Interdiscip Toxicol. 2013; **Vol. 6**(3): 157–158. **doi:** 10.2478/intox-2013-0025 Published online in:

www.intertox.sav.sk & www.versita.com/it

Copyright © 2013 SETOX & IEPT, SASc. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Effects of cadmium chloride on mouse inner medullary collecting duct cells

Eun-Kee PARK¹, Sally K. MAK², Bruce D. HAMMOCK³

¹ Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea

² Physiological Genomics Group, Department of Animal Science, University of California, Davis, CA, USA

³ Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA

ITX060313C01 • Received: 04 July 2013 • Revised: 10 August 2013 • Accepted: 17 August 2013

ABSTRACT

Cadmium is a known renal toxin. The cytotoxic effect of cadmium chloride (CdCl₂) was evaluated on renal inner medullary collecting duct cells (mIMCD3). The 24 hr LC_{50} value for CdCl₂ in mIMCD3 cells was 40 μ M. The present study showed that mIMCD3 cells were sensitive to CdCl₂ exposure.

KEY WORDS: cadmium chloride; cytotoxicity; kidney; mIMCD3 cells

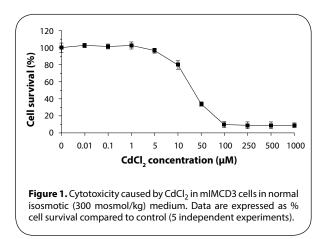
Introduction

Cadmium exposure is a public health concern for renal diseases, even at low levels of exposure (Ferraro *et al.*, 2010; Kobayashi *et al.*, 2009; Thomas *et al.*, 2009) because the kidney is the organ most sensitive to cadmium toxicity (Järup *et al.*, 1998). Most renal cell studies have focused less on the inner medulla although it is often exposed to high concentrations of common nephrotoxins (Burg, 2002; Rocha *et al.*, 2001; Yancey *et al.*, 1982). Renal inner medullary collecting duct cells (mIMCD3), which are an immortalized cell line derived from the mouse renal inner medulla, have proven a useful system to investigate effects of nephrotoxins (Cai *et al.*, 2003; Kojima *et al.*, 2011; Park *et al.*, 2007; Park *et al.*, 2008; Schenk *et al.*, 2010). The present study investigated the effect of cadmium chloride on mIMCD3 cells.

Materials and methods

Cell culture and chemicals

This experiment was performed as previously described (Park *et al.*, 2007; Park *et al.*, 2008). All reagents for cell culture were purchased from Life Technologies (Carlsbad,


Correspondence address: **Eun-Kee Park, PhD.**

Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University 262 Gamcheonro, Seogu, Busan 602-702, Republic of Korea. TEL:: +82-51-990-5424 • FAX +82-51-241-5458 E-MAIL: ekpark@kosin.ac.kr CA, USA). Briefly, mIMCD3 cells were grown in the presence of 45% Ham's F-12, 45% Dulbecco's modified Eagle's medium, 10% fetal bovine serum (FBS), 10 milliunits/ml penicillin and 10µg/ml streptomycin. The final osmolality of isosmotic medium was 300 ± 5 mosmol/kg medium, which was confirmed by a microosmometer (Model 3300, Advanced Instruments, Norwood, MA, USA). Cells were grown at 37 °C and 5% CO₂. Cadmium chloride (CdCl₂) was purchased from Sigma (St. Louis, MO, USA) and dissolved in Milli-Q water (Millipore, Bedford, MA, USA) freshly.

Cytotoxicity assays

Cell viability to determine the cytotoxic effect of CdCl₂ was carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (Roche Applied Science, IN, USA) as described previously (Park et al., 2007; Park et al., 2008). Briefly, mIMCD3 cells were grown, trypsinized, and seeded evenly with 100 µL of medium into each well of a flat-bottomed 96-well cell culture plate (Nalge-Nunc, Rochester, NY, USA). Once confluent, the desired concentrations of CdCl₂ for testing were diluted from a stock solution, added to the wells and incubated in a humidified incubator of 5% CO₂ at 37 °C for 24 hr. Controls were the cells without CdCl₂ treatment. MTT assay was performed according to the manufacture's instruction. Briefly, 10 µL MTT reagent was added into each well and cells incubated for 4hr, followed by addition of 100 µL of solubilization solution into each well. After 24hr incubation, the ratio of absorbance at 560 nm versus 750 nm was measured with a SpectraFluor Plus microplate reader (Tecan, Durham, NC, USA). This

ratio represented a measure of viable cells in each well and this ratio was normalized to controls that were run in parallel in the 96-well plate. Each condition was repeated in 8 wells and experiments were independently replicated 5 times. The concentration at which after 24 hr half of the cells for each of concentration of the toxins tested were viable (LC_{50}) was determined. The results were expressed as percentage of cell survival compared to the control. Data were presented as mean \pm S.E.M.

Results and discussion

Control (water) had no influence on the survival of mIMCD3 cells. The 24 hr LC_{50} value for CdCl_2 in mIMCD3 cells was 40 µM in this experiment (Figure 1). The results of this study demonstrated that CdCl₂ is directly toxic to mIMCD3 cells, which are well suited for this study. Previous studies reported that cadmium chloride (CdCl₂) caused damage to the proximal tubular epithelium of the mammalian kidney (Järup, 2002; Prozialeck et al., 1993; Van Vleet & Schnellmann, 2003). A similar toxic effect of CdCl₂ in LLC-PK1 cells (pig renal proximal tubule cell line) was found with a 24 hr LC_{50} value of 50 μ M (Gennari et al., 2003). The cell viability at 9 hr was decreased by 38% and 45% at 25 and 50 µM CdCl₂, respectively (Gena et al., 2010). CdCl₂ was reported to cause DNA strand breaks, lipid peroxidation, reactive oxygen species, induction of necrosis and apoptosis, and to inhibit Na, K-ATPase (Kinne-Saffran et al., 1993; Mao et al., 2007; Mao et al., 2011; Valverde et al., 2001).

Overall, the present study revealed that cadmium chloride has a toxic effect on inner medulla areas and that mIMCD3 cells could be suited for studying the mechanisms related to $CdCl_2$ toxicity.

Acknowledgements

The study was supported by grants from the National Institute of Environmental Health Sciences Superfund Basic Research Program P42 ES04699. *Author disclosure statement:* No competing financial interest exists.

REFERENCES

- Burg MB. (2002). Response of renal inner medullary epithelial cells to osmotic stress. Comp Biochem Physiol A Mol Integr Physiol 133: 661–666.
- Cai Q, Dmitrieva NI, Michea LF, Rocha G, Ferguson D and Burg MB. (2003). Toxicity of acetaminophen, salicylic acid, and caffeine for first-passage rat renal inner medullary collecting duct cells. *J Pharmacol Exp Ther* **306**: 35– 42.
- Ferraro PM, Costanzi S, Naticchia A, Sturniolo A and Gambaro G. (2010). Low level exposure to cadmium increases the risk of chronic kidney disease: analysis of the NHANES 1999–2006. *BMC Public Health* **10**: 304.
- Gena P, Calamita G and Guggino WB. (2010). Cadmium impairs albumin reabsorption by down-regulating megalin and CIC5 channels in renal proximal tubule cells. *Environ Health Perspect* **118**: 1551–1556.
- Gennari A, Cortese E, Boveri M, Casado J and Prieto P. (2003). Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells. *Toxicol* 183: 211–220.
- Järup L. (2002). Cadmium overload and toxicity. *Nephrol Dial Transplant* **17(Suppl2)**: 35–39.
- Järup L, Berglund M, Elinder CG, Nordberg G and Vahter M. (1998). Health effects of cadmium exposure – a review of the literature and a risk estimate. *Scand J Work, Environ Health* **24(Suppl 1)**: 1–51.
- Kinne-Saffran E, Hülseweh M, Pfaff C and Kinne RK. (1993). Inhibition of Na,K-ATPase by cadmium: different mechanisms in different species. *Toxicol Appl Pharmacol* **121**: 22–29.
- Kobayashi E, Suwazono Y, Dochi M, Honda R and Kido T. (2009). Influence of consumption of cadmium-polluted rice or Jinzu river water on occurrence of renal tubular dysfunction and/or itai-itai disease. *Bio Trace Elem Res* 127: 257–268.
- Kojima N, Saito H, Nishikawa M, Yuri S, Jo OD, Pham PC, Yanagawa N and Yanagawa N. (2011). Lithium induces c-Ret expression in mouse inner medullary collecting duct cells. *Cell Signal* 23: 371–379.
- Mao WP, Ye JL, Guan ZB, Zhau JM, Zhang C, Zhang NN, Jiang P and Tian T. (2007). Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and –independent pathways acting on mito-chondria. *Toxicol In Vitro* **21**: 343–354.
- Mao WP, Zhang NN, Zhou FY, Li WX, Liu HY, Feng J, Zhou L, Wei CJ, Pan YB and He ZJ. (2011). Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells. *Hum Exp Toxicol* **30**: 920–929.
- Park EK, Mak SK, Kultz D and Hammock BD. (2007). Evaluation of cytotoxicity attributed to thimerosal on murine and human kidney cells. J Toxicol Environ Health A 70: 2092–2095.
- Park EK, Mak SK, Kultz D and Hammock BD. (2008). Determination of cytotoxicity of nephrotoxins on murine and human kidney cell lines. *J Environ Sci Health B* **43**: 71–74.
- Prozialeck WC, Wellington DR and Lamar PC. (1993). Comparison of the cytotoxicity effects of cadmium chloride and cadmium-metallothionein in LLC-PK1 cells. *Life Sci* 53: 337–342.
- Rocha GM, Michea LF, Peters EM, Kirby M, Xu Y, Ferguson DR and Burg MB. (2001). Direct toxicity of nonsteroidal antiinflammatory drugs for renal medullary cells. *Proc Natl Acad Sci USA* **98**: 5317–5322.
- Schenk LK, Rinschen MM, Klokkers J, Kurian SM, Neugebauer U, Salomon DR, Pavenstaedt H, Schlatter E and Edemir B. (2010). Cyclosporin-A induced toxicity in rat renal collecting duct cells: interference with enhanced hypertonicity induced apoptosis. *Cell Physiol Biochem* 26: 887–900.
- Thomas LD, Hodgson S, Nieuwenhuijsen M and Jarup L. (2009). Early kidney damage in a population exposed to cadmium and other heavy metals. *Environ Health Perspect* **117**: 181–184.
- Van Vleet TR and Schnellmann RG. (2003). Toxic nephropathy: environmental chemicals. Semin Nephrol 23: 500–508.
- Valverde M, Trejo C and Rojas E. (2001). Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? *Mutagenesis* **16**: 265–270.
- Yancey PH, Clarl ME, Hand SC, Bowlus RD and Somero GN. (1982). Living with water stress: Evolution of osmolyte systems. *Science* **217**: 1214–1222.