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ABSTRACT:

Fragility curves are useful tools for evaluating throbability of structural damage due to earthgsaks a function of ground
motion indices. The force reduction factor (R) i®@f the seismic design parameters that deterrhim@dnlinear performance of
building structures during strong earthquakes. Rofaitself is mostly a function of displacement tlity (i), natural period of a

structure, and soil conditions. A statistical meti{Bath Analysis) is proposed for the first timed&germine the effect of R, p and T
on the column fragility curve parameters of typibalk girder, two spans reinforced concrete hightwagige class. An analytical

approach was adopted to develop the fragility cah@sed on numerical simulation. The R, p and fuedghperiod T have been
used to characterize different bridge configuraiorhe total, direct, and indirect effects of tlagiables as having significant effect

on fragility curve parameters were identified.

1. INTRODUCTION

Bridges are potentially one of the most seismicallinerable
structures in the highway system during earthquekents.
Bridges damaged by an earthquake can threaten irateedi
recovery efforts and cause large economic losses.

Support for this recovery effort and loss estimatican be
typically achieved via the use of damage functiohstructures
(called fragility curves) (Kircher et al. 2006). fFa structural
component or system of interest, seismic fragiéyresents the
probability that the demand imposed by earthquakdihg will
exceed a prescribed threshold, conditioned on asumeaof
ground motion intensity. The notion of fragility iédeen used
widely to convey probabilistic information on seisnelated
damage (e.g.,
Kiremidjian 1996, Straub & Der Kiureghian 2008). fncal
fragility curves are developed using actual danmafg@mation
from past earthquakes, whereas analytical fragslidies have
been performed using demands obtained from capspégtra
or time history analyses. For the most part, damsigges
addressed by analytical bridge fragility studiesengnose used
to describe empirical bridge fragilities, oftenidefl in terms of
deformation or ductility based discrete demand tties.
Various researchers (Choi et al. 2004); (Mackie an

Stojadinové 2005); (Ramanathan et al. 2010); (Jeong an

Elnashai 2007); (Nielson 2005); (Padgett et al. 80bave
developed the fragility curves for bridge structur&ragility

curves can be utilized to demonstrate when a ciexffi or a
number of parameters are used to improve the pesioce
level of a structure.

Seismic codes rely on reserve strength and dyctiithich

improves the capability of the structure to absamd dissipate
energy. Hence, the role of the force reductiondiaetnd the
parameters influencing its evaluation and contrel essential
elements of seismic design according to codes. foOinee

reduction factor (R) is one of the seismic desigrapeters that
determine the nonlinear performance of buildingucttires
during strong earthquakes. R-factor itself is nyoatfunction of
displacement ductility (1), the natural period ddteucture (T),
and soil conditions (Miranda). The R factor is definas the
ratio of the force required for the system to remelastic F to

Kennedy & Ravindra 1984, Singhal &the yield force of the inelastic system F

Fel _ 59

Fyr A}-

R

(1)

Using a single-degree-of-freedom system approxonatind
canceling the equivalent mass of the bridge, thad®f can be
stated in terms of accelerations, where the elpsgtdospectral

he structural yield acceleration is A

3acceleration response ordinate at the bridge pesiddg, and

In this paper a statistical method (Path Analyisigroposed for
the first time to determine the effect of R, p andf the
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fragility curve parameters of typical box girdemwot spans
reinforced concrete highway bridge class that plesi a
consistent treatment of uncertainties in both demamd
capacity estimates. Sophisticated finite elementet®o and
nonlinear time history analysis are used to defil@nand.
Common to all of the bridges are two spans, contisuo
reinforced concrete box girder superstructure,lsiagd multi-
column bent with uniform circular cross section otree entire
column height above grade. The portfolio of bridges further
limited to those with two equal spans on each sflehe
column bent and seat type abutments. A suite afges was

generated by varying certain design parameters irwith

acceptable engineering ranges using Latin Hyper&awapling
(LHS) (McKay et al. 2000). LHS provides an effeetischeme
to cover the probability space of the random véesitwhen
compared to pure random sampling using naive M@ado

Simulation (Celik and Ellingwood 2010).

2. PATH METHOD

In statistics, path analysis is used to describe directed
dependencies among a set of variables. This inslumdedels
equivalent to any form of multiple regression asay factor
analysis, canonical correlation analysis, discraninanalysis,
as well as more general families of models in thétirariate
analysis of variance and covariance analyses (MANQV
ANOVA, ANCOVA). Path analysis was originally devekxp
by geneticist Wright (1920) to examine the effea$
hypothesized models in phylogenetic studies. Wsigittalysis
involved writing a system of equations based onctireelations
among variables influencing the outcome and thédvirgp for
the unknown parameters in the model (Land 1969Fo/Ading
to Wright, the path analytic method was intendeth&asure the
direct effect along each separate path in suchstemsyand
finding the degree to which variation of a giverfeef is
determined by each particular cause. Path anasyaistatistical
technique used primarily to examine the comparatixength of
direct and indirect relationship among variableathPanalysis
consists of a family of models that depicts théuimfice of a set
of variables on one another. It is considered tjosdated to
multiple regression analysis. It is an extensiothefregression
models, which researchers use to test the fit cbrelation
matrix with a causal model that they test (AlwindaiHauser
1975). The aim of path analysis is to provide estés of the
magnitude and significance of hypothesized causahections
between sets of variables displayed through the afispath
diagram. Since path analysis assesses the conveasaténgth
of different effects on an outcome, the relatiopsbetween
variables in the path model are expressed in teohs
correlations and
researcher. However, path models do reflect thgoaleout
causation and can inform the researcher
hypothesized causal model best fit the patternoofetations
found within the data set. One of the advantagespath
analysis is that it forces researcher to expligpecify how the
variables relate to one another and thus encourdges
development of clear and logical theories about ghecess
influencing a particular outcome.

2.1 The fundamental assumption

Let us consider a finite number of standardizeddoam
variables arranged in a historical or logical sewee
distinguishing antecedent, contemporary, and suwlesgq

(dependent) variables. Wright (1920) has shown thate
assumptions are sufficient to justify the basicatmun of path
analysis. (1) unitary factors: all variables arated as unitary
factors, so that one part of a composite variabl@dt more
significant in one relation than another; (2) linga the
relationships among these unitary factors are tisedhat equal
changes in an antecedent variable in differentspafrits range
are associated with equal changes in its depereftadts; (3)
complete additivity: each dependent variable is metely
determined by the sum of the effects of proximatee@edent
variables. That is

Xi= Ty + 1 Xot + vk = Do rad (2
In above equation thg rare called path coefficients, which are
standardized partial linear regression coefficiethey are
represented in the diagrams as a single headed aomting
from the antecedent variablg ¥oward the dependent variable
Xk (Xi«Xy). The X antecedents, where k={1,2,...,K}, may
include a hypothetical residual variable, so tretednination is
formally complete. The correlation between ahd any other
variable X is defined as the expectation of the product of
standardized variables, so

J‘-"l'_i' = EG{{}"f) = E(}:} EJ:r:?:J. T?;;X;C) = Z{f:L :'TF;J‘-"_i'E; (3)

This equation is Wright's fundamental equation ahdws that
any correlation pmay be decomposed as the sum of products
of paths to Xand correlationsypamong the antecedentg &nd

the variable X

2.2 Goodness of fit criteria

Statistical methods normally utilize one statidtidast to
determine the significance of the analysis. Theh Ratalysis,
however, relies on several statistical tests tcerd@he the
adequacy of model fit to the data. For assessia@terall fit of
the model, the?2 values relative to the degrees of freedom are
most widely calculated. This is often referred ® the chi-
square test and is an absolute test of modelffthd p value
associated with thg2 value is below 0.05, the model is rejected
in an absolute fit sense. Becauseh@oodness of fit criterion
is very sensitive to sample size and non-normalitthe data,
often other descriptive measures of fit are usedddition to
the absolute?2 test. A number of goodness of fit criteria have
been formulated for Path analysis.

The comparative fit index (CFl) (Bentler 1990) andtrmean

represent hypotheses proposed Hey tsquare error of approximation (RMSEA) (Browne and @kde

1993). CFl values fall between 0 and 1, where Oasgnts no

as to whicfit and 1 is a perfect fit. Usually a value aboved@ is

considered acceptable, and a good fit. RMSEA inaates the
parsimony criterion and is relatively independeinsample size
and number of parameters. A suggested rule of thionkan

RMSEA fit is that a value less than or equal to Ori2gicates an
adequate fit.

3. FRAGILITY ANALYSIS
3.1 Probabilistic models

The Pacific Earthquake Engineering Research PEER Cente
performance-based earthquake engineering frame(@wotnell

14¢



JOURNAL OF APPLIED ENGINEERING SCIENCES
ISSN: 2247-3769 / e-ISSN: 2284-7197

VOL. 9(22), $8JE 2/2019
ART.NO. 2¢p. 145-154

and Krawinkler 2000) is a probability-based metHody
enabling more rigorous analytical generation of dgenfragility
curves. The framework comprises hazard, demanddanthge
models to express the conditional probability oteeding a
damage limit state using the total probability teso.
Ppyg gl dm™|im) = [ Pppgiepz(dm™’|edp)dPepo|sadeap|im)  (4)
The damage fragility is the conditional probabilitya damage
measureDM exceeding a damage limit state ‘dngiven an
earthquake ground motion intensity measiMeim. The first
term in the integrand of Eq. 4 is the cumulativetritbution
function CDF for a damage measui@M conditioned on an
engineering demand paramet&DP, denoted the bridge
damage model. The second term is the first devieadf the
CDF for anEDP conditioned oriM, or simply the probability
density functionPDF of the demand model at the specifidti
level.

3.2 Demand models

A seismic demand model describes the likely effect
earthquakes on a structure. Formally, demand made(SDFs

state definitions use the same metric as HigP for the
respective bridge components.

Structural damage increases with increasing plastigatures,
strain levels and displacements. In order to diassblumn
damage slight, moderate, extensive and completagiastates
(DSL, D, DS3, andD$4, respectively) moment curvature of
each column is obtained and approximated with aalided
relationship. This relationship shall be bilineavith initial
slope and post-yield slope. The initial slope, khal taken as
the secant stiffness calculated at a moment eaarivéd the first
yield point. Priestly (Priestley et al. 1996) defihfirst yield
point as the point where the outer part of tensenforcement
reaches yielding strain or the outer part of catecfiber reaches
the strain value of 0.002. The post-yield slope lIslme
determined by a line segment that passes throwgmgximum
moment of actual curve. Line segments on the idedli
Moment curvature curve shall be located using anafive
graphical procedure that approximately balancesatea above
and below the curve. Curvature values have beerifigoefor
each damage state of the column, first yield mon{Bxal),
effective yield momentl{S2), maximum momentyS3) and the
ultimate curvature of the column when the momempiaciy at

of an EDP conditioned onlM. Each ground motion can be the moment curvature curve had decreased to 80%tsof
described by amM, the selection of which is discussed in themaximum attained moment capacitp34) (Priestley et al.
PEER final report (DesRoches et al. 2012) and (Lusd a 1996).

Cornell 2007). TheMs used in this paper are the first mode

pseudo spectral

acceleration with 5% viscous dagpin 3.4 Damage fragility

Sa(T=1¢{=0.05). TheselMs were chosen because demand

models formulated using them have, on average,ptaioly
small dispersions 0.30 to 0.40 over a rang&DPs of interest

Equation 4 is used to obtain the damage fragilityves,
integrating the demand and damage models derivedeafor

for reinforced concrete highway bridges (Mackie andeach analyzed bridge. Note that Eq. 4 can be eealua

Stojadinovic 2004). The top displacement of theldpei column

numerically or, due to the judiciously chosen lognal form of

is the onlyEDP considered in this paper because it correlatethe variables discussed above, in closed form as

well with bridge damage measures and withRiactor used to
describe the structural characteristics of thegaid

(6)

o ) . X P 1aoor(dm’ T -1nf SR (im))
Probabilistic Seismic Demand Models PSDM are uguall Fonjne(am™|im) = # — |=

formulated by means of nonlinear dynamic finitersdat
simulations using multiple ground motion records @
procedure called Probabilistic Seismic Demand Agialfp SDA
(Mackie and Stojadinovic 2004). The resulting decharodels
may assume any mathematical form, but there ardiosts
choices that simplify the evaluation of Eq. 4. Aganumber of
demand models follow a lognormal distribution (Slkeoh®99);
specifically, the EDP exhibits a lognormal probability
distribution when conditioned onM. Additionally, the

,f-*"#.‘nr 1 T MIEDF

n(RBA| del 5] 2
Ie(IM)}———
G| ———

JTE0Pm ToMED P
P

Equation 5 contains two separate sources of urieBrtalhe
portion attributable to the inherent randomnesshia demand
EDP|IM and damagd®M|EDP models is termed the aleatory
uncertainty. The portion due to lack of knowledy®dequate

dispersion ¢eppim) is often assumed to be constant over thenathematical form, missing variables, errors iritérelement
range oflMs considered, and a power law relationship is ofteranalysis, etc. in the demand and damage modelsriset

used to describe the EDP in terms of the IM. Theeefthe
demand model is often written a7 = a(1x%. This power-
law median relationship appears linear in log spaoe linear
regression can be used to obtain the unknown camifs A
and B

In(EDP|IM) = A+ B In{IM) (5)

3.3 Damage models

Damage models describe the likely damage inducedhén
structures at the level of demand sustained duramg
earthquake. Mathematically, damage modelsCGibé&s of DMs

epistemic uncertainty. The demand model aleatogedainty
is available directly from the demand analysesquaeréd. The
standard deviation of the demand model can be asthrbased
on following equation:

n |EilniEDF)—IniE0F)*

CeEpp|iM = ".! -

(@)

The uncertainty associated with damage model iscpteed in
the form of a logarithmic standard deviation or péision
oZDwEDp. The assignment of dispersion is done in a subgct
manner due to lack of enough information to qugritifand a
dispersion value of 0.35 is adopted across the ocoets and

conditioned orEDP. DMs are usually discrete, an observationthe respective damage states. This value is phatigia good

of the onset of a certain limit state. It is essdrihat the limit

estimate for columns and is consistent with the tesults
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documented
database (Berry et al. 2004).

4. MODELLING AND UNCERTAINTY

4.1 Numerical modelling 147
Although a more detailed description of the anabfti
modelling can be found somewhere else (Mangalathal.e
2016), the general approach is presented herdihn@merical
modelling is carried out with the help of the faielement
package OpenSees (Mazzoni et al. 2009). The suapettste is
modelled using elastic beam column elements. Coluares
modelled using fiber-type displacement based beatanmn
elements, foundations are modelled using linear

translational springs, poundings are modelled usingtact
elements, and shear key is modelled based on exgmatal
work of (Megally et al. 2009). The bearing type dise the

in the PEER column structural performancelastomeric bearing pad, which is common in coecbeidges.

The vyield force of the bearing is modelled fromexpression
developed by (Scharge 1981). Abutment responseprise
earth pressure responses (passive resistance bétkéll) and
structural responses (pile resistance or abutmetibra on
spread footing). The passive response of the almitbaekwall
is simulated using the hyperbolic soil model prambshy
(Shamsabadi and Yan 2008) while the response opiths is
simulated using a trilinear material model based tbe
recommendation of (Mangalathu et al. 2016). Theicalp
configuration of a box girder bridge and associatacherical
model of various bridge components are shown inrfeigl.

and
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Figure 1. Typical layout of two span bridge moaeOpenSEES

In the context of the above, a software was nan®@ritige is
developed for nonlinear time history analysis arahlimear
static modal pushover analysis. The software i ablshow
moment curvature of columns, mode shapes, modaloyes of
bridge and force displacement of abutment anddtsponents
graphically. The software also, is able to calaulatrength
reduction factors, R and it can be run for a setathquakes
consecutively. Based on structure specific propertthe
structural model is developed and analysed usingnSpes
(open source software) and matlab platforms. Thievace has
a wide application to two span concrete bridge moges.

4.2 Uncertainty modelling

The sources of uncertainty evaluated in this stedp be
generally classified as ground motion, Material gedmetric
uncertainty. Geometric and material uncertaintiésidge

modelling assumptions and uncertainty distributiasfs the

bridge modelling parameters, the next step is teeld@ with

representative bridge models that can capturentieeange of
material and geometric uncertainties. Statisticsilynificant yet
nominally identical 1200 bridge models are generaby

sampling across the range of parameters (Tablesihg uhe

Latin Hypercube Sampling technique, and 200 bridgethen
selected in different ranges of R randomly so these bridges
cover different R ranges.

4.3 Ground motion

Each bridge configuration was subjected to a soitel60
ground motions assembled by Baker et al. (2011hencturrent
study. The suite utilizes the existing high qualibext
generation attenuation database of recorded grouooiibns.
These motions were not developed as structuref8pecisite-

properties whose values were dependent to uncsrtainspecific, and thus are applicable to many reseasdus. The

parameters and parameters that were fixed forfahe bridge
models with associated distribution are elaboratedable 4
(Ramanathan et al. 2015). Having identified all tkey

Baker set consists of two sets of 120 broadbandngrowotions
having distribution of response spectra associatith
moderately large earthquakes at small distancegthéty it

1 AC
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includes a set of 40 ground motions with stron@ey pulses
characteristic of sites experiencing near-faulectivity effects.
Summary data for the ground motions in the Bakeesaiong
with a significant amount of additional informatioimcluding
the acceleration time history files are availabtetioe website:
http://peer.berkeley.edu/transportation/projectsigd-motion-

studies-fortransportation-systems

5. RESULT

Eigen value analysis of the bridge models wereopeéd in
OpenSEES. A modal pushover analysis is performeglagh of
the bridge structures simulated in the transversectibns
individually. Modal Pushover Analysis is in fact extension of
the standard pushover analysis. According to thexexure,
standard pushover analysis is performed for eactdemo
independently, wherein invariant seismic load patteare
defined according to the elastic modal forces. Mquehover
curves, the force-displacement relationship of 82OF are
then plotted. The force-displacement relationsHiphe SDOF
model should be multilinear. Negative post-cappstiffness
can also be applied in order to estimate the cedlaapacity.

The strength reduction factor R, was obtained asr#tio of
maximum base shear that develops in the strudfuiteyere to
remain elastic to the maximum base shear thatlaolevén the
structure, at the ductility factqr=un/u, for a given ground
excitation.

The strength reduction factor R for any bridge israge of the

strength reduction factor R for ground excitatiohise R factor

is site dependent, as it is a function of the &lgsteudospectral

response ordinate $at the bridge vibration period. To avoid

this dependence, the R factors were normalized byetastic

pseudospectral acceleration at period $=1
. R

T gaiT=1

(8)

The normalized R' factor is more suitable for cormgarthe
response of the same bridge under different sigeifip ground

motions. Note thaB,(T=1) is often used to define the constant

velocity portion of the response spectrum. Furtteeenif site
specific response modification factors are not ede8,(T=1)
is usually assumed equal to peak ground accelardRGA)
(Mackie and Stojadinovic 2004).

The method of probabilistic seismic demand analysis used
(Mackie and Stojadinovic, 2005) to generate refeiops
between IMs and EDPs, known as probabilistic seistamand
models. Only the PSDMs utilizing the maximum abs®lu
column drift (in transvers direction) was considker@ this
study. The choice of IM for use with above EDPiisited to
the spectral acceleration at a fixed period of T sec. Spectral

Descriptive analyses were conducted using SPSS/\M8N)
(SPSS, Inc.) and the path models were analyzedy U BRSS
AMOS18.0 (SPSS, Inc.). AMOS (Analysis of Moment
Structure) is software that is designed specificdtir path
analysis. Means and standard deviations were eealsnong
observed variables (Table 2). The skews of alladeis were
less than 3 and the coefficients of kurtosis ofvatiiables were
less than 8. Thus, no violation of the assumptibnamality
was detected.

Table 2. Assessment of normality

Variable min max skew C.I. kurtosi C.I.
PCLS -2.705 3.898 0.508 2.931 1.311 3.786
T 0.49 5.72 0.872 5.032 -0.187 -0.541
R' 7.579 16.814 1.271 7.33 0.926 2.673
B 0.69 1.32 -0.505| -2.917 1.464] 4.225
W 1.034 6.47 0.711 4.107 -0.449 1.297
A 0.28 3.74 -0.717| -4.147% -0.122] -0.351
o 0.271 1.455 0.927 5.352 1.447| 4.1147
Multivariate 12.065 7.6

The Principal component analyses (PCA) method wed &

reduce dimensions of column limit state variablesSCLto

CLS4. According to Pedhazur and Schmelkin (1991)RGA

is a method of the multivariate data analysis. PIBA reduces
a data set with dimension m to dimension p, wherem, by

computing the principal components (i.e. new vadegpof the
original data set with the highest variance by theans of
eigenpairs of a corresponding positive semidefindggariance
matrix or correlation matrix. Table 3 and Figurstbw SPSS
output of Principal component PCLS. The factors aixpl
83.161% of the total variance.

a. Communalities . @omponent Matrix

Initial Extraction
CLS1 1.000 921 Component 1
CLS2 1.000 .893 CLS1 .960
CLS3 1.000 .900 CLS2 .945
CLS4 1.000 .612 CLS3 .949
CLs4 782
c. Total Variance Explainea
Initial Eigenvalues ExtractiBums of Squared Loadings
Total % of Cumulative Total % of Cumulative
ot Variance % ot Variance
1 3.326 83.161 83.161 3.326 83.161 83.161
2 .520 13.006 96.166
3 .146 3.655 99.821
4 .007 179 100.000

Table 3. SPSS output: Extraction Principal CompoR&ZitS

acceleration $1.0), was established as the optimal intensity

measure (IM) (Ramanathan et al 2015). A total
200x160=38400 Nonlinear Time History Analyses ofeth
dimensional finite element bridge models using 1tHeEes
(Mazzoni et al. 2009) was Performed. A regressioalysis is
conducted to generate an appropriate PSDM for
conditioned on the spectral acceleratiofi1®). The fragility
curve parameters A,By=ogppiv (EQ. 5) for each bridge were
calculated by a linear fit to the PSDMs Curves.

of

EDP
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Figure 2. Scree plot of Principal component PCLS

Figure 3 shows the hypotheses skeleton model wstedteising
path analysis within a structural equation modafework. For

all constrained parameters in the model, AMOS dates a
modification index. Modification indices indicatew much the
chi-square value of a model would drop if the pasnwere
free instead of constrained (in other words, howcinthe
model fit would improve). Modification indices air fact chi-
square tests for individual equality constraintgghhvalues
indicate that the respective parameter constraimtrong. After
the first run, and the Inspecting the unstandadiizgression
weights, all paths shown not to be significant by P value in
the output, was step by step deleted from the rsoddle final
model showed in Figure 4 was obtained by elimirtatire weak
paths from the models. The results of the analgsisiced the
Chi-square statistic and DF to 0.913 and 5 respagtivThese
results were taken as the final statistics, becdheeresults
provided by the modification indices were too smallmake
recognizable differences.

C
Table 1. Distribution of base mow.lf,';. ameterséorcrete box girder two span bridge

Distribution
Parameter DiStt';i/gléﬁon parameters Units dependency
a b
Column height Normal Mean =5.48 STD=1.12 m U
Longitudinal reinforcement ratio Uniform Min=1% Ma3.5% U
Transverse reinforcement ratio Uniform Min=0.4% Maxr % U
Number of columns per bent 1,2,3,4,5 D (decktid
Diameter 4,5 m D (number of column)
Span length Normal Mean = 35.0 STD=12.34 m U
Deck width Normal Mean = 20.48 STD=12.86 m U
Number of boxes Min=3 Max=15 D (deck width)
Total superstructure depth m D (bridge spantl®ng
Top flange depth Min=17.8 Max=28.0 Cm D (numbeboxkes)
Bottom flange depth 17.8 Cm F
Wall thickness 30.5 Cm F
Translational spring stiffness Normal Mean = 1.4e5STD=1.05e5 KN/m U
Rotational spring stiffness Normal Mean= 1.14e10 DSI.75e9 KN/m /rad U (for multi column =0)
Shear modulus of bearing Uniform Min=5.5e2 Max=8.7e MPa U
Bearing pad coefficient of friction D (deck ght)
Number of Bearing pads D (deiln(ovélejiiz;’ Shear
Abutment backwall height Uniform Min=1.0 Max=2.6 m U
Angle of incidence of earthquake 0or90 degree U
Soil stiffness 4380 or 8760 KN/m U
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Pile stiffness Lognormal Mean=1.4e4 STD=52.5 KN/m U
Gap at abutment Uniform Min=0 Max=5.08 Cm U
Number of abutment piles D (bridge width)
Gap at shear key Uniform Min=0 Max=5.08 Cm U
Shearkey capacity KN D (shear capacity of piles)
Concrete strength Normal Mean= 34.5 STD=4.3 MPa U
Steel strength Lognormal Mean=336.4 STD=0.75 MPa U
Damping coefficient Normal Mean= 0.045 STD=0.0125 U
Additional mass coefficient Uniform Min=0.1 Max=0.4 U

*U: Uncertain, D: dependent, F: Fix, STD: Standdediation

Figure 4. The final hypotheses model

The results of the path analysis with the standadiregression
coefficients were presented below in Figure 5. &abllist the
estimated path coefficients that minimize the défee between
observed and model along with their corresponditagndard
errors, critical ratios, and p-values. Tables 5tove the
standardized total, direct and indirect relatiopshso that the
factors effect on A with 5 variables were B, R'uTand PCLS.

There is a significant positive correlation betweemand T. T
had a direct effect to A and was 0.732 and hadectlieffect
through B which was 0.048; total effect was 0.78nifirly,

there is a positive correlation between B and Ahwitdirect to
A was 0.439, and had not indirect effect. Thera isegative
correlation between A and R'. R' had a direct effecA and
was -0.204 and had indirect effect through B. whigts 0.119;
total effect was -0.086. The factors affecting Bhait variable
were R', PCLS and T. PCLS, T and R' had a direct efifeBt
were -0.298, -0.109 and 0.27 respectively and tméhdirect
effect.

The factors PCLS, T, R', By, and A also affectss with direct,
indirect, total effects which were listed in Tab&$.

Figure 5. Standardized direct effects of hypothesedel

Goodness of fit of the final model was assessedhnsquare
test and the goodness of fit indices, such as RaanVBquare
Error of Approximation (RMSEA) and comparative fiidiex

(CFI).  Selected goodness-of-fit statistics relatad the

hypothesized model was presented in Table 10. mbidel had
a good fit with a chi-square = 0.913 (df = 5), RMSEA.000,

and a CFl = 1.000.

Table 4. Regression weights

Estimate S.E. C.R. P
B _ PCLS -0.031 0.007 -4.422 i
B - R’ 0.013 0.004 3.323 ok
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B T 0.008
«—

A B 3.238
«—

A T 0.408
«—

A R -0.072
«—

A B 0.04

G B 0.461
«—

G T 0.125
«—

G A -0.155
«—

G PCLS -0.025
«—

0.006

0.247

0.022

0.016

0.021

0.175

0.019

0.037

0.014

1.33

13.127

18.322

-4.651

1.933

2.639

6.439

-4.216

-1.766

0.083

0.053

0.00¢§

0.07y

Table 5. Standardized regression weights

Estimate
B — PCLS -0.298
B — R' 0.27
B — T 0.109
A — B 0.439
A — T 0.732
A — R’ -0.204
A — 1] 0.075
c — B 0.225
c — T 0.808
c — A -0.558
c — PCLS -0.117

Table 6. Correlations

Estimate
R o T -0.575
T o PCLS 0.147
n © R 0.52
B < T -0.41
n © PCLS 0.322

Table 8. Standardized direct effects — Estimates

PCLS T R' B 1] A
B -0.298 0.109 0.27 0 0 0
A 0 0.732 -0.204 0.439  0.075 0
G -0.117 0.808 0 0.225 0 -0.558

6. CONCLUSIONS

This paper presents a new method to analyze teeteff R',u,

T on the fragility curve parameters A, B, using the path
analysis technique. The major advantage of the patiysis
method is its ability to analysis the relationshigtween
dependent variables as well as between independeiatbles
and dependent variables from one time analysis.

The method is demonstrated through studies oflwespans
reinforced concrete highway bridge class. A setdefailed
three-dimensional bridge models accounting for nwlte
geometric, and system uncertainties is simulate@penSees
and used the probabilistic seismic demand modeleldeed
based on the NLTHAs. For the application of pathlgsis, R',
w, T bridge attributes are considered.

The overall findings of the study suggest that  Hae most
total positive effect on A including a direct eff€@732 and a
indirect effect 0.048, while R' has the most totasipve effect
on B including a direct effect 0.27 and did not kamdirect
effect on B. T and A have the most total positive aegative
effects onc respectively.

Table 9. Standardized indirect effects — estimates

PCLS T R’ B 1 A
B 0 0 0 0 0 0
A -0.131 0.048 0.119 0 0 0
c 0.006 -0.411 0.109 -0.245 -0.042 0

Table 10. Goodness of fit of the final model

Table 7. Standardized total effects — estimates

PCLS T R' B 1] A
B -0.298 0.109 0.27 0 0 0
A -0.131 0.78 -0.086 0.439 0.075 0
G -0.111 0.397 0.109 -0.02 -0.042 -0.59

a. CMIN
Model NPAR CMIN DF P CMIN/DF
Main 30 1.503 5 0.913 0.301
b. Baseline comparisons

NFI RFI IFI TLI

Model CFI
Deltal rhol Delta2 rho2
Main 0.997 0.989 1.006 1.026 1
c. RMSEA
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Model RMSEA | LO90| HI90 [ PCLOSE]
Main 0 0 0.037 0.968
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