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Abstract:    
Kvam and Sokol developed a successful logistic regression/Markov chain 
(LRMC) model for ranking college basketball teams part of Division I of the 
National Colligate Athletic Association (NCAA). In their 2006 publication, they 
illustrated that the LRMC model is one of the most successful ranking systems in 
predicting the outcome of the NCAA Division I Basketball Tournament. 
However, it cannot directly be extended to college football because of the lack of 
home-and-home matchups that LRMC exploits in performing its Logistic 
Regression. We present a common-opponents-based approach that allows us to 
perform a Logistic Regression and thus create a football LRMC (F-LRMC) 
model. This approach compares the margin of victory of home teams to their 
winning percentage in games played against common-opponents with the away 
team. Computational results show that F-LRMC is among the best of the many 
ranking systems tracked by Massey's College Football Ranking Composite. 

KEYWORDS: LOGISTIC REGRESION, MARKOV CHAIN, AMERICAN COLLEGE 
FOOTBALL, COMMON GAME, MARGIN OF VICTORY 
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Introduction 

College football is a difficult sport to model for a variety of reasons. Teams only play 11-13 
games per season, yet there are 128 Football Bowl Subdivision (FBS, formerly NCAA 
Division I-A) teams to be ranked. Most teams only play 3-4 games outside their conference, 
making it difficult to compare teams from different conferences. For these reasons, much 
debate exists over the best way to rank teams, and many different polls and models exist that 
attempt to answer this question.   

The official poll used by the National Collegiate Athletic Association (NCAA) is the College 
Football Playoff Rankings (CFP). Previously, the Bowl Championship Series (BCS) served as 
the official ranking system from 1998 to 2013. In addition to this, the Associated Press (AP) 
Poll and USA Today Coaches Poll are two of the oldest college football ranking systems and 
are still followed by many (ESPN, n.d.). In addition to polls, many computer models exist in 
order to provide rankings based on statistical measures. The BCS was notable for incorporating 
several computer models into its rankings, including successful models by Sagarin, Colley, and 
Billingsley (Massey, n.d.).  

Kvam and Sokol (2006) developed a ranking system using a combination of Logistic 
Regression and a Markov Chain (LRMC) for college basketball using only “scoreboard data.” 
That is, for each game, the only information taken into consideration was the names of the 
winning and losing team, the margin of victory of the winning team, and whether the game 
was played on the winners home court, the losers court, or a neutral location. Their model is 
constructed by creating a Markov Chain between all teams in Division I NCAA basketball 
teams. In order to determine the transition probabilities between the states of the Markov 
Chain, a Logistic Regression had to be performed. This combination of Markov Chain and 
Logistic Regression resulted in one of the most accurate College Basketball ranking systems. 
Their model’s accuracy was evaluated by analyzing the results of the NCAA Division I 
Basketball Tournament. They found the average rank of the teams that advanced to the later 
rounds of the tournament was significantly lower than the average rank of the teams when 
ranked using other models (p < 0.05 when compared against AP, Seed, Massey, Sagarin, KG, 
and Sheridan predication methods). Modified versions of LRMC have been developed for 
college sports rankings by Brown and Sokol (2010), who used an empirical Bayes approach, 
and by Maclay (n.d.), who used natural logs of margin of victory rather than the margins 
themselves.  Outside of sports, LRMC models been applied to modeling urban sprawl and 
population dynamics as demonstrated by Hamdy et al. (2016) and Liu et al. (2015).  

In the LRMC for NCAA basketball, determining the transition probabilities between the teams 
relies on analysis of games where teams play each other twice in the same season, once at each 
team’s home court. While many of these “home-and-home” matchups occur each season in 
college basketball, they rarely occur in college football. Therefore, it is not immediately clear 
how to construct an analogous model for NCAA football. In order to determine the transition 
probabilities, we present a replacement for these home-and-home games by instead looking at 
the games played between common opponents that pairs of teams face.  

After describing how the model is constructed, we measure its accuracy by counting the 
number bowl games it predicted correctly for each given year and comparing with other 
ranking systems. From this analysis we find that our Football LRMC (F-LRMC) model ranks 
amongst the most accurate predictors of bowl game results.   
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Methods 

Markov Chain 

Our base Markov chain model follows that of Kvam and Sokol’s (2006).  There is one state in 
the Markov chain for each team in Division I NCAA football. Transitions are made according 
to the outcome of games played during the season. Let rx(g) be an estimate of the probability 
that the home team of game g is better than the away team of game g given that the home team 
won by x(g) points, where x(g) is negative if the home team lost. We then define rx(g) for each 
game g = (i,j) where i is the visiting team and j is the home team.  Then, if Ni is the number of 
games played by team i, we can define the transition probabilities from state i to be = ∑ ( )( , ) + ∑ 1 − ( )( , ) , for all j≠i,  (1) 

and  = ∑ ( )(∙, ) + ∑ 1 − ( )( ,∙) .    (2) 

We can use these transition probabilities to solve for the Markov chain’s stationary 
distribution. By ordering this stationary distribution in decreasing order, we obtain a ranking of 
the college football teams. 

The difficulty here lies in obtaining values for rx(g) (often denoted as simply rx). By using 
methods described in the following section, we can obtain data points that serve as an 
approximation for rx. It is expected that rx should be an increasing function; the more points a 
team wins a game by, the higher the probability that that team is better than its opponent. For 
this reason, the data should be fit to an increasing function that approaches 0 as x decreases and 
approaches 1 as x increases. By performing a logistic regression, the data is fit to such a 
function.  

Logistic Regression 

We now discuss approximating the function rx. The function can be thought of as “given that 
the home team won by a margin of x, what is the probability that they are better than the away 
team.” In Kvam and Sokol’s (2006) LRMC model for college basketball, this function was 
approximated by a logistic regression analysis of “home-and-home” games, pairs of games 
where two teams play each other twice within the same season, once at each team’s home-
court.  Of all the teams who won by x points at home, the fraction fx who beat the same 
opponent on the road was recorded and a logistic regression was used to smooth the data. In 
this way, direct comparisons between teams could be made: after the x-point home game, the 
result between the same two teams was used directly to calculate the estimate of rx. 

However, this direct approach cannot be used with college football, because teams rarely play 
each other twice during a single college football season; we have found only about 40 
instances in the 20 years from 1996-2015. Therefore, in order to approximate rx for college 
football, a new estimation approach must be introduced. 

A Replacement for rx 
For our estimate, rather than a direct comparison, we use an indirect approach using common 
opponents. Let Gx be the set games in a season which the home team won by x points. For each 
g = (i,j) ∈ Gx, the common opponents are the set of teams C(g) that played against both home 
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team j and away team i during the season. Let Gi(g) be the set of games played between team i 
and each k ∈ C(g); likewise, let Gj(g) be the set of games played between team j and each k ∈ 
C(g). Define μ(Gj(g)) to be the number of games team j won in Gj(g) and  ν(Gi(g)) to be the 
number of games team i lost in Gi(g). From here we arrive at an estimate for rx defined as  

 	 ≈ ∑ ( ) + ( )∈ 2∑ | ( ) |∈  (3)

In simple terms, given the winning percentages pi and pj of teams i and j against their common 
opponents,  

 
+ (1 − )2  (4) 

is an estimate of the probability that i is better then j. To find rx, we take this collective 
estimate over all games with an x-point win for the home team. 

Similar approaches based on results from common opponents have been used by other models. 
Knottenbelt et al. (2012) presents a stochastic model designed to predict the result of tennis 
matches. In order to establish the advantage one tennis player has over his opponent, they 
compare the proportion of points won between the two players and their common opponents.  

The values rx generated by (3) for the 2011-2014 seasons are plotted in Figure 1. As in Kvam 
and Sokol’s (2006) model, we use logistic regression to smooth the data; the curve shown in 
Figure 1 is the logistic regression function for 2011-2014.   

Because college football styles of play change over time, we use a rolling four-season window 
to compile data. So, for example, for the 2015 season we build our estimate of rx using data 
from the 2011 to 2014 seasons. Multiple training set sizes were analyzed and the four-season 
window provided the strongest results. Too small of a training set resulted in outliers in the 
data having too great of an impact. Conversely, a large window of seasons resulted in outdated 
game results shaping the regression.  

The logistic regression model finds values (a, b) such that =	 ( )	  is best fit to the data.  

We constructed our model for 15 seasons of college football, 2002 – 2016. For each of these 
seasons, we used the previous four seasons as the training set. The values for a and b for each 
season are shown in Table 1. The margin of victory was shown to be statistically significant as 
a predictor of rx for all seasons (p < 0.001, Wald Test). 

Typically, a logistic regression is performed to classify binary data. However, this regression is 
used to establish the transition probabilities in the Markov chain, thus the logistic regression is 
not used for direct classification so no cutoff value is needed. The result of the logistic 
regression can be used to answer the question “given that team j beat team i by x points, what 
are the odds that team j is better than team i.” Rather than simply comparing two teams, the 
Markov chain allows us to use this result to compare all the teams and obtain a full set of 
rankings.  
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Figure 1: The common-game winning percentage and the logistic regression through the data for the 2011-2014 

regular seasons 

Results 

We measure the accuracy of our model by training it during the regular season in order to 
predict the outcomes of the NCAA postseason bowl games. We can conclude that those 
models who are most accurately predict bowl games provide the most accurate rankings of the 
teams. Bowl games are an ideal measure for determining the accuracy of a ranking system for 
three main reasons. First, they take place at the end of the season, allowing a full season’s 
worth of data to be taken into consideration. Second, each of the bowl games are played 
between teams of approximately similar strength, allowing for there to be disagreement 
between models on who the expected winner should be. Third, all the bowl games are played 
on neutral fields (i.e., neither team is playing at its home stadium), meaning that the higher-
ranked team should be favored to win. 

This last assumption is often not true in games not played in a neutral location, because the 
advantage of playing at home might outweigh a small difference in team strength. Not all 
models offer means to predict non-neutral-site games; many, including the F-LRMC, have the 
exclusive function as ranking systems. However, neutral-site games do not require a separate 
predictive model as we can rather infer the predictions directly from the rankings. We also 
make the assumption that the field is truly neutral, despite some bowl games’ locations being 
slightly favored towards one team.  
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Table 1: The logistic regression parameters for each four-season range, along with the standard error for each of 
the values. 

Logistic Function Parameters by Season 

Season Training set (a,b) Std. error for (a,b) 

2016 2012-2015 (.02375, -.09720) (.00058, .01172) 

2015 2011-2014 (.02269, -.09786) (.00058, .01171) 

2014 2010-2013 (.02223, -.09632) (.00056, .01163) 

2013 2009-2012 (.02207, -.09680) (.00057, .01151) 

2012 2008-2011 (.02130, -.08730) (.00056, .01149) 

2011 2007 -2010 (.02067, -.08427) (.00056, .01139) 

2010 2006-2009 (.02091, -.09022) (.00058, .01138) 

2009 2005-2008 (.01978, -.08089) (.00058, .01154) 

2008 2004-2007 (.02012, -.09919) (.00061, .01181) 

2007 2003-2006 (.02051, -.11819) (.00060, .01197) 

2006 2002-2005 (.02117, -.12753) (.00060, .01218) 

2005 2001-2004 (.02164, -.13514) (.00059, .01201) 

2004 2000-2003 (.02205, -.12919) (.00058, .01208) 

2003 1999-2002 (.02177, -.12064) (.00059, .01224) 

2002 1998-2001 (.02254, -.12064) (.00060, .01229) 

 

Comparison with other Computer Models 
Massey (n.d.) maintains an archive of dozens of college football rankings for each week of the 
season. By looking at the rankings of various models before the bowl games, we can compare 
the predictive accuracies of various models. We consider a system to have predicted a game 
correctly if it has the winning team ranked higher than the losing team, and we count the total 
number of bowl games that each model predicted correctly. Trono (2012) provided this 
comparison for models appearing on Massey’s archive during the 2002-2011 seasons. Using 
game data from Forman (n.d.), we expanded the results of Trono (2012) to include the 2012-
2016 seasons, as well as to include our Football LRMC (F-LRMC). The results are included in 
Table 2. As shown in Table 2, the F-LRMC has a bowl game prediction accuracy of 60.79%, 
which ties it for third amongst all models that appear in Massey’s composite for the 2002- 
2016 seasons. 

Additionally, we tested for statistical significance between F-LRMC and each other model 
using McNemar’s test. Those models with a p-value less then .05 appear in bold in Table 2. It 
should be noted that Kambour (KAM) and PerformanZ (PFZ), the two models with better 
results then the F-LRMC, fail to be statistically significant over the F-LRMC (with p-values of 
.1282 and .1933, respectively). 

Kambour and PerformanZ are the two models that outperform the F-LRMC, with bowl game 
accuracies of 63.17 and 62.57, respectively. Each of these models generate their rankings very 
differently then the F-LRMC. Kambour’s (2003) model is based on the idea that teams that are 
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historically good tend to stay good. While the F-LRMC only looks at that season’s data to 
generate the model, Kambour takes into account previous seasons’ data. Furthermore, the 
PerformanZ model, constructed by Beck (2002), is centered around the idea that in game 
statistics, not game results, are the strongest indication of who the best teams are. So while the 
LRMC uses only scoreboard data, PerformanZ accounts for several other statistics such as 
measures of a team’s run and pass offense and defense. These differences between models 
influence the requirements of their implementation. Compared to F-LRMC, more seasons’ data 
is needed for Kambour’s rankings and additional statistics are needed to implement 
PerformanZ. Furthermore, the inclusion of certain measures, such as margin of victory, within 
a model is heavily debated. Some analysts may not want to include previous seasons’ data, as 
Kambour’s models does, for they believe that the rankings should only reflect a team’s 
performance for the current season. Likewise, the inclusion of a statistic such as pass offense 
may be biased against teams who are effective at running an offense with little passing. 

The only models included in Table 2 are those that appear in Massey’s (n.d.) composite the 
final week before the bowl games occur every year. If a model’s site doesn’t publish rankings 
for that week they are not included in the composite. Several models appear in all but one or 
two years. We can estimate how many games a model will correctly predict in a year when its 
rankings were not published by looking at the average of the percent difference between the 
number of bowl games that model correctly predicts and the average number of bowl games 
predicted by all models. Table 3 compares the F-LRMC with all models that missed only one 
or two years and estimates the number of bowl games that model would have predicted for the 
year(s) that are missing. The F-LRMC ranks near the top when compared to these models as 
well. The F-LRMC was outperformed by three models, CPA, ARGH (ARG), and Kislanko 
Isof (KLK). All three of these did not show statistical significance over the LRMC (with p-
values of .1945, .3773, and .4122, respectively). 
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Table 2: The number of bowl games correctly predicted by all models that appear in Massey’s composite (n.d.) 
for the 2002 – 2016 seasons. Models that appear in bold signify a statistically significant difference 
from F-LRMC . 

 Number of Correctly Predicted Bowl Games, by Model, by Year 

System 
name  

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Total Correct % p-value 

No. of 
Games 

28 28 28 28 32 32 34 34 35 35 35 35 39 41 41 505   

KAM 13 21 16 15 19 28 23 22 23 23 22 21 21 28 24 319 63.17  

PFZ 15 18 15 19 20 23 21 22 21 23 25 17 21 32 24 316 62.57  

F-LRMC 15 20 18 13 22 23 21 18 25 23 22 22 19 27 19 307 60.79  

BSS 11 18 20 18 18 19 24 14 22 21 22 22 22 32 24 307 60.79 0.5355 

MOR 15 17 15 15 22 17 24 18 24 21 25 20 22 26 23 304 60.20 0.4196 

BORN 14 20 14 17 21 20 22 18 22 19 25 19 19 29 23 302 59.80 0.3323 

COF 14 20 18 18 22 21 18 18 22 22 20 19 20 30 19 301 59.60 0.3069 

WLK 14 18 16 14 23 21 15 20 21 23 22 21 21 28 24 301 59.60 0.2906 

PIG 13 19 16 17 17 17 22 18 22 23 24 19 25 24 24 300 59.41 0.2863 

SAG1 14 19 15 15 20 21 17 15 21 24 22 20 22 30 24 299 59.21 0.2111 

HOW 16 18 15 16 23 20 16 19 23 23 20 16 22 28 22 297 58.81 0.1841 

MAR 14 21 16 17 19 20 15 20 22 24 23 15 19 27 23 295 58.42 0.1231 

MAS2 14 19 15 15 22 18 16 18 18 22 22 21 24 28 20 292 57.82 0.0795 

DOL 15 21 17 17 22 21 17 17 18 23 17 19 22 25 20 291 57.62 0.0871 

ASH 14 17 15 14 22 19 20 16 20 22 19 21 24 28 20 291 57.62 0.0447 

SOL 15 17 16 15 19 22 15 15 21 23 23 20 23 26 21 291 57.62 0.0817 

Avg. 14 18 14 15 23 20 16 16 21 21 21 21 21 28 22 291 57.62 0.6884 

MRK 15 18 16 16 20 17 15 19 20 21 20 18 24 25 23 287 56.83 0.0131 

BIH 15 19 15 14 20 18 18 16 22 23 18 23 22 24 19 286 56.63 0.0225 

RTH 14 18 15 15 19 22 18 15 20 23 20 19 23 25 20 286 56.63 0.0241 

SEL 14 20 16 14 18 21 18 16 19 22 20 20 24 24 20 286 56.63 0.0230 

BIL2 14 20 17 17 20 16 15 19 22 18 17 20 20 27 23 285 56.44 0.0430 

COL2 16 14 18 16 21 21 16 13 20 22 16 16 24 31 18 282 55.84 0.0245 

WEL 15 15 16 16 22 22 15 15 19 22 16 16 25 28 19 281 55.64 0.0198 

WIL 15 18 16 15 20 21 15 17 21 22 17 18 22 24 18 279 55.25 0.0092 

MJS 15 15 16 17 21 19 15 14 22 21 17 16 25 27 19 279 55.25 0.0146 

DES 15 17 17 17 18 17 12 20 21 24 19 17 17 25 22 278 55.05 0.0013 

AND1 15 14 16 14 21 21 16 18 20 22 16 20 21 24 19 277 54.85 0.0063 

WOL2 15 17 12 16 21 18 14 16 19 21 18 23 23 24 19 276 54.65 0.004 

WOB 16 18 14 15 21 18 16 15 20 22 15 20 22 24 19 275 54.46 0.003 

CSL 16 17 15 16 21 17 15 16 22 20 16 14 24 24 19 272 53.86 0.0053 

1- Specifies that model was used in calculations of the BCS Standings from 1998-2013 
2- Specifies that model was used in calculations of the BCS Standings from 2004-2013  
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Table 3: The number of bowl games correctly predicted by all models appearing in Massey’s composite (n.d.) 
for 2002-2016 seasons, sans one or two years. Entries that appear in italics were estimated and rounded 
to the nearest whole number.  Models that appear in bold signify a statistically significant difference 
from F-LRMC 

 Number of Correctly Predicted Bowl Games, by Models with Missing Data, by Year 

System 
Name 

 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Total Correct 
% 

p – value

No. of 
Games 

  28 28 28 28 32 32 34 34 35 35 35 35 39 41 41 505   

CPA 15 18 15 20 21 23 24 20 22 24 23 20 20 30 22 316.6 62.69  

ARG 15 19 16 16 24 19 15 21 23 22 23 19 21 32 22 307.34 60.86  

KLK 15 18 18 15 20 24 19 23 22 24 23 20 19 27 21 307.28 60.85  

F-LRMC 15 20 18 13 22 23 21 18 25 23 22 22 19 27 19 307 60.79  

DP 14 19 15 14 21 22 19 21 23 22 24 19 20 26 25 304.48 60.29 0.4538 

LAZ 15 20 16 16 21 20 18 17 22 22 22 19 24 29 21 301.54 59.71 0.3688 

DUN 14 17 16 17 20 18 24 16 24 24 20 17 21 29 23 300.01 59.41 0.4142 

DWI 15 18 19 21 21 18 17 18 23 21 21 19 17 28 23 298.61 59.13 0.2317 

DOK 14 19 16 14 20 19 15 17 23 23 23 19 21 31 24 298.39 59.09 0.1981 

CGV 14 19 18 16 19 17 15 18 22 25 20 16 25 29 22 295.3 58.48 0.2095 

BO 14 18 13 17 20 22 19 17 22 20 22 20 21 29 21 295.07 58.43 0.0827 

KEE 14 17 18 14 21 20 19 18 21 22 22 17 21 25 22 291.52 57.73 0.1493 

MAU 13 19 17 15 20 17 17 20 21 22 20 21 21 26 20 289.67 57.36 0.0252 

CPR 14 18 17 18 20 18 16 19 20 20 19 24 19 27 21 289.45 57.32 0.0711 

RUD 14 18 15 15 21 19 17 16 22 23 20 21 23 24 21 288.55 57.14 0.0851 

MCK 16 21 22 16 20 20 15 14 19 21 19 19 21 25 18 286.03 56.64 0.0322 

MAA 14 15 15 17 23 19 17 15 20 23 17 21 23 26 21 285.52 56.54 0.0234 

JNK 14 17 16 15 21 19 16 18 21 21 20 16 22 30 18 283.97 56.23 0.0464 

CMV  14 17 19 17 19 19 18 14 17 25 21 21 18 23 21 283.34 56.11 0.0322 

GBE 14 17 16 15 23 19 13 16 20 23 19 15 26 28 19 283.04 56.05 0.0502 

MEA 16 16 16 16 22 18 17 15 19 21 18 20 22 26 20 282.36 55.91 0.0110 

SE 14 18 13 16 20 20 15 17 21 23 16 20 23 26 20 282.16 55.87 0.0083 

D1A  14 17 16 14 22 20 14 17 21 24 16 16 22 24 21 277.64 54.98 0.0157 

SOR  14 18 15 15 20 20 17 15 19 22 18 18 21 22 21 275.25 54.50 0.0039 

Comparison against Polls 
There are two major college football ranking polls that have been used for many years, the 
Associated Press (AP) Poll and the USA Today Coaches Poll. Each of these polls ranks only 
the top 25 teams each week. We report the accuracy of our model compared to these polls as 
before, but we can only take into account games that include a ranked team in the poll. Thus, to 
compare F-LRMC against the AP Poll we compared the number of bowls each of the ranking 
systems got correct, only in those games where at least one team was ranked in the AP Poll’s 
top 25. The same approach was used for the Coaches Poll. The results are shown in Table 4, 
using poll data taken from the 2002 to 2016 seasons (NCAA College Football Polls – ESPN, 
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n.d.). F-LRMC correctly predicted more bowl games the either of the Polls, but the difference 
was not statistically significant.   

We can furthermore compare the results from the BCS and CFP rankings to those from the F-
LRMC. Prior to 2003, the BCS rankings would only include the top 15 teams. So for purposes 
of uniformity, we will compare the results from 2003 to 2013. As with the AP and Coaches 
Poll, the F-LRMC outperformed the BCS rankings, but not enough for statistical significance. 
The BCS was replaced in 2014 with the new College Football Playoff rankings (Selection 
Committee Protocol, 2015). We only have three years of results from the CFP but currently the 
F-LRMC has predicted 25 bowl games correctly while the CFP has predicted 26. These results 
are likewise included in Table 4.  

Table 4: The number of bowl games correctly predicted by the major polls and the number of bowl games F-
LRMC correctly predicted, only considering games in which at least one team appeared in the poll’s 
top-25. 

Number of Correctly Predicted Bowl Games, by F-LRMC and Polls, by Year  

System 
name  

‘02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 Total Correct 
% 

No. of 
Games 

17 15 15 16 17 16 14 16 16 15 16 16 16 17 17 238  

F-LRMC1 11 9 10 6 12 10 8 9 11 12 11 9 7 11 8 142 59.66 

AP  8 11 13 9 12 7 4 8 10 13 10 9 8 11 7 139 58.40 

No. of 
Games 

17 15 14 16 17 16 14 16 17 16 15 16 16 17 17 238  

F-LRMC1 11 9 10 6 12 10 8 7 11 13 10 9 7 11 8 141 59.24 

Coaches 8 10 12 9 12 6 4 7 10 13 10 9 8 11 8 136 57.14 

No. of 

Games 

 17 14 15 17 17 15 16 17 16 16 16    176  

F-LRMC1  11 10 6 12 10 8 8 11 14 11 9    110 62.50 

BCS  13 9 8 13 7 4 6 11 12 10 9    102 57.95 

No. of 
Games 

            16 15 18 49  

F-LRMC1             7 10 8 25 51.02 

CFP             9 8 9 26 53.06 
1 – Only considering bowl games including a team ranked by the respective poll in their top 25 

Discussion 

The Importance of Margin of Victory 

The F-LRMC relies heavily on margin of victory in its construction. A version of the F-LRMC 
can be constructed that does not consider margin of victory, but only considers whether the 
game was won or lost by the home team. This version is much less accurate, only predicting 
53.66% of bowl games between 1998 and 2016, while the original F-LRMC had a prediction 
accuracy of 60.79%.  
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However, the inclusion of margin of victory is a highly debated topic in college football.  In 
2002, the BCS changed its policy to no longer consider margin of victory in its rankings (Palm, 
2013). As consequence of this, several of the computer models that were used in the BCS were 
either removed or changed so that they no longer considered margin of victory. Furthermore, 
the CFP have also indicated that they do not consider margin of victory in its rankings 
(Collegefootballplayoff.com, 2012). The motivation behind this non-inclusion is to prevent 
teams from running up the score during games. While this is fine reason for the CFP to not 
consider margin of victory, the F-LRMC has shown that its inclusion creates a far more 
accurate model.  

Conclusion 

We have presented a method to create a logistic regression/Markov chain model for ranking 
college football teams. The main difficulty in creating such a model was the lack of home-and-
home games that were exploited by Kvam and Sokol (2012) in their development of an LRMC 
model for college basketball. We overcame this difficulty by examining the common 
opponents that teams play in a given season. Similar approaches to the F-LRMC may be 
applied in other sports that lack home-and-home games. 

Computational testing shows that our new football LRMC (F-LRMC) model is, like the 
original LRMC, among the best ranking systems in college football for predicting postseason 
bowl games.   
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