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Abstract 
Tracking and predicting the performance of athletes is of great interest, not only 
in training science but also, increasingly, for serious hobbyists. The increasing 
availability and use of smart watches and fitness trackers means that abundant 
data is becoming available, and the interest to optimally use this data for 
performance tracking and training optimization is great. One competitive model 
in this domain is the 3-time-constant fitness-fatigue model by Busso based on the 
model by Banister and colleagues. In the following, we will show that this model 
can be written equivalently as a linear, time-variant state-space model. With this 
understanding, it becomes clear that all methods for optimum tracking in state-
space models are also directly applicable here. As an example, we show how a 
Kalman filter can be combined with the fitness-fatigue model in a mathematically 
consistent fashion. This gives us the opportunity to optimally consider 
measurements of performance to adapt the fitness and fatigue estimates in a data-
driven manner. Results show that this approach is capable of clearly improving 
performance tracking and prediction over a range of different scenarios. 
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Introduction 

The relationship between training and performance is of particular significance in competitive 
as well as rehabilitation and recreational sports regarding the planning and design of training 
processes. In the past four decades, a number of attempts have been made to model training 
effects on performance by means of mathematical models, with the fitness-fatigue model (FF-
model) and its extensions being the most popular approach (Busso, 2003; Calvert, T. W., 
Banister, E. W., Savage, M. V., & Bach, T., 1976). In this model, athletes are understood as a 
system with training load as the input, equally feeding two antagonistic effects - fitness and 
fatigue -, which compromise the performance as the output. 

Several studies have been published to review the model and study its parameters (e.g. Chiu, 
L. Z., & Barnes, J. L., 2003; Clarke, D. C., & Skiba, P. F., 2013; Hellard, P., Avalos, M., 
Lacoste, L., Barale, F., Chatard, J. C., & Millet, G. P., 2006; Jobson, S. A., Passfield, L., 
Atkinson, G., Barton, G., & Scarf, P., 2009; Taha, T., & Thomas, S. G., 2003) and to compare 
different training loads and psychological markers as input and output variables (e.g. Millet, G. 
P., Groslambert, A., Barbier, B., Rouillon, J. D., & Candau, R. B., 2005; Wallace, L. K., 
Slattery, K. M., & Coutts, A. J., 2014). Further applications include the simulation of taper 
phases and training programs (e.g. Sanchez, A. M., Galbs, O., Fabre-Guery, F., Thomas, L., 
Douillard, A., Py, G., et. al., 2013; Thomas, L., Mujika, I., & Busso, T., 2008), though the 
prediction of performances in conjunction with verifications by means of performance 
measurements has been neglected almost entirely (Chalencon, S., Pichot, V., Roche, F., 
Lacour, J. R., Garet, M., Connes, P., et. al., 2015). 

While the modified version by Busso (2003) incorporates a new variable to use past training 
loads to adapt the fatigue level, to our knowledge, in the literature there exist no online 
feedback mechanisms to use performance measurements for optimally improving fitness and 
fatigue estimates. This would be useful to account for unmodeled changes in fitness and 
fatigue (e.g. due to exhausting other activities, stress, health issues, vacation times) and for 
measurement errors (e.g. due to varying motivation or environmental conditions in all-out 
tests). 

To allow for such online learning, we therefore propose a new solution incorporating feedback 
in a mathematically optimal fashion: A Kalman filter is used to better estimate the future 
performance levels based on training input while simultaneously improving the fitness and 
fatigue estimate at each point where a measurement is available, using optimal feedback of the 
prediction error. This is made possible by our reframing of the fitness-fatigue model as a 
linear, time-variant state-space model, which will be shown in section Methods. Experiments 
based on this model are shown in subsection Experimental Setup, with the results and 
conclusions in the according sections. 

Methods 

Our implementation is based on the 3-time-constant fitness-fatigue model, which was 
described by Busso in 2003, building upon Calvert et al. (1976), with a discretized version as 
follows 

 

Here, the value of ܿଶ is estimated using a first-order filter by 
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The equations describe performance ݌(݇) as being dependent on the past training loads ݑ until 
day ݇ with exponentially decaying constituents of fitness and fatigue starting from initial point ݌∗. The free parameters in the model are the weighting factors1 ܿଵ and ܿଷ as well as the three 
time constants τଵ, τଶ, and τଷ. 

The two summation terms in Eq. (1) can be treated as states in a linear system model of the 
athlete, as will be shown below. The variability of training effectiveness, inaccuracies in 
measurement and to some extent a change in the physiological response of the athlete can then 
be catered for by using a feedback mechanism in the model. 

Linear System Model of Fitness and Fatigue 

A linear system is often described (Ludyk, G., 1995) in the following form: 

 

Here, the vector ࢞௞ describes the ݀-dimensional state of the system, the system matrix ࡭௞ 
shows how the state at one time instant changes to the next point in time, ݑ௞ is the system 
input, influencing the system state via the input matrix ࡮௞ and the system noise term ࢜௞ 
describes random changes in the state. It is typically assumed that the states of the system are 
not observable directly, but are only accessible by means of indirect measurements ݕ௞, which 
are again a linear function of the state, in accordance with 

 

The output matrix ࡯௞ shows the influence of each state component on the measurement, and 
the observation noise ݊௞ is often assumed to be Gaussian distributed. 

A linear system that corresponds with these equations possesses exponential dynamics, when 
the noise is neglected. For a time-invariant state matrix ࡭  ,∀݇, and for a zero initial state	௞࡭	=
it can be shown (Dahleh, M., Dahleh, M. A., & Verghese, G., 1999) that the system state will 
evolve via 

 

To convert this model into the form of the fitness-fatigue model, we have used the following 
definitions: 

 

where ࢞ = ,ଵݔ]  is the ࡭ .ଶݔ ଵ and fatigue asݔ ଶ]் is the state vector composed of fitness asݔ
system matrix containing exponential decay rates for both states in the diagonal. The time 
varying input matrix ࡮௞ contains the same two exponential decays with time constants τଵ and 

                                                 
1  We denote these factors by ܿ, rather than ݇, to be consistent with engineering literature on state-space models 
and Kalman filtering. The same reason leads us to name the training load ݑ instead of ݓ, as would be more 
usual in training science publications. 
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τଶ. In addition, there is a weighting factor for the influence of the training on the fatigue 

component, which is defined as ܿଶ(݇) = 	 ܿଷ ∑ ష(ೖషೕ)ഓయ௞௝ୀଵ݁		(݆)ݑ . 

Inserting these definitions into Eq. (5) and considering ݔଵ and  ݔଶ separately leads to 

 

and 

 

Combining ݔଵ and ݔଶ according to Eq. (4), while neglecting the observation noise ݊௞, gives the 
final output 

 

which can be easily seen to be exactly equivalent to ݌(݇) −  the deviation of the ,∗݌
performance from its set point ݌∗, as given in Eq. (1). 

Hence, the well-known fitness-fatigue model can be understood as a linear state-space model, 
linearized around its set point given by the initial performance ݌∗, and with the parameters ࡮ ,࡭௞ and ࡯ as given above. This understanding opens a number of possibilities: 

First, we can understand all performance measurements as inherently noisy, based on our 
model of state noise and measurement noise: 

• The system model contains two components, ݔଵ, the fitness, and ݔଶ, the fatigue, which 
can both now be described as subject to some random fluctuations, e.g. caused by 
unmodeled exertions of the athlete or by possibly hidden health issues. These random 
(or at least unobserved) effects on fitness and fatigue can now be modeled by an 
explicit term, ࢜௞, the state noise. 

• In addition, we are also explicitly modeling the observation noise, ݊௞, which can stem 
from a number of sources, such as actual measurement errors, or, in all-out 
performance estimation, possible differences caused by varying motivation or by 
varying measurement conditions. 

Secondly, and interestingly, we can derive an improved performance modeling approach, 
which explicitly considers these random fluctuations of the states and the measurements, and 
which aims to compensate for them by optimal use of the performance measurements with the 
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goal of continuously updating the model of the athlete. This approach, a Kalman-filtering-
based fitness-fatigue-model, will be described in the following section. 

Kalman Filtering for Optimal Tracking of Fitness and Fatigue 

The Kalman filter uses measurements of a quantity containing statistical noise over time to 
produce a more reliable estimate in a recursive manner. It relies only on the last calculated 
state, a model-predicted subsequent state and a correction based on the last measured value to 
generate the present state estimate. 

In addition to the linear system model parameters defined above, it uses noise covariance terms 
to describe random fluctuations in the state vector ࢞௞ and the observation ݕ௞. ࢜௞ is the state 
noise with covariance ࡽ and ࡾ is the noise variance of the observation noise ݊௞. The state 
reconstruction by the Kalman filter is done in two steps, cf. Ludyk, G. (1995): 

First, the a posteriori state estimate ࢞ෝ௞ is updated by the feedback 

 

where ݕ௞ is the measurement value and the optimal Kalman gain, ࡷ௞ , is 

 

The matrix ࡹ௞ is iteratively computed as 

 

Then, at the start of the next cycle, a predicted a priori state estimate ࢠ௞ is formed using the 
system dynamics 

 

To implement this approach, these equations, (15)-(18), are used together with the state-space 
model derived in subsection Linear System Model of Fitness and Fatigue. The implementation 
is done in Simulink and shown in Figure 1. 

 
Figure 1. Block diagram of Kalman Filter System. 

As it can be seen, this implies that the following process takes place on every time instant - i.e. 
on every day ݇ - of our simulation: 

1. The last estimated values of the states ݔଵ & ݔଶ (fitness & fatigue) produce the expected 
performance output through the output matrix ࡯. 

2. The output is compared with the current performance measurement/observation (if 
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available) and a measurement residual (error) is calculated. If a measurement at that 
instant is not available, the error ݁௞ is set to zero. 

3. The Kalman gain ࡷ௞ is calculated depending on the provided state and observation 
noise variances, using Eq. (16) and (17). 

4. The Kalman filter uses the error feedback to correct the state estimates according to Eq. 
(15), which will affect the performance prediction in the next time step. 

5. The new training impulse is added to the state variables after multiplication with the 
time-varying input matrix ࡮௞. 

Using this method, we expect a more reliable performance estimate, especially in cases where 
the original model curve differs from measured values due to measurement errors or 
unmodeled effects on fitness and fatigue. 

Experimental Setup 

All experiments are based on the performance and training load data of five athletes, collected 
during a phase of 160 days. Training performed in water and on dryland was quantified daily 
according to Mujika et al. (1996). Swimming kilometers were divided into five intensity levels 
based on the swimming speed, multiplied by weighting coefficients (1, 2, 3, 5, 8) and 
cumulated at last. Dryland training was converted to water training equivalents as follows: 1-h 
dryland training corresponds to 2km of swimming and was weighted by its content 
(endurance*2, conditioning*5 and strength*8) followed by an accumulation. Finally, the 
training load is a single value for each day, which is essentially the intensity-weighted training 
volume. Regarding performance, a semi-tethered swimming test (20m without start) consisting 
of three repetitions (resistance increased trial by trial) was conducted weekly to determine the 
swimming-specific performance expressed in mean velocity reached for 60m (3x20m). 

The effect on the fitness ݔଵ is an accumulation of the training input ݑ௞ weighted by ܿଵ, 
whereas the contribution of the input ݑ௞ to fatigue ݔଶ is multiplied by a weighting factor of 
each individual input ܿଶ(݇) calculated using τଷ in (2). Absent an input, both states have an 
exponentially decreasing behavior according to their respective decay time constants (τଵ, τଶ). 
The magnitude factors cଵ and cଷ absorb the unit of measurement and have no direct 
physiological basis (Pfeiffer, 2008). The output generated by the model simply starts off from 
the first experimental observation (݌∗ =  .(଴ݕ	

The following parameters can be controlled in the model: 

i. τଵ Time constant for fitness decay 

ii. τଶ Time constant for fatigue decay 

iii. τଷ Time constant for decay of negative influence (weighting factor) of training 

iv. cଵ	Magnitude factor for fitness 

v. cଷ Magnitude factor for fatigue 

vi. ࡽ =	ቆ σ௫భଶ σ௫భ,௫మσ௫భ,௫మ σ௫మଶ ቇ State noise covariance matrix, consisting of variance of fitness σ௫భଶ  and fatigue σ௫మଶ and their covariance σ௫భ,௫మ. 

The state noise covariance ࡽ influences the estimation error covariance matrix ࡹ௞ used in the 
Kalman gain calculations. It governs how the Kalman gain evolves over time, denoting the 
strength of the filtering effect on the model. The matrix is defined so as to treat fitness and 
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fatigue having some interdependence defined by σ௫భ,௫మ. Therefore, an error will cause both 
states to change in the direction causing the performance output to move towards the measured 
value. This effect is illustrated in the Appendix. 

The dynamics of the model are implemented in a Simulink model, called by a MATLAB script 
supplying input vectors and collecting outputs of interest from the simulation run. 

 
Figure 2. Simulation results for subject 2 with full range calibration. The original ܧܲܣܯ value is 2.69% and ܧܲܣܯ௄௔௟௠௔௡ = 2.31%. 

A comparison between an FF-model with and without Kalman feedback is possible in Figure 
2. The original model performs well in this case but fails to explain large/faster changes in 
performance. The Kalman filter model however, has the disadvantage of occasionally relying 
heavily on the experimental observations. The parameters here show a case where almost equal 
time constants of 9 days for fitness and 8 days for fatigue were estimated. The method used to 
estimate these values will now be discussed. 

Optimization / Model Fitting 

The model parameters are optimized so as to minimize the sum of squared errors between 
predicted and measured data. The mean absolute percentage error (ܧܲܣܯ) is used to assess the 
quality of Kalman filtered response of the model. 

First, an array of the weighting factors cଶ for the complete range of days was calculated by Eq. 
(2). The remaining set of model parameters (τଵ, τଶ, τଷ, cଵ, cଷ and all 3 components of ࡽ) 
mentioned in section Experimental Setup was then determined using the multi-start interior 
point search algorithm minimizing the RSS (Residual Sum of Squares) between the model 
output and measured data. 

The standard deviation of the observation noise n௞ is fixed to a value of  0.0126 calculated as 1% of the average measured output performance over all test subjects. The model is designed 
to start from a baseline performance, ݌∗, which in our case is the first available experimental 
performance measurement y଴. Fitness and fatigue start from zero as initial values and may be 
increased or decreased by the Kalman filter, however, negative values are not allowed. 

MATLAB’s multi-start optimization method is used, which finds multiple local minima using 
the interior point algorithm. The lower and upper bounds for model parameters are based on 
ranges from previous studies. Some constraints are introduced to keep model parameters 
within reasonable physiological ranges e.g. the fitness time constant (τଵ) must be at least 3 
times and the fatigue time constant (τଶ) at least 2 times longer than the negative training effect 
time constant (τଷ). The fatigue time constant is also constrained to be 1.1 times smaller the 
fitness time constant. This is done to prevent the model from having a largely constant 
performance response, and also because it is understood that fatigue is short-lived compared to 
fitness in the physiological system. 
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The magnitude factors cଵ and cଷ depend on the output scale and are therefore also optimized. 
Finally, in the KF-parameters being optimized as components of the state noise covariance 
matrix, ࡽ, the variances of fitness and fatigue, σ௫భଶ  and σ௫మଶ , are restricted to less than 1000 and 1 × 10଼, respectively, while their covariance is limited to less than 1 × 10଺. To keep the 
covariance matrix positive semi-definite, a nonlinear constraint is applied. 

To obtain individual models per athlete, two types of calibration are carried out separately for 
each individual. First, the entire range of available experimental data are used to obtain a best 
fit for the Kalman-filtered performance curve, the so-termed full-range optimization. The 
second type, being more important for the purpose of future performance prediction, optimizes 
the parameters based only on the first half of experimental observations and examines the 
model evolution for the latter half of the training season in comparison to the observations. 
Hence, it is referred to as half-range optimization in the following. Results for both these sets 
of athlete-specific parameters are given in Tables 1 and 2. 

Secondly a generalized set of parameters is computed across all individuals. This method is 
expected to give a more reliable estimate of the parameters, as there is effectively more 
experimental data involved in the calibration, which can thus augment the sparse inital data of 
a new subject for the computation of parameter estimates during their initial period of training. 
The aim is also to find parameters that can be used for performance prediction on any subject 
without any prior data about the individual. The optimizer hence searches for a parameter set 
that minimizes the residual sum of squares over all five test subjects for full- and half-range 
calibration (also shown in Table 3). 

Results 

Calibration per subject 

In the full-range-calibrated model, the MAPE average of the subjects improves from 3.35% to 2.31% by using Kalman filtering, which is shown in detail in Table 1. However, a beneficial 
effect is immediately visible in the performance curve comparison graphically where the 
filtered version improves considerably at times when the original model might have drifted to a 
wrong direction, see Figure 2. 

Table 1. Full-range-calibrated individual parameters. 

Parameter 

/ Subject 
ૌ૚ ૌ૛ ૌ૜ ܋૚ ܋૜ ો࢞૚૛  ો࢞૛૛  ો࢞૚,࢞૛ ࡱࡼ࡭ࡹ 

Original 
(%) 

 ࢔࢏ࢇࢍ	࢒ࢇࡷ

converged 

 ࡱࡼ࡭ࡹ

Kalman 
(%) 

P1 37.3 33.8 0.86 0.0012 0.000028 5 8831 200 2.54 ൬ −2.9−191.2൰ 2.54 

P2 10.1 9.1 0.13 0.0012 0.000041 69 99051 22 2.69 ൬ 216−10576൰ 2.31 

P3 15.3 9.6 0.15 0.0008 0.000044 37 30022 1048 1.84 ൬−257.5−735.8൰ 1.82 

P4 16.1 3.1 0.11 0.0003 0.000060 2663 99991 723 1.94 ൬ 1509−5906൰ 1.81 

P5 15.0 13.6 5.00 0.0009 0.000008 367 10000 1 7.75 ൬ 771−177൰ 3.06 

Average 18.7 13.9 1.3 0.0009 0.000036 628 49579 399 3.35 ൬ 448−3517൰ 2.31 

 

In the half-range-calibrated model, it is evident that the goodness of fit is largely dependent on 
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the number of data points and their fluctuations in the calibration range. The state noise 
variance values in ࡽ usually have to assume relatively higher values in this case to account for 
the fluctuations. The estimated FF-model parameters are different from the full-range 
optimized ones and may therefore not be the best representation of each individual athlete’s 
response. However, it is the only realistic scenario for judging prediction quality, as the full-
range-calibrated model is actually, unrealistically, using training data for the testing phase. 
Hence, the half-range calibration, tested on the second half of the data points, offers a 
practically applicable test scenario. In this case, the Kalman filter again proves to be very 
helpful, often even leading to greater improvements than for the full-range-calibration 
scenario, since the Kalman filter reduces the error through its feedback mechanism, as seen for 
example for Subject 1 in Figure 3. Improvement of the average MAPE between the original 
FF-model (4.12%) and the Kalman filter model (3.56%), as seen in Table 2 indicates the 
usefulness of using a feedback-based prediction method, especially when data available for 
calibration is relatively scarce. 

 
Figure 3. Simulation results for subject 1 with half range calibration. The original ܧܲܣܯ value is 3.17% and ܧܲܣܯ௄௔௟௠௔௡ = 2.72%. 

Table 2. Half-range-calibrated individual parameters. 

Parameter 

/ Subject 
ૌ૚ ૌ૛ ૌ૜ ܋૚ ܋૜ ો࢞૚૛  ો࢞૛૛  ો࢞૚,࢞૛ ࡱࡼ࡭ࡹ 

Original 
(%) 

 ࢔࢏ࢇࢍ	࢒ࢇࡷ

converged 

 ࡱࡼ࡭ࡹ

Kalman 
(%) 

P1 22.1 3.0 0.79 0.0012 0.000071 9998 35246353 593633 3.17 ൬ 44−13255൰ 2.72 

P2 13.6 2.0 0.13 0.0002 0.000046 9972 99922 31540 3.07 ൬ 4773−11728൰ 2.54 

P3 5.6 5.1 0.48 0.0020 0.000070 9671 30240 225 2.07 ൬507−43൰ 1.95 

P4 6.7 6.1 0.12 0.0016 0.000141 1151 30009 4528 5.23 ൬ 7511908൰ 3.88 

P5 3.2 2.3 0.09 0.0071 0.000376 5688 100700 23914 7.05 ൬180756൰ 6.69 

Average 10.2 3.7 0.32 0.0024 0.000141 7296 7101445 130768 4.12 ൬ 1251−4472൰ 3.56 

Calibration across subjects 

In the second set of experiments, we have tested performance of the parameter set obtained by 
optimization across individuals (referred to as generalized parameters). The parameter set 
obtained over full-range calibration behaves as an averaged response of all athletes and tends 
to expect minimal change in performance from training inputs. However, variances assume 
higher values, thus allowing larger corrections based on experimental observations. 
Generalized parameters obtained via half-range calibration perform better in predicting latter 
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half performance on average. Therefore, an individual calibration may not always be best 
suited for prediction, most definitely not when only little training data is available for that 
individual. The result of simulation using the generalized parameter set for subject 4 is shown 
in Figure 4 and all results are collected in Table 3. 

 
Figure 4. Simulation results for subject 4 with generalized parameters from half-range calibration across 

subjects. The original ܧܲܣܯ value is 3.75% and ܧܲܣܯ௄௔௟௠௔௡ = 2.43%. 

Table 3. Generalized parameters calibrated across subjects. 

Parameter 

/ Subject 
ૌ૚ ૌ૛ ૌ૜ ܋૚ ܋૜ ો࢞૚૛  ો࢞૛૛  ો࢞૚,࢞૛ Average ࡱࡼ࡭ࡹ 

Original (%) 

 ࢔࢏ࢇࢍ	࢒ࢇࡷ

converged 

Average ࡱࡼ࡭ࡹ 

Kalman (%) 

Full 54.4 49.3 0.12 0.0005 0.000018 326 100013 911 5.07 ൬ 802−7267൰ 3.66 

Half 22.2 20.2 0.08 0.0009 0.000036 93 100024 285 5.00 ൬ 261−11029൰ 3.57 

Discussion and Conclusion 

It has been shown that the fitness-fatigue model, widely used in athletic performance 
modeling, can be represented equivalently by a linear, time-variant state-space model. For such 
models, an optimal tracking algorithm exists in the form of the Kalman filter, which utilizes 
error feedback to incrementally update and improve its state estimate. 

Based on this understanding, we have introduced a new method for efficient estimation of 
athletic performance. For this purpose, we start out with the three-time-constant fitness fatigue 
model, re-write it as a state-space model, introduce state and measurement noise, and utilize 
the update equations of the Kalman filter. This approach offers advantages over conventional 
performance prediction by optimally using available measurement data for correcting the state 
estimate online. This is helpful with respect to a number of issues. For example, the original 
fitness-fatigue model relies on the accuracy of the performance measurements, and on them 
always being carried out at the same level of intensity, whereas the suggested, stochastic 
version has a much higher tolerance for measurement errors. 

In the second part of the paper, we evaluate different partitionings of training and test data, to 
contrast individual with generalized, and full-range-calibrated with half-range-calibrated 
models. Here, the Kalman filter has proven helpful in all conditions. This makes it applicable 
for many use cases of fitness tracking: for online training planning as well as for an analysis of 
past data, and also for new users with sparse data, where a generalized set of parameters across 
individuals can be advantageously combined with the Kalman filtering approach. In all these 
partitionings, the average ܧܲܣܯ is improved significantly, with the most notable 
improvement, from 5.0% to 3.57% ܧܲܣܯ, achieved for the generalized parameter set. 
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The variability of the model parameters during the training period was not considered in our 
study, but its inclusion is quite promising to improve the estimation further. Again, the view of 
the fitness-fatigue model as a state-space model can help in this endeavor, as optimal 
adaptation approaches exist for this purpose, as well. In addition, a state-space analysis and 
subsequent design of a Kalman filter can be applied on other training-performance models, e.g. 
to those which quantify training inputs separately via time and intensity. 
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Appendix: Interpretation of parameters 

Table 4. Kalman filter parameters. 

Parameter Typical value Deduction σ௫భଶ ,	σ௫మଶ  

Standard deviation of fitness and fatigue 
noise in ݒ௞ 

Estimated: σ௫భ = 33~100, σ௫భ = 173~6000 
By calibration 

σ௉௫ 

Standard deviation of observation noise n k 

Chosen σ௉௫ = 0.0126 w.r.t. output data 
value ranges. 

Measurement tolerance was set to 1% of 
the average output performance which is 

1.26 over all test subjects ࡽ	 = 	ቆ σ௫భଶ σ௫భ,௫మσ௫భ,௫మ σ௫మଶ ቇ 

State noise covariance matrix ࡹ଴ =  ௞ in everyࡹ which is updated to ࡽ
iteration 

଴ࡹ = ቀ628 399399 49579ቁ 

For subject 5 evolves to ࡹ௘௡ௗ = ቀ485 547547 73185ቁ 

There exists some covariance between the 
states. The initial covariance ࡹ଴ quickly 

evolves to a stable value via Eq. (17). 

ܴ Observation noise covariance matrix Fixed to (0.0126)ଶ 
Output measurement is scalar, hence a 

suitable value can be chosen based on the 
observed variability of the data.. ࡷ௞ Kalman gain 

A higher gain has a higher effect on the 
change of the estimated state via ࡷ௞(ݕ௞ −  (௞ࢠ	࡯
according to Eq. (15) and (18). 

Within the range ൫ ିଷ଴଴ିଵଵ଴଴଴൯ to ൫ଵହ଴଴ିଶ଴଴൯ 
for full range, ൫ ସ଴ିସହ଴଴൯ to ൫ହ଴଴଴ଶ଴଴଴൯ 

for half range calibration. Correction from 
gain typically moves state away from 

direction of error. 

Kalman gain is computed via Eq. (16) and 
(17). 

 


