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ABSTRACT
Pesticides are one of the major sources of environmental toxicity and contamination. This study reports potential of lepidopteran 

insecticide formulation, named Flubendiamide, in altering compound eye architecture and bristle pattern orientation for four con-

secutive generations (P, F1, F2 and F3) in a non-target diptera, Drosophila melanogaster Meigen (Diptera: Drosophilidae). The concentra-

tions of the insecticide formulation selected for treatment of Drosophila (50 and 100 μg/mL) were in accordance with practiced Indian 

field doses (50 μg/mL for rice and 100 μg/mL for cotton). This study showed trans-generational insecticide-induced changes in the 

morphology of the compound eyes of the non-target insect D. melanogaster. 
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unanticipated. In our previous studies, the neurotoxic 

potential of this chemical against Drosophila melanogas-

ter Meigen (Diptera: Drosophilidae) was discussed (Sarkar 

et al., 2015a). In the present work we assessed the effects 

of Flubendiamide at Indian field doses on the compound 

eye morphology of D. melanogaster, a very accessible 

model organism (Rand, 2010; Sarkar et al., 2017a). More 

specifically, the compound eye of D. melanogaster is yet 

again an established model used as an index for toxicity 

in environmental monitoring studies, where any possible 

alteration in its architecture would indicate the risk of 

exposure. Several studies on chemically induced altera-

tion in compound eye have reported such variation in 

eye morphology (Podder et al., 2012; Dutta et al., 2014a; 

Sarkar et al., 2015a). The study further explores the pos-

sibilities of trans-generational transfer of Flubendiamide 

induced alterations in the compound eye architecture for 

four (P, F1, F2 and F3) consecutive generations, similar to 

the findings of NaF exposure in Drosophila (Dutta et al., 

2014b; Yiamouyiannis, 1983).

Materials and Methods

Fly strain
Drosophila melanogaster Oregon R strain was maintained 

in Standard Drosophila Medium (SDM) containing 3 gm 

Introduction

Indiscriminate use of pesticides leads to significant 

environmental contamination (KarChowdhuri et al., 

2001). Flubendiamide (C23H22F7IN2O4S, CAS No: 

272451-65-7), a contemporary lepidopteran insecticide 

formulation is responsible for calcium ion influx from 

muscle cytosol to lumen in target insects, which results 

in their muscle paralysis (Ebbinghaus-Kintscher et 

al., 2006) leading to death. Doses of this benzene-di-

carboxamide insecticide (Flubendiamide 20% WDG) 

used for pest control in India are 50 and 100 μg/mL 

for rice and cotton, respectively (Government of India, 

Ministry of Agriculture, Department of Agriculture and 

Cooperation 2009). The maximum residual levels (MRL) 

of Flubendiamide in rice and cotton crops are 0.2 and 1.0 

mg/kg, respectively. The proposed average daily intake 

(ADI) value of Flubendiamide is 0.017 mg/kg bw/day 

(Sarkar & Roy 2017b). Since the formulation is targeted 

against lepidopteran insects, cross-reactivity leading to 

hazardous impact in non-target Dipterans, like Drosophila 

melanogaster Meigen (Diptera: Drosophilidae) is quite 
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agar-agar (Fisher Scientific, Mumbai, India), 17 g corn meal 

(Victoria Foods Private Limited, Delhi, India), 15 g sucrose 

(Fisher Scientific) and 9 g yeast (Merck Specialities Private 

Limited) in 360 mL distilled water at 22±1 °C (Dutta et 

al., 2014a). 1 mL Propionic acid and 5 mg Nipagin were 

added as preservative and fungicide. Untreated larvae 

were maintained in a standard food medium as control. 

Insecticide exposure
The formulation of Flubendiamide (TATA TAKUMI®) 

was used to prepare different concentrations of the test 

chemical in distilled water and mixed with SDM at a final 

concentration of 50 and 100 μg/mL. Thirty first instar 

larvae of D. melanogaster were introduced in each petri-

plate (diameter – 9cm) containing SDM with or without 

insecticide and reared until adulthood (chronic exposure). 

Each experimental set up was maintained in triplicate sets 

(30 insects in triplicate sets per treatment concentration; 

30×3=90; thus, N=90). One control set, free from addi-

tional chemical, was maintained for comparison with 

other treatment concentrations. 

Study of consecutive generations
Fruit flies from parental generation were exposed to 

Flubendiamide from their first instar larval stage until they 

emerged as adults (chronic exposure). These P-generation 

adult flies were transferred to new petri-plates that were 

free from chemical and were maintained for successive 

generations. Thus the F1, F2 and F3 generation flies were 

produced and maintained in additional chemical-free 

milieu.

Scanning electron microscopy
Randomly selected five (5) adult D. melanogaster (Oregon 

R strain) out of each group of thirty (30) experimental 

insects were used from each treatment category of all gen-

erations (P, F1, F2 and F3) for scanning electron microscopy. 

As part of the preparation, they were taken for fixation in 

2.5% gluteraldehyde for 2 hours and were then dehydrated 

with graded alcohols (Sarkar et al., 2015a). Following 

fixation, the samples were processed using CPD Machine 

(HCP-2 HITACHI) for critical point drying. Finally, gold 

coating was performed using IB-2 Ion Coater (EIKO 

ENGINEERING) for better observation of the external 

morphology of the compound eye of D. melanogaster 

under scanning electron microscope (S-530 HITACHI). 

Percentage of eye alterations
Twenty-five adult flies from each treatment category of all 

generations (P, F1, F2 and F3) were carefully scrutinized 

under compound microscope (10X). At places, the distinct 

formation of ridge-groove structure and disorganized pat-

tern of bristle orientation of the eyes after Flubendiamide 

treatment was considered as the “alteration”. These sig-

nificant percentages of compound eye abnormality were 

observed and recorded. 

Statistical analysis
Two-way analysis of variance (ANOVA) was performed 

to find the significant variations in the occurrence of 

percentage alterations among the different generations 

followed by Tukey test according to Zar (1999) using the 

Statistical Package for Social Sciences (SPSS) version 16. 

Results 

Eff ects of Flubendiamide on compound eye 
morphology in P-generation
Flies receiving treatment in P generation (50 and 

100 μg/mL) manifested distinct alterations in eye mor-

phology (Figures and 3) when compared with control 

counterparts (Figure 1a–b). The total symmetry of eye 

morphology was changed with distinct grooves and 

ridges. The pattern of bristle orientation also revealed 

modification (Figures 2 and 3). 

Eff ects of Flubendiamide on compound eye morphology 
in subsequent generations (F1, F2 and F3)
Flies exposed to Flubendiamide (50 μg/mL and 100 μg/mL) 

in P generation had structural changes in the compound 

Figure 1(a–h). Electron-micrograph of compound eye of normal/
wild type Drosophila melanogaster (P, F1, F2 and F3 generations) at 
low (200×) and high magnifi cation (500×). The insects were reared 
in a chemical free environment.
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eyes, which was not restricted to P generation but to the 

following 3 generations (F1, F2 and F3) (Figures 2 and 3) 

when compared with control counterparts (Figure 1c–h). 

The number of grooves and ridges as well as disoriented 

pattern of mechano-sensory bristles were increased in 

the subsequent generations up to F2 (P<F1<F2) and then 

slightly decreased in case of F3 (Figures 2 and 3). 

Eff ects of Flubendiamide on proportion/percentage of 
altered compound eye morphology (P, F1, F2 and F3)
D. melanogaster exposed to 50 and 100 μg/mL Fluben-

diamide in P generation revealed 30.67±0.67% and 

33.33±0.88% alteration in compound eye morphology. In F1 

generation, 17.33±0.88% and 21.33±0.67% flies were found 

with altered compound eye respectively. 25.33±0.88% and 

23.33±0.33% flies were reported to have modification in 

their compound eye structure in F2 generation, whereas a 

declining 13.33±0.33% and 18.67±0.67% flies in F3 genera-

tion revealed altered eye phenotype (Figure 4).

Figure 2. Scanning Electron micrographs of adult compound eye 
from Drosophila melanogaster of P, F1, F2 and F3 generations where 
the insects received treatment with 50 μg/mL Flubendiamide in 
their P generation only.

Figure 3. Scanning Electron micrographs of adult compound eye 
from Drosophila melanogaster of P, F1, F2 and F3 generations. The 
insects were treated with 100 μg/mL Flubendiamide in the P gen-
eration only.
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Figure 4. Graphical representation of percentage ± SE of altera-
tions in compound eye structure for four generations (P, F1, F2, 
and F3), when exposed to 50 (denoted by red line) and 100 μg/mL 
(denoted by blue line). Interestingly the control fl ies from all four 
generations were observed carefully but they did not manifest any 
structural alterations. Hence, percentage alteration could not be 
calculated for this group. 
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Discussion

The compound eye of D. melanogaster consists of nearly 

800 regular ommatidia with evenly distributed mechano-

sensory bristles between them (Podder et al., 2012) along 

with 8 photoreceptor neurons, accessory cells, 4 cone cells, 

2 primary pigment cells, shared secondary and tertiary 

pigment cells, and bristle cells (Dutta et al., 2014a). Any 

change in external eye morphology may interfere with 

signaling cascades regulating developmental processes 

(Dutta et al., 2014a). Moreover, considering reflection 

symmetry with one axis of symmetry (Klingenberg, 2015), 

eyes from the treated flies revealed distinct alterations 

in structure when compared with control counterparts 

in terms of ommatidial arrangement and bristle pattern 

orientation. 

Three hypotheses might be forwarded for trans-

generational transmission of the altered phenotype in 

Flubendiamide treated fruit flies, 1) it might be due 

to the effect of the chemical on reproductive organs of 

P-generation flies, as reported by Yiamouyiannis (1983), 

Huang et al. (1995) at different treatment occasions, or 2) it 

may be autosomal / extra-chromosomal / mitochondrial / 

cellular inheritance as discussed by Xing et al. (2007) in 

case of trans-generational transfer of tumor factors in D. 

melanogaster, or 3) epigenetic factors like microRNAs 

(miRNAs), DNA methylation, and histone modification 

might play a distinct role in genetic inheritance and evolu-

tion, as suggested by Sharma (2015). 

Several environmental factors like physical or chemi-

cal stress may elicit morphological alterations in D. mela-

nogaster as discussed by D’Ávila et al. (2008). Waddington 

(1942) showed that alterations in the phenotype of fruit 

flies induced by (unusual) environmental conditions 

(high temperatures) could be fixed in a population by 

selective breeding. One of the probable reasons for the 

alterations to be transmitted to the following generations 

as suggested by Capy et al. (1998), might be due to change 

in location of Transposable Elements (TEs) in the host 

genome or due to alterations resulting from inbreeding in 

a small size population (Loeschcke et al., 1997). 

Interestingly, our previous studies on D. melanogaster 

also successfully demonstrated Flubendiamide-induced 

overexpression of a chaperon, Heat Shock Protein-70 

(Hsp70) (Sarkar et al., 2015b) along with Acetyl-

cholinesterase (AChE) inhibition in neurons, as well as 

disoriented compound eye architecture (Sarkar et al., 

2015a). Since all HSPs belong to the same gene family, 

it could be assumed that they would manifest similar 

outcomes. One small α-crystalline-related heat shock 

protein (sHsp), Hsp27 is known to be synthesized during 

fly development by the induction of molting hormone 

ecdysone (Ireland et al., 1982). This sHsp has its expres-

sion in adult brain, gonads (Arrigo & Tanguay, 1991), and 

ommatidial cells (cone, pigment and photoreceptor cells) 

(Marin et al., 1996). Other sHsps are known to act together 

with α-crystalline in plasma membrane and cytoskel-

eton (Miron et al., 1991; Lavoie et al., 1993). A study on 

mammalian Hsp27 revealed its crucial role in signalling 

pathway between mitogens and actin polymerization at 

the membrane (Miron et al., 1991; Lavoie et al., 1993). Heat 

shock proteins of Drosophila (Hsps) have close proximity 

with vertebrate eye lens protein α-crystalline (Ingolia & 

Craig, 1982), which might indicate a common ancestry for 

both proteins. The second half of α-crystalline domain 

was found to have very conserved 83 residues in case of D. 

melanogaster and mammals (Southgate et al., 1983). Any 

chemical stress may lead sHsps to form super aggregated 

structures (in lens cells), which is very well defined in 

case of mammalian Hsp27 (Mehlen & Arrigo, 1994) and 

α-crystalline (Klemenz et al., 1991) proteins. So the effects 

seen in D. melanogaster compound eye might similarly be 

manifested in related organisms like mammals, including 

humans. 

Several authors have established different genes 

responsible for normal eye development and vision, like 

Rab 11 (Tiwari & Roy, 2009) and Rab 6 (Alone et al., 

2005), fat facets (faf) (Huang et al., 1995), nemo (nmo) 

(Choi & Benzer, 1994) gene, etc. Fluoride containing 

Flubendiamide (Sarkar et al., 2014) is expected to cross 

the biological membranes either via non-ionic passive 

diffusion (Whitford, 1994) or in ionic form (Gutknecht & 

Walter, 1981). Cellular metabolism and physiology depend 

on the cell type, concentration and time of fluoride ion 

exposure (Barbier et al., 2010). Fluoride has been demon-

strated to be a potent activator of G-protein in virtually all 

cell types studied (Sternweis & Gilman, 1982). Increased 

amount of fluoride can cause chromosomal damage in 

the sperm cell and can lead to birth defects which can be 

transmitted through generations (Yiamouyiannis, 1983). 

In the present study, D. melanogaster was exposed to the 

fluoride containing chemical (Flubendiamide) from the 

Table 1. Two-way analysis of variance (ANOVA) using SPSS software 
(version 10). 

Source

Sum of 

squares df

Mean 

Square F Significance

Generation 58.13 3 19.38 13.29 0.000131

Dose 7.04 1 7.04 4.83 0.043063

Gen*Dose 0.46 3 0.15 0.1 0.956089

Error 23.33 16 1.46

Total 941 24

Corrected Total 88.96 23 

The data show that at the 0.05 level the generation means are significantly 
different. At the 0.05 level, the dose means are also significantly different. 
Significance was calculated at p<0.05.

Table 2. Multiple comparisons between different generations using Tukey 
test based on observed means. Tukey test performed using SPSS software 
(version 10).

Generation Generation Significance

P-Generation
F1-Generation 0.00028

F3-Generation 0.00016

F2-Generation F3-Generation 0.0045
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first instar larval stage until adulthood (chronic exposure) 

and revealed trans-generational transmission of altered 

compound eye phenotype similar to the finding of Dutta 

et al., (2014b).

Percentage alterations in adult compound eye mor-

phology following differential treatments in P generation 

and their variable expressions in subsequent generations 

revealed a gradual reduction of altered eye phenotype 

(F3<F1<P), except F2 generation (Figure 4). This reduction 

might be due to withdrawn chemical exposure in the 

following generations. The ANOVA (Table 1) followed by 

Tukey test (Table 2) revealed significant (p<0.05) variation 

among P and F1 (p=0.00028), P and F3 (p=0.00016), F2 

and F3 categories (p=0.0045). Thus the inter-generational 

variations of altered compound eye phenotype are evident. 

Both treatment categories (50 and 100 μg/mL) exhib-

ited significant enhanced number of affected phenotype in 

case of P and F2 generations and decreased in case of F1 and 

F3. Since 75% human disease genes have their fly homolog 

(Pandey & Nichols, 2011) and some common mammalian 

genes are also known to have fly homolog like Rab gene 

(Bock et al., 2001), pax6 (insect homolog of eyeless) etc., 

the results of the present study are rather relevant in the 

light of the findings reported by Yiamouyiannis (1983), 

where a chemical like fluoride is seen to cause multiple 

genetic damage in insects, as well as animals including 

humans. Hence, the present work reports that non-target 

insect morphology is also an equal vulnerable target for 

pesticide hazard as that of its physiology.

Conclusion

In the present study, Flubendiamide, a lepidopteran insec-

ticide, is found to alter compound eye structure of a non-

target dipteran model insect, Drosophila melanogaster. 

The alterations were not confined to the exposed insects 

(P generation) only, rather insects from three subsequent 

generations (F1, F2 and F3, who were never exposed to the 

chemical) also revealed alterations in their compound 

eye architecture. Thus irrational use of Flubendiamide in 

agricultural fields might pose serious health hazards for 

similar non-target insects and insect dependent organ-

isms, including human beings.
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