
well and outperforms most competing approaches.

We hinged our research on the belief that de-
spite the intra-class variations, the identity of a
vehicle is less fine grained than other object re-
identification task, e.g. person re-identification.
Our results demonstrate this by using the recent
advances in embedding learning, we can push the
frontiers of vehicle re-identification much further
without using any spatio-temporal information. On
the other hand, two vehicles of exactly the same
color and model (with subtle or no discerning
marks, e.g. last row in Figure 3) would be very
difficult to distinguish without any spatio-temporal
information. Incorporating spatio-temporal infor-
mation along with other attributes in an effective

Ihttps://developer.nvidia.com/tensorrt

manner is an important contribution as future work.
Datasets such as CityFlow, VERI-Wild, VeRi and
AI-CITY challenges [38] aim to further enhance the
state-of-the-art by providing spatio-temporal anno-
tations.

Our approach is amenable to real time deploy-
ment across camera networks. During inference,
Mobilenet-v1 takes about 0.60 ms/image and 0.53
ms/image on batch sizes of 8 and 64 respectively,
on Nvidia Titan Xp, using floating point precision
(FLOAT32). The performance throughput can be
further optimized on Nvidia GPU(s) using Ten-
sorRT! and/or choosing other precision formats e.g.
INTS.
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