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ABSTRACT: 
 
Fragility curves are useful tools for evaluating the probability of structural damage due to earthquakes as a function of ground 
motion indices. The force reduction factor (R) is one of the seismic design parameters that determine the nonlinear performance of 
building structures during strong earthquakes. R factor itself is mostly a function of displacement ductility (µ), natural period of a 
structure, and soil conditions. A statistical method (Path Analysis) is proposed for the first time to determine the effect of R, µ and T 
on the column fragility curve parameters of typical box girder, two spans reinforced concrete highway bridge class. An analytical 
approach was adopted to develop the fragility curves based on numerical simulation. The R, µ and fundamental period T have been 
used to characterize different bridge configurations. The total, direct, and indirect effects of the variables as having significant effect 
on fragility curve parameters were identified. 
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1. INTRODUCTION 

Bridges are potentially one of the most seismically vulnerable 
structures in the highway system during earthquake events. 
Bridges damaged by an earthquake can threaten immediate 
recovery efforts and cause large economic losses. 
 
Support for this recovery effort and loss estimation can be 
typically achieved via the use of damage functions of structures 
(called fragility curves) (Kircher et al. 2006). For a structural 
component or system of interest, seismic fragility represents the 
probability that the demand imposed by earthquake loading will 
exceed a prescribed threshold, conditioned on a measure of 
ground motion intensity. The notion of fragility has been used 
widely to convey probabilistic information on seismic related 
damage (e.g., Kennedy & Ravindra 1984, Singhal & 
Kiremidjian 1996, Straub & Der Kiureghian 2008). Empirical 
fragility curves are developed using actual damage information 
from past earthquakes, whereas analytical fragility studies have 
been performed using demands obtained from capacity spectra 
or time history analyses. For the most part, damage states 
addressed by analytical bridge fragility studies were those used 
to describe empirical bridge fragilities, often defined in terms of 
deformation or ductility based discrete demand quantities. 
Various researchers (Choi et al. 2004); (Mackie and 
Stojadinović 2005); (Ramanathan et al. 2010); (Jeong and 
Elnashai 2007); (Nielson 2005); (Padgett et al. 2008) have 
developed the fragility curves for bridge structures. Fragility 

curves can be utilized to demonstrate when a coefficient or a 
number of parameters are used to improve the performance 
level of a structure. 
 
Seismic codes rely on reserve strength and ductility, which 
improves the capability of the structure to absorb and dissipate 
energy. Hence, the role of the force reduction factor and the 
parameters influencing its evaluation and control are essential 
elements of seismic design according to codes. The force 
reduction factor (R) is one of the seismic design parameters that 
determine the nonlinear performance of building structures 
during strong earthquakes. R-factor itself is mostly a function of 
displacement ductility (µ), the natural period of a structure (T), 
and soil conditions (Miranda). The R factor is defined as the 
ratio of the force required for the system to remain elastic Fel to 
the yield force of the inelastic system FY 

 

                  (1) 

Using a single-degree-of-freedom system approximation and 
canceling the equivalent mass of the bridge, the R factor can be 
stated in terms of accelerations, where the elastic pseudospectral 
acceleration response ordinate at the bridge period is Sael and 
the structural yield acceleration is AY. 
 
In this paper a statistical method (Path Analysis) is proposed for 
the first time to determine the effect of R, µ and T on the 
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fragility curve parameters of typical box girder, two spans 
reinforced concrete highway bridge class that provides a 
consistent treatment of uncertainties in both demand and 
capacity estimates. Sophisticated finite element models and 
nonlinear time history analysis are used to define demand. 
Common to all of the bridges are two spans, continuous 
reinforced concrete box girder superstructure, single and multi-
column bent with uniform circular cross section over the entire 
column height above grade. The portfolio of bridges was further 
limited to those with two equal spans on each side of the 
column bent and seat type abutments. A suite of bridges was 
generated by varying certain design parameters within 
acceptable engineering ranges using Latin Hypercube Sampling 
(LHS) (McKay et al. 2000). LHS provides an effective scheme 
to cover the probability space of the random variables when 
compared to pure random sampling using naïve Monte Carlo 
Simulation (Celik and Ellingwood 2010). 
 

2. PATH METHOD 

In statistics, path analysis is used to describe the directed 
dependencies among a set of variables. This includes models 
equivalent to any form of multiple regression analysis, factor 
analysis, canonical correlation analysis, discriminant analysis, 
as well as more general families of models in the multivariate 
analysis of variance and covariance analyses (MANOVA, 
ANOVA, ANCOVA). Path analysis was originally developed 
by geneticist Wright (1920) to examine the effects of 
hypothesized models in phylogenetic studies. Wrights analysis 
involved writing a system of equations based on the correlations 
among variables influencing the outcome and then solving for 
the unknown parameters in the model (Land 1969). According 
to Wright, the path analytic method was intended to measure the 
direct effect along each separate path in such a system and 
finding the degree to which variation of a given effect is 
determined by each particular cause. Path analysis is a statistical 
technique used primarily to examine the comparative strength of 
direct and indirect relationship among variables. Path analysis 
consists of a family of models that depicts the influence of a set 
of variables on one another. It is considered closely related to 
multiple regression analysis. It is an extension of the regression 
models, which researchers use to test the fit of a correlation 
matrix with a causal model that they test (Alwin and Hauser 
1975). The aim of path analysis is to provide estimates of the 
magnitude and significance of hypothesized causal connections 
between sets of variables displayed through the use of path 
diagram. Since path analysis assesses the comparative strength 
of different effects on an outcome, the relationship between 
variables in the path model are expressed in terms of 
correlations and represent hypotheses proposed by the 
researcher. However, path models do reflect theories about 
causation and can inform the researcher as to which 
hypothesized causal model best fit the pattern of correlations 
found within the data set. One of the advantages of path 
analysis is that it forces researcher to explicitly specify how the 
variables relate to one another and thus encourages the 
development of clear and logical theories about the process 
influencing a particular outcome. 
 
2.1 The fundamental assumption 

Let us consider a finite number of standardized random 
variables arranged in a historical or logical sequence-
distinguishing antecedent, contemporary, and subsequent 

(dependent) variables. Wright (1920) has shown that three 
assumptions are sufficient to justify the basic equation of path 
analysis. (1) unitary factors: all variables are treated as unitary 
factors, so that one part of a composite variable is not more 
significant in one relation than another; (2) linearity: the 
relationships among these unitary factors are linear so that equal 
changes in an antecedent variable in different parts of its range 
are associated with equal changes in its dependent effects; (3) 
complete additivity: each dependent variable is completely 
determined by the sum of the effects of proximate antecedent 
variables. That is 
 
             =  + + +  =                  (2) 
 
In above equation the rik are called path coefficients, which are 
standardized partial linear regression coefficients. They are 
represented in the diagrams as a single headed arrow pointing 
from the antecedent variable Xk toward the dependent variable 
Xk (Xi←Xk). The Xk antecedents, where k={1,2,...,K}, may 
include a hypothetical residual variable, so that determination is 
formally complete. The correlation between Xi and any other 
variable Xj is defined as the expectation of the product of 
standardized variables, so 
 
       = E( ) = E(  ) =     (3) 

This equation is Wright's fundamental equation and shows that 
any correlation pij may be decomposed as the sum of products 
of paths to Xi and correlations pjk among the antecedents Xk and 
the variable Xj. 
 
2.2 Goodness of fit criteria 

Statistical methods normally utilize one statistical test to 
determine the significance of the analysis. The Path analysis, 
however, relies on several statistical tests to determine the 
adequacy of model fit to the data. For assessing the overall fit of 
the model, the χ2 values relative to the degrees of freedom are 
most widely calculated. This is often referred to as the chi-
square test and is an absolute test of model fit. If the p value 
associated with the χ2 value is below 0.05, the model is rejected 
in an absolute fit sense. Because the χ2 goodness of fit criterion 
is very sensitive to sample size and non-normality of the data, 
often other descriptive measures of fit are used in addition to 
the absolute χ2 test. A number of goodness of fit criteria have 
been formulated for Path analysis. 
 
The comparative fit index (CFI) (Bentler 1990) and root mean 
square error of approximation (RMSEA) (Browne and Cudeck 
1993). CFI values fall between 0 and 1, where 0 represents no 
fit and 1 is a perfect fit. Usually a value above 0.90 is 
considered acceptable, and a good fit. RMSEA incorporates the 
parsimony criterion and is relatively independent of sample size 
and number of parameters. A suggested rule of thumb for an 
RMSEA fit is that a value less than or equal to 0.06 indicates an 
adequate fit. 
 
 

3. FRAGILITY ANALYSIS 

3.1 Probabilistic models 

The Pacific Earthquake Engineering Research PEER Center’s 
performance-based earthquake engineering framework (Cornell 

146 



JOURNAL OF APPLIED ENGINEERING SCIENCES                                                 VOL. 9(22), ISSUE 2/2019 
ISSN: 2247-3769 / e-ISSN: 2284-7197                                                                                            ART.NO. 266 pp. 145-154 

 
 

and Krawinkler 2000) is a probability-based methodology 
enabling more rigorous analytical generation of damage fragility 
curves. The framework comprises hazard, demand, and damage 
models to express the conditional probability of exceeding a 
damage limit state using the total probability theorem. 
       

    (4) 
 
The damage fragility is the conditional probability of a damage 
measure DM exceeding a damage limit state dmLS given an 
earthquake ground motion intensity measure IM=im . The first 
term in the integrand of Eq. 4 is the cumulative distribution 
function CDF for a damage measure DM conditioned on an 
engineering demand parameter EDP, denoted the bridge 
damage model. The second term is the first derivative of the 
CDF for an EDP conditioned on IM, or simply the probability 
density function PDF of the demand model at the specified IM 
level. 
 
3.2 Demand models 

A seismic demand model describes the likely effect of 
earthquakes on a structure. Formally, demand models are CDFs 
of an EDP conditioned on IM. Each ground motion can be 
described by an IM, the selection of which is discussed in the 
PEER final report (DesRoches et al. 2012) and (Luco and 
Cornell 2007). The IMs used in this paper are the first mode 
pseudo spectral acceleration with 5% viscous damping, 
Sa(T=1,ξ=0.05). These IMs were chosen because demand 
models formulated using them have, on average, acceptably 
small dispersions 0.30 to 0.40 over a range of EDPs of interest 
for reinforced concrete highway bridges (Mackie and 
Stojadinovic 2004). The top displacement of the bridge column 
is the only EDP considered in this paper because it correlates 
well with bridge damage measures and with the R factor used to 
describe the structural characteristics of the bridge. 
 
Probabilistic Seismic Demand Models PSDM are usually 
formulated by means of nonlinear dynamic finite-element 
simulations using multiple ground motion records in a 
procedure called Probabilistic Seismic Demand Analysis PSDA 
(Mackie and Stojadinovic 2004). The resulting demand models 
may assume any mathematical form, but there are studious 
choices that simplify the evaluation of Eq. 4. A large number of 
demand models follow a lognormal distribution (Shome 1999); 
specifically, the EDP exhibits a lognormal probability 
distribution when conditioned on IM. Additionally, the 
dispersion (σEDP|IM) is often assumed to be constant over the 
range of IMs considered, and a power law relationship is often 
used to describe the EDP in terms of the IM. Therefore, the 
demand model is often written as   . This power-
law median relationship appears linear in log space, and linear 
regression can be used to obtain the unknown coefficients A 
and B 
  
       (5) 
 
3.3 Damage models 

Damage models describe the likely damage induced in the 
structures at the level of demand sustained during an 
earthquake. Mathematically, damage models are CDFs of DMs 
conditioned on EDP. DMs are usually discrete, an observation 
of the onset of a certain limit state. It is essential that the limit 

state definitions use the same metric as the EDP for the 
respective bridge components. 
 
Structural damage increases with increasing plastic curvatures, 
strain levels and displacements. In order to classify column 
damage slight, moderate, extensive and complete damage states 
(DS1, DS2, DS3, and DS4, respectively) moment curvature of 
each column is obtained and approximated with an idealized 
relationship. This relationship shall be bilinear, with initial 
slope and post-yield slope. The initial slope, shall be taken as 
the secant stiffness calculated at a moment equivalent to the first 
yield point. Priestly (Priestley et al. 1996) defined first yield 
point as the point where the outer part of tension reinforcement 
reaches yielding strain or the outer part of concrete fiber reaches 
the strain value of 0.002. The post-yield slope shall be 
determined by a line segment that passes through the maximum 
moment of actual curve. Line segments on the idealized 
Moment curvature curve shall be located using an iterative 
graphical procedure that approximately balances the area above 
and below the curve. Curvature values have been specified for 
each damage state of the column, first yield moment (DS1), 
effective yield moment (DS2), maximum moment (DS3) and the 
ultimate curvature of the column when the moment capacity at 
the moment curvature curve had decreased to 80% of its 
maximum attained moment capacity (DS4) (Priestley et al. 
1996). 
 
3.4 Damage fragility 

Equation 4 is used to obtain the damage fragility curves, 
integrating the demand and damage models derived above for 
each analyzed bridge. Note that Eq. 4 can be evaluated 
numerically or, due to the judiciously chosen lognormal form of 
the variables discussed above, in closed form as 

  (6)
 

  
Equation 5 contains two separate sources of uncertainty. The 
portion attributable to the inherent randomness in the demand 
EDP|IM and damage DM|EDP models is termed the aleatory 
uncertainty. The portion due to lack of knowledge, inadequate 
mathematical form, missing variables, errors in finite-element 
analysis, etc. in the demand and damage models is termed 
epistemic uncertainty. The demand model aleatory uncertainty 
is available directly from the demand analyses performed. The 
standard deviation of the demand model can be estimated based 
on following equation: 
 

         (7) 

 
The uncertainty associated with damage model is prescribed in 
the form of a logarithmic standard deviation or dispersion 
σ2

DM|EDP. The assignment of dispersion is done in a subjective 
manner due to lack of enough information to quantify it and a 
dispersion value of 0.35 is adopted across the components and 
the respective damage states. This value is particularly a good 
estimate for columns and is consistent with the test results 
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documented in the PEER column structural performance 
database (Berry et al. 2004). 
 

4. MODELLING AND UNCERTAINTY 

4.1 Numerical modelling 

Although a more detailed description of the analytical 
modelling can be found somewhere else (Mangalathu et al. 
2016), the general approach is presented herein. 3-D numerical 
modelling is carried out with the help of the finite element 
package OpenSees (Mazzoni et al. 2009). The superstructure is 
modelled using elastic beam column elements. Columns are 
modelled using fiber-type displacement based beam column 
elements, foundations are modelled using linear and 
translational springs, poundings are modelled using contact 
elements, and shear key is modelled based on experimental 
work of (Megally et al. 2009). The bearing type used is the 

elastomeric bearing pad, which is common in concrete bridges. 
The yield force of the bearing is modelled from an expression 
developed by (Scharge 1981).  Abutment responses comprise 
earth pressure responses (passive resistance of the backfill) and 
structural responses (pile resistance or abutment action on 
spread footing). The passive response of the abutment backwall 
is simulated using the hyperbolic soil model proposed by 
(Shamsabadi and Yan 2008) while the response of the piles is 
simulated using a trilinear material model based on the 
recommendation of (Mangalathu et al. 2016). The typical 
configuration of a box girder bridge and associated numerical 
model of various bridge components are shown in Figure. 1. 
 
 
 
 

 

 
 

Figure 1. Typical layout of two span bridge model in OpenSEES 
 
In the context of the above, a software was named TSBridge is 
developed for nonlinear time history analysis and nonlinear 
static modal pushover analysis. The software is able to show 
moment curvature of columns, mode shapes, modal pushover of 
bridge and force displacement of abutment and its components 
graphically. The software also, is able to calculate strength 
reduction factors, R and it can be run for a set of earthquakes 
consecutively. Based on structure specific properties the 
structural model is developed and analysed using OpenSees 
(open source software) and matlab platforms. The software has 
a wide application to two span concrete bridge inventories. 
 
4.2 Uncertainty modelling 

The sources of uncertainty evaluated in this study can be 
generally classified as ground motion, Material and geometric 
uncertainty. Geometric and material uncertainties, bridge 
properties whose values were dependent to uncertainty 
parameters and parameters that were fixed for all of the bridge 
models with associated distribution are elaborated in Table 4 
(Ramanathan et al. 2015). Having identified all the key 

modelling assumptions and uncertainty distributions of the 
bridge modelling parameters, the next step is to develop with 
representative bridge models that can capture the entire range of 
material and geometric uncertainties. Statistically significant yet 
nominally identical 1200 bridge models are generated by 
sampling across the range of parameters (Table 1) using the 
Latin Hypercube Sampling technique, and 200 bridge are then 
selected in different ranges of  R randomly so that these bridges 
cover different R ranges. 
 
4.3 Ground motion 

Each bridge configuration was subjected to a suite of 160 
ground motions assembled by Baker et al. (2011) in the current 
study. The suite utilizes the existing high quality next 
generation attenuation database of recorded ground motions. 
These motions were not developed as structure-specific or site-
specific, and thus are applicable to many research needs. The 
Baker set consists of two sets of 120 broadband ground motions 
having distribution of response spectra associated with 
moderately large earthquakes at small distances. Further, it 
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includes a set of 40 ground motions with strong velocity pulses 
characteristic of sites experiencing near-fault directivity effects. 
Summary data for the ground motions in the Baker suite, along 
with a significant amount of additional information, including 
the acceleration time history files are available on the website: 
http://peer.berkeley.edu/transportation/projects/ground-motion-
studies-fortransportation-systems. 
 
 

5. RESULT 

Eigen value analysis of the bridge models were performed in 
OpenSEES. A modal pushover analysis is performed on each of 
the bridge structures simulated in the transverse directions 
individually. Modal Pushover Analysis is in fact an extension of 
the standard pushover analysis. According to this procedure, 
standard pushover analysis is performed for each mode 
independently, wherein invariant seismic load patterns are 
defined according to the elastic modal forces. Modal pushover 
curves, the force-displacement relationship of the SDOF are 
then plotted. The force-displacement relationship of the SDOF 
model should be multilinear. Negative post-capping stiffness 
can also be applied in order to estimate the collapse capacity. 
 
The strength reduction factor R, was obtained as the ratio of 
maximum base shear that develops in the structure, if it were to 
remain elastic to the  maximum base shear that develops in the 
structure, at the ductility factor μ=umax/uy  for a given ground 
excitation. 
 
The strength reduction factor R for any bridge is average of the 
strength reduction factor R for ground excitations. The R factor 
is site dependent, as it is a function of the elastic pseudospectral 
response ordinate Sael at the bridge vibration period. To avoid 
this dependence, the R factors were normalized by the elastic 
pseudospectral acceleration at period T=1 s 
 

                                                (8) 

The normalized R' factor is more suitable for comparing the 
response of the same bridge under different site-specific ground 
motions. Note that Sa(T=1) is often used to define the constant 
velocity portion of the response spectrum. Furthermore, if site 
specific response modification factors are not needed, Sa(T=1) 
is usually assumed equal to peak ground acceleration (PGA) 
(Mackie and Stojadinovic 2004). 
 
The method of probabilistic seismic demand analysis was used 
(Mackie and Stojadinovic, 2005) to generate relationships 
between IMs and EDPs, known as probabilistic seismic demand 
models. Only the PSDMs utilizing the maximum absolute 
column drift (in transvers direction) was considered in this 
study. The choice of IM for use with above EDP is limited to 
the spectral acceleration at a fixed period of T = 1 sec. Spectral 
acceleration Sa(1.0), was established as the optimal intensity 
measure (IM) (Ramanathan et al 2015). A total of 
200x160=38400 Nonlinear Time History Analyses of three 
dimensional finite element bridge models  using OpenSees 
(Mazzoni et al. 2009) was Performed. A regression analysis is 
conducted to generate an appropriate PSDM for EDP 
conditioned on the spectral acceleration Sa(1.0). The fragility 
curve parameters A,B, σ=σEDP|IM  (Eq. 5) for each bridge were 
calculated by a  linear fit to the PSDMs Curves. 

 
Descriptive analyses were conducted using SPSS/WIN 13.0 
(SPSS, Inc.) and the path models were analyzed using SPSS 
AMOS18.0 (SPSS, Inc.). AMOS (Analysis of Moment 
Structure) is software that is designed specifically for path 
analysis. Means and standard deviations were evaluated among 
observed variables (Table 2). The skews of all variables were 
less than 3 and the coefficients of kurtosis of all variables were 
less than 8. Thus, no violation of the assumption of normality 
was detected. 
 

Table 2. Assessment of normality 
 

Variable min max skew c.r. kurtosis c.r. 
PCLS -2.705 3.898 0.508 2.931 1.311 3.786 

T 0.49 5.72 0.872 5.032 -0.187 -0.541 
R' 7.579 16.814 1.271 7.339 0.926 2.673 
B 0.69 1.32 -0.505 -2.917 1.464 4.225 

 1.034 6.47 0.711 4.107 -0.449 -1.297 
A 0.28 3.74 -0.717 -4.141 -0.122 -0.351 
σ 0.271 1.455 0.927 5.352 1.447 4.177 
       

Multivariate     12.065 7.6 

 
The Principal component analyses (PCA) method was used for 
reduce dimensions of column limit state variables CLS1 to 
CLS4. According to Pedhazur and Schmelkin (1991) the PCA 
is a method of the multivariate data analysis. The PCA reduces 
a data set with dimension m to dimension p, where p < m, by 
computing the principal components (i.e. new variables) of the 
original data set with the highest variance by the means of 
eigenpairs of a corresponding positive semidefinite covariance 
matrix or correlation matrix.  Table 3 and Figure 2 show SPSS 
output of Principal component PCLS. The factors explain 
83.161% of the total variance. 
 

a. Communalities                                     b. Component Matrix 
 Initial Extraction 

CLS1 1.000 .921 
CLS2 1.000 .893 
CLS3 1.000 .900 
CLS4 1.000 .612 

 
 
 
 
 

c. Total Variance Explained 

 Initial Eigenvalues                    Extraction Sums of Squared Loadings 

 Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

1 3.326 83.161 83.161 3.326 83.161 83.161 

2 .520 13.006 96.166    

3 .146 3.655 99.821    

4 .007 .179 100.000    

 
Table 3. SPSS output: Extraction Principal Component PCLS 

 

 Component 1 
CLS1 .960 
CLS2 .945 
CLS3 .949 

CLS4 .782 

 



JOURNAL OF APPLIED ENGINEERING SCIENCES                                                 VOL. 9(22), ISSUE 2/2019 
ISSN: 2247-3769 / e-ISSN: 2284-7197                                                                                            ART.NO. 266 pp. 145-154 

 
 

 
Figure 2. Scree plot of Principal component PCLS 

Figure 3 shows the hypotheses skeleton model was tested using 
path analysis within a structural equation model framework. For 

all constrained parameters in the model, AMOS calculates a 
modification index. Modification indices indicate how much the 
chi-square value of a model would drop if the parameter were 
free instead of constrained (in other words, how much the 
model fit would improve). Modification indices are in fact chi-
square tests for individual equality constraints; high values 
indicate that the respective parameter constraint is wrong. After 
the first run, and the Inspecting the unstandardized regression 
weights, all paths shown not to be significant by the P value in 
the output, was step by step deleted from the models. The final 
model showed in Figure 4 was obtained by eliminating the weak 
paths from the models. The results of the analysis reduced the 
Chi-square statistic and DF to 0.913 and 5 respectively.  These 
results were taken as the final statistics, because the results 
provided by the modification indices were too small to make 
recognizable differences. 

 
Table 1. Distribution of base model parameters for concrete box girder two span bridge 

 

Distribution  

parameters dependency  
Parameter 

 
Distribution 

type 
a b 

 
Units 

 

Column height Normal Mean =5.48 STD=1.12 m U 

Longitudinal reinforcement ratio Uniform Min=1% Max=3.5%  U 

Transverse reinforcement ratio Uniform Min=0.4% Max=1.7%  U 

Number of columns per bent  1,2,3,4,5   D (deck width) 

Diameter  4,5  m D (number of column) 

Span length Normal Mean = 35.0 STD=12.34 m U 

Deck width Normal Mean = 20.48 STD=12.86 m U 

Number of boxes  Min=3 Max=15  D (deck width) 

Total superstructure depth    m D (bridge span length) 

Top flange depth  Min=17.8 Max=28.0 Cm D (number of boxes) 

Bottom flange depth  17.8  Cm F 

Wall thickness  30.5  Cm F 

Translational spring stiffness Normal Mean = 1.4e5 STD=1.05e5 KN/m U 

Rotational spring stiffness Normal Mean= 1.14e10 STD=1.75e9 KN/m /rad U (for multi column =0) 

Shear modulus of bearing Uniform Min=5.5e2 Max=1.7e3 MPa U 

Bearing pad coefficient of friction     D (deck weight) 

Number of Bearing pads     
D (deck weight, Shear 

modulus) 

Abutment backwall height Uniform Min=1.0 Max=2.6 m U 

Angle of incidence of earthquake  0 or 90  degree U 

Soil stiffness  4380 or 8760  KN/m U 
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Figure 3. The hypotheses skeleton model 
 
 

 
 

Figure 4. The final hypotheses model 
 

 
The results of the path analysis with the standardized regression 
coefficients were presented below in Figure 5. Table 4 list the 
estimated path coefficients that minimize the difference between 
observed and model along with their corresponding standard 
errors, critical ratios, and p-values. Tables 5-9 show the 
standardized total, direct and indirect relationships so that the 
factors effect on A with 5 variables were B, R', T, μ and PCLS.  
 
There is a significant positive correlation between A and T. T 
had a direct effect to A and was 0.732 and had indirect effect 
through B which was 0.048; total effect was 0.78. Similarly, 

there is a positive correlation between B and A. with a direct to 
A was 0.439, and had not indirect effect. There is a negative 
correlation between A and R'. R' had a direct effect to A and 
was -0.204 and had indirect effect through B. which was 0.119; 
total effect was -0.086. The factors affecting B with 3 variable 
were R', PCLS and T. PCLS, T and R' had a direct effect to B 
were -0.298, -0.109 and 0.27 respectively and had no indirect 
effect.  
 
The factors PCLS, T, R', B , μ  and A also affects  σ with direct, 
indirect, total effects which were listed in Tables 5-9. 
 

 
 

Figure 5. Standardized direct effects of hypotheses model 
 
 

Goodness of fit of the final model was assessed by chi-square 
test and the goodness of fit indices, such as Root Mean Square 
Error of Approximation (RMSEA) and comparative fit index 
(CFI).  Selected goodness-of-fit statistics related to the 
hypothesized model was presented in Table 10. This model had 
a good fit with a chi-square = 0.913 (df = 5), RMSEA = 0.000, 
and a CFI = 1.000. 
 

Table 4. Regression weights 
 

 Estimate S.E. C.R. P 

B 
← 

PCLS -0.031 0.007 -4.422 *** 

B 
← 

R' 0.013 0.004 3.323 *** 

Pile stiffness Lognormal Mean=1.4e4 STD=52.5 KN/m U 

Gap at abutment Uniform Min=0 Max=5.08 Cm U 

Number of abutment piles     D (bridge width) 

Gap at shear key Uniform Min=0 Max=5.08 Cm U 

Shearkey capacity    KN D (shear capacity of piles) 

Concrete strength Normal Mean= 34.5 STD=4.3 MPa U 

Steel strength Lognormal Mean=336.4 STD=0.75 MPa U 

Damping coefficient Normal Mean= 0.045 STD=0.0125  U 

Additional mass coefficient Uniform Min=0.1 Max=0.4  U 

*U: Uncertain, D: dependent, F: Fix, STD: Standard deviation 
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B 
← 

T 0.008 0.006 1.33 0.083 

A 
← 

B 3.238 0.247 13.127 *** 

A 
← 

T 0.408 0.022 18.322 *** 

A 
← 

R' -0.072 0.016 -4.651 *** 

A 
←  0.04 0.021 1.933 0.053 

σ 
← 

B 0.461 0.175 2.639 0.008 

σ 
← 

T 0.125 0.019 6.439 *** 

σ 
← 

A -0.155 0.037 -4.216 *** 

σ 
← 

PCLS -0.025 0.014 -1.766 0.077 

 
 

Table 5. Standardized regression weights 
 

      Estimate 

B ← PCLS -0.298 

B ← R' 0.27 

B ← T 0.109 

A ← B 0.439 

A ← T 0.732 

A ← R' -0.204 

A ←  0.075 

σ ← B 0.225 

σ ← T 0.808 

σ ← A -0.558 

σ ← PCLS -0.117 

 
 

Table 6. Correlations 
 

   Estimate 

R' ↔ T -0.575 

T ↔ PCLS 0.147 

 ↔ R' 0.52 

 ↔ T -0.41 

 ↔ PCLS 0.322 

 
 

Table 7. Standardized total effects – estimates 
 

 PCLS T R' B  A 

B -0.298 0.109 0.27 0 0 0 

A -0.131 0.78 -0.086 0.439 0.075 0 

σ -0.111 0.397 0.109 -0.02 -0.042 -0.558 

 
 

Table 8. Standardized direct effects – Estimates 
 

 PCLS T R' B  A 

B -0.298 0.109 0.27 0 0 0 

A 0 0.732 -0.204 0.439 0.075 0 

σ -0.117 0.808 0 0.225 0 -0.558 

 
 

 
6. CONCLUSIONS 

This paper presents a new method to analyze the effect of R', μ, 
T on the fragility curve parameters A, B, σ using the path 
analysis technique. The major advantage of the path analysis 
method is its ability to analysis the relationship between 
dependent variables as well as between independent variables 
and dependent variables from one time analysis.  
 
The method is demonstrated through studies of the two spans 
reinforced concrete highway bridge class. A set of detailed 
three-dimensional bridge models accounting for material, 
geometric, and system uncertainties is simulated in OpenSees 
and used the probabilistic seismic demand models developed 
based on the NLTHAs. For the application of path analysis, R', 
μ, T bridge attributes are considered.  
 
The overall findings of the study suggest that T has the most 
total positive effect on A including a direct effect 0.732 and a 
indirect effect 0.048, while R' has the most total positive effect 
on B including a direct effect 0.27 and did not has a indirect 
effect on B. T and A have the most total positive and negative 
effects on σ respectively. 
 

Table 9. Standardized indirect effects – estimates 
 

 PCLS T R' B  A 

B 0 0 0 0 0 0 

A -0.131 0.048 0.119 0 0 0 

σ 0.006 -0.411 0.109 -0.245 -0.042 0 

 
Table 10. Goodness of fit of the final model 

 
a. CMIN 

Model NPAR CMIN DF P CMIN/DF 

Main 30 1.503 5 0.913 0.301 

    

b. Baseline comparisons 

NFI RFI IFI TLI 
Model 

Delta1 rho1 Delta2 rho2 
CFI 

Main 0.997 0.989 1.006 1.026 1 

     

c. RMSEA 
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Model RMSEA LO 90 HI 90 PCLOSE 

Main 0 0 0.037 0.968 
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