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ABSTRACT
Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the 
toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were 
determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 
and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called 
N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from 
both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values 
ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, 
the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression 
of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in 
the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA 
and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the 
N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also 
induced the expression of CYP3A4 in this neuroblastoma cell line. 
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neuroblastoma grows relentlessly and may be rapidly fatal. 
Prognosis of high-risk form of cancer is poor, because drug 
resistance arises in the majority of those patients, initially 
responding to chemotherapy (Brodeur, 2003).

Neuroblastoma consists of two principal neoplastic cells 
(Voigt et al., 2000; Hopkins-Donaldson et al., 2004): i) neu-
roblastic or N-type: undifferentiated, round and small scant 
cytoplasm cells; and ii) stromal or S-type: large hyaline, flat-
tened and adherent differentiated cells. As neuroblastoma 
cells seem to have the capacity to differentiate spontane-
ously in vivo and in vitro (Morgenstern et al., 2004), their 
heterogeneity could affect treatment outcome, in particular 
the response to apoptosis induced by chemotherapy. 

To achieve the most suitable concept of treatment, drugs 
are usually used in various combinations. Agents commonly 
used in neuroblastoma treatment are platinum compounds 
(cisplatin, carboplatin), alkylating agents (cyclophospha-
mide, ifosfamide, melphalan), topoisomerase II inhibitors 
(etoposide), anthracycline antibiotics (doxorubicin) and 

Introduction

Neuroblastoma is the major cause of death from neoplasia in 
infancy (Maris and Mathay, 1999). These solid extracranial 
tumors are biologically heterogeneous, with cell popula-
tions differing in their genetic programs, maturation stage 
and malignant potential (Brodeur, 2003). Low-risk neuro-
blastoma is one of the rare human malignancies that are 
known to demonstrate spontaneous regression in infants 
from an undifferentiated state to a completely benign 
cellular formation (ganglioneuroma), whereas high-risk 
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vinca alkaloids (vincristine). Some novel regimen include 
also topoisomerase I inhibitors (topotecan and irinotecan) 
that are effective against recurrent disease (Brodeur, 2003). 

Because the epigenetic structure of DNA and its lesions 
play a role in the origin of human neuroblastomas, phar-
maceutical manipulation of the epigenome may offer other 
treatment options also for neuroblastomas (Furchert et al., 
2007). Histone deacetylases (HDAC) and histone acetyl 
transferases modify histone proteins and contribute to an 
epigenetic code recognized by proteins involved in regula-
tion of gene expression (Marks et al., 2003; 2004; Hooven 
et al., 2005). Indeed, former studies demonstrated the 
cytotoxicity of HDAC inhibitors to several neuroblastoma 
cells, resulting in growth inhibition of these tumor cells 
(Cinatl et al., 1996; Michaelis et al, 2004; 2007; Furchert et 
al., 2007). In neoplastic cells, where overexpression of dif-
ferent HDACs was frequently detected (for summary see, 
Bolden et al, 2006), the abundance of deacetylated histones 
is usually associated with DNA hypermethylation and gene 
silencing (Santini et al., 2007). Treatment with HDAC 
inhibitors induced the reactivation of growth regulatory 
genes and consequently apoptosis in these cells. One of the 
HDAC inhibitors, valproic acid (VPA), inhibits growth and 
induces differentiation of human neuroblastoma UKF-NB-2 
and UKF-NB-3 cells in vitro at concentrations ranging from 
0.5 to 2 mM that have been achieved in human with no 
significant adverse effects (Cinatl et al., 1996). However, 
information on effects of VPA and other HDAC inhibitors 
on additional neuroblastoma cells are scarce. Therefore, 
here we extended this study by investigating the effect of 
VPA and another HDAC inhibitor, trichostatin A (TSA), 
on other neuroblastoma cell lines. Because heterogeneity of 
neuroblastoma cells could affect their treatment, two types 
of neuroblastoma cell lines were tested for their response 
to VPA and TSA treatment. Besides the effect of VPA and 
TSA on UKF-NB-3 cells (the invasive N-type), that on the 
UKF-NB-4 and SK-N-AS cell lines (the non-invasive and 
less-aggressive S-type) was investigated in this work.

In addition, VPA and TSA are known to be metabolized 
by cytochrome P450 (CYP) biotransformation enzymes 
and can increase and/or decrease their activities and/or 
expression, thereby affecting mechanisms that control 
drug disposition (Fisher et al., 1991; Rogiers et al., 1992; 
1995; Isojärvi et al., 2001; Wen et al., 2001; Bort et al., 
2004; Cerveny et al., 2007; Nelson-DeGrave et al., 2004; 
Hooven et al., 2005; Snykers et al., 2007; Kiang et al., 2006). 
Because several CYP enzymes metabolizing a variety of 
drugs (CYP1A1, 1B1 and 3A4) were found to be expressed 
in neuroblastoma cells (Poljaková et al., 2009), here we also 
investigated whether their expression is influenced by VPA 
and TSA in these cells. 

Material and methods

Chemicals 
Valproate and trichostatin A were obtained from Sigma (St. 
Louis, MO, USA). All other chemicals used in the experi-
ments were of analytical purity or better. 

Cell cultures
The UKF-NB-3 and UKF-NB-4 neuroblastoma cell lines, 
established from bone marrow metastases of high-risk 
neuroblastoma, were a gift of prof. J. Cinatl, Jr. (J. W. Goethe 
University, Frankfurt, Germany). Cell line UKF-NB-4 was 
established from infiltrated bone marrow of chemoresistant 
high-risk neuroblastoma recurrence and have high expres-
sion of P-glycoprotein. SK-N-AS, derived from bone marrow 
metastases of neuroblastoma, was of the commercial source 
(ECACC, Salisbury, UK). Cells were grown at 37 °C and 5% CO2 
in Iscove’s modified Dulbecco’s medium (IMDM) (KlinLab Ltd, 
Prague, Czech Republic), supplemented with 10% fetal bovine 
serum, 2 mM L-glutamine, 100 units/ml of penicilline and 100 
μg/ml streptomycine (PAA Laboratories, Pasching, Austria). 

MTT assay
The cytotoxicity of valproate and trichostatin A was deter-
mined by MTT test. For a dose-response curve, culture 
medium stock solutions of valproate (200 mM) and DMSO 
solutions of trichostatin A (1 mM) were dissolved in culture 
medium to final concentrations of 0 – 50 mM and 0 – 1 μM 
for valproate and trichostatin A, respectively. Cells in expo-
nential growth were seeded at 1 × 104 per well in a 96-well 
microplate. After incubation (72 hours) at 37 °C in 5% CO2 
saturated atmosphere the MTT solution (2 mg/ml PBS) was 
added, the microplates were incubated for 4 hours and cells 
lysed in 50% N,N-dimethylformamide containing 20% of 
SDS, pH 4.5. The absorbance at 570 nm was measured for 
each well by multiwell ELISA reader Versamax (Molecular 
devices, CA, USA). The mean absorbance of medium controls 
was subtracted as a background. The viability of control cells 
was taken as 100% and the values of treated cells were calcu-
lated as a percentage of control. The IC50 values were calcu-
lated from at least 3 independent experiments using linear 
regression of the dose-log response curves by SOFTmaxPro.

Estimation of contents of cytochromes P450 1A1, 1B1 
and 3A4 in neuroblastoma cells by Western blot
To determine the expression of CYP1A1, 1B1 and 3A4 
proteins, cells were homogenized in RIPA buffer. Protein 
concentrations were assessed using the DC protein assay 
(Bio-Rad, Hercules, CA, USA) with serum albumin as a 
standard. 10–45 μg of extracted proteins were subjected to 
SDS-PAGE electrophoresis on a 10% gel. After migration, 
proteins were transferred to a nitrocellulose membrane 
and incubated with 5% non-fat milk to block non-specific 
binding. The membranes were then exposed to specific 
anti-CYP1A1 (1:1000, Millipore, MA, USA) anti-CYP1B1 
(1:500, AbCam, MA, USA) and anti-CYP3A4 (1:5000, AbD 
Serotec, Oxford, UK) rabbit polyclonal antibodies overnight 
at 4 °C. Membranes were washed and exposed to peroxidase-
conjugated anti-IgG secondary antibody (1:3000, Bio-Rad, 
Hercules, CA, USA), and the antigen-antibody complex was 
visualized by enhanced chemiluminiscence’s detection sys-
tem according to the manufacturer’s instructions (Immun-
Star HRP Substrate, Bio-Rad, Hercules, CA, USA). Films 
(MEDIX XBU, Foma, Hradec Králové, Czech Republic) 
were scanned with a computerized image-analyzing system 
(ElfoMan 2.0, Ing. Semecký, Prague, Czech Republic). 
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Results

Cytotoxicity of valproate and trichostatin A 
to human neuroblastoma cells
To evaluate the cytotoxicity of VPA and TSA to human 
neuroblastoma cells (UKF-NB-3, UKF-NB-4 and 
SK-N-AS), these cells were treated with increasing con-
centrations of both drugs (0–50 mM for VPA and 0–1 μM 
for TSA). We first determined the effect of VPA and TSA 
on growth of human neuroblastoma cell lines cultured 
for 72 hours in the presence of both drugs, using MTT 
assay. As shown in Figures 1 and 2, all three neuroblas-
toma cell lines were sensitive to VPA and TSA. Both drugs 
inhibited the growth of neuroblastoma cell lines in a 
dose-dependent manner. The IC50 values for VPA and TSA 
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Figure 1. Cytotoxicity (viable cells as percentage of control) of val-
proate to UKF-NB-3, UKF-NB-4 and SK-N-AS after 72 h exposure to the 
compound, determined by the MTT assay (A) and the values of IC50 
(B). Values are means and standard deviations of 8 determinations. 

Figure 2. Cytotoxicity (viable cells as percentage of control) of trichos-
tatin A to UKF-NB-3, UKF-NB-4 and SK-N-AS after 72 h exposure to the 
compound, determined by the MTT assay. (A) and the values of IC50 
(B). Values are means and standard deviations of 8 determinations. 
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calculated from the dose-log response curves are shown in 
Figures 1B and 2B. 

Among the neuroblastoma cell lines tested in this study, 
the UKF-NB-3 cell line was the most sensitive to both drugs, 
with IC50 values of 1.02 mM and 69.8 nM for VPA and TSA, 
respectively. The IC50 values indicating the toxicity of VPA 
and TSA to UKF-NB-4 cells were similar to those found for 
the SK-N-AS cell line, being up to a 2.7-fold lower than for 
the UKF-NB-3 cell line (Figures 1 and 2). Nevertheless, the 
curves showing the viability of SK-N-AS cells under treat-
ment with increasing concentrations of VPA and TSA sig-
nificantly differed from those of UKF-NB-3 and UKF-NB-4 
cell lines. At higher VPA and TSA concentrations, the 
sensitivity of SK-N-AS cells was much lower than that of 
other two neuroblastoma cell lines analyzed in this work.
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Eff ect of VPA and TSA on expression of cytochrome 
P450 1A1, 1B1 and 3A4 proteins
Using Western blot analysis with antibodies raised against 
CYP1A1, 1B1 and 3A4, the effects of VPA and TSA on 
protein expression levels of these enzymes were analyzed in 
the tested neuroblastoma cell lines.

Expression of CYP1A1 protein in neuroblastoma 
UKF-NB-3 and UKF-NB-4 cells was elevated by increasing 
concentrations of VPA and/or TSA in a dose-dependent 
manner (Figure 3). A 1.7-, 4.0- and 8.1-fold increase in 
CYP1A1 expression was caused by treating the UKF-NB-3 
cells for 48 hour with 0.5, 1.0 and 2.0 mM VPA, respec-
tively, while lower, only up to a 1.7-fold increase in levels 
of this CYP was produced by VPA in UKF-NB-4 cells. In 
the SK-N-AS cells, even no effect of VPA on the CYP1A1 
expression was detectable.

Similar effects on CYP1A1 expression in neuroblastoma 
UKF-NB-3 and UKF-NB-4 cell lines were detected when 
cells were treated for 48 hours with TSA. Up to a 4.4-fold 
increase in expression levels of CYP1A1 was produced by 
50–200 nM TSA in these cells (Figure 3). No effects of TSA on 
the expression of CYP1A1 protein in SK-N-AS were found. 

Figure 3. Expression of CYP1A1, 1B1 and 3A4 in human neuroblas-
toma cell lines UKF-NB-3, UKF-NB-4 and SK-N-AS by Western blot.

Expression of CYP1B1 protein was decreased in 
UKF-NB-3 and UKF-NB-4 cells after their 48-hour treat-
ment with increasing concentrations of VPA and/or TSA, 
being decreased in a dose-dependent manner. Similar to 
CYP1A1, no effect of both HDAC inhibitors on expres-
sion of CYP1B1 was produced in SK-N-AS cells (Figure 3). 
Interestingly, two protein bands detectable by antibody 
against CYP1B1 were found in SK-N-AS cells. 

In the case of the effects of VPA and TSA on expres-
sion of CYP3A4 protein in neuroblastoma cells, both 
these drugs essentially did not influence its expression in 
S-type UKF-NB-4 and SK-N-AS cell lines. The N-type of 
neuroblastoma cell line, UKF-NB-3, was only the excep-
tion; whereas increased concentrations of VPA increased 
CYP3A4 expression in this cell line, TSA had no effect 
(Figure 3). 

Discussion

The results of this work show that human neuroblastoma 
UKF-NB-3, UKF-NB-4 and SK-N-AS cell lines are sensitive 
to two tested HDAC inhibitors, VPA and TSA. In the case 
of VPA, its concentrations that were toxic to neuroblastoma 
cells are clinically applicable, since concentrations between 
0.35–0.7 mM in patients serum are commonly therapeuti-
cally used (Duenas-Gonzalez et al., 2007). The IC50 values 
for VPA and TSA indicate that a UKF-NB-3 cell line was 
the most sensitive to both HDAC inhibitors, while their 
toxicity to the UKF-NB-4 and SK-N-AS cell lines was up 
to a 2.7-fold lower. Thus, the sensitivity to the two drugs 
seems to be related to the phenotype, with the S-type cells 
(UKF-NB-4 and SK-N-AS) being less sensitive than the 
N-type (UKF-NB-3), probably because of their partly lower 
capability of undergoing apoptosis (Servidei et al., 2004). 
However, the results shown here indicate that it seems to 
be questionable to evaluate the toxic effects of chemicals 
to cells in culture using only the IC50 values. The question 
arises, whether the IC50 value is a real appropriate sensi-
tivity marker. Namely, of the S-type neuroblastoma cells 
utilized in this study, the SK-N-AS cell line seems to be 
even less sensitive to VPA and TSA than the second S-type 
cell line, UKF-NB-4, even though the IC50 values for VPA 
and TSA were similar for both these cell lines. At higher 
VPA and TSA concentrations, the sensitivity of SK-N-AS 
cells was much lower than that of UKF-NB-4. This less 
sensitive SK-N-AS line seems to be, at least in part, capable 
of overcoming treatment with VPA and TSA at concentra-
tions that cause almost complete eradication of UKF-NB-4 
cells. These results suggest that caution should be exerted 
to sort neuroblastoma cells into their types. Even in one 
type of neuroblastoma cells (S-type in this case), biological 
heterogeneity should be taken into account. This suggestion 
is also supported by further features found in this cell line. 
Namely, the SK-N-AS cell line behaves differently from the 
other S-type cell line, UKF-NB-4, from the point of view of 
the effects of VPA and TSA on CYP expression; no effects of 
both drugs was found on levels of individual CYP enzymes. 
Moreover, in this cell line, the two CYP1B1 protein bands 
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were detectable by antibody against this CYP. Now, we can 
only speculate on the origin of the second protein band in 
SK-N-AS cells. The questions, whether it might follow from 
a degradation of the CYP1B1 protein in this cell line or it 
is the artifact caused by the method used (Western blot), 
remain to be answered. 

The expression of all CYP enzymes analyzed in this 
work was modulated by VPA and TSA only in the N-type 
UKF-NB-3 cell line. Whereas the CYP1A1 enzyme was 
induced by both drugs, expression of CYP1B1 was depressed 
by both drugs. The CYP3A4 enzyme was increased by VPA, 
but TSA had no influence on the expression of this enzyme. 
The expression of CYP1A1 and 1B1 was also similarly 
affected by VPA and TSA in the UKF-NB-4 cell line, but no 
effect on expression levels of CYP3A4 was produced in this 
line. Similarity in response of UKF-NB-3 and UKF-NB-4 
cells to the effects of VPA and TSA on CYP1A1 and 1B1 
expression might probably be caused by their similar effects 
on state (degree) of acetylation of histones and, therefore, 
transcription activity. But differences between these two 
cell lines and particularly SK-N-AS cells in response to 
CYP enzyme expression and its affecting by VPA and TSA 
are still valuable. The question whether such differences 
are caused by the fact that cells vary in the broad spectrum 
of metabolic and signalling pathways that might also be 
affected by VPA and TSA in a different way, independently 
of a cell type (N- or S-type), remains to be answered. 
Further studies with these and other neuroblastoma cell 
lines and various HDAC inhibitors and broader spectrum 
of CYP enzymes have to be performed in order to shed 
more light on this field.

Since CYP enzymes are involved in biosynthesis and 
metabolism of many endogenous physiologically active 
substances and in biotransformation of xenobiotics with 
pharmacological and/or toxic effects (Myasodeova, 2008), 
a change in their expression might affect the cells signifi-
cantly. In the case of oncology, the participation of CYPs 
in drug metabolism seems to be their most important role. 
A variety of CYP enzymes is involved in metabolism of a 
broad spectrum of drugs that can, moreover, either increase 
or decrease their expression levels. The finding that VPA 
and TSA are capable of inducing and depressing CYP 
enzyme expression in neuroblastoma cells (CYP1A1, 1B1 
and 3A4 tested in our work) might have great importance. 
This feature might be utilized mainly in the combination 
therapy with other drugs whose pharmacological effects 
are dependent on their CYP-mediated metabolism. Such a 
study with one of these drugs, ellipticine, is under way in 
our laboratory.
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