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Abstract 
Baseball is a statistically filled sport, and predicting the winner of a particular 
Major League Baseball (MLB) game is an interesting and challenging task. Up to 
now, there is no definitive formula for determining what factors will conduct a 
team to victory, but through the analysis of many years of historical records many 
trends could emerge. Recent studies concentrated on using and generating new 
statistics called sabermetrics in order to rank teams and players according to their 
perceived strengths and consequently applying these rankings to forecast specific 
games. In this paper, we employ sabermetrics statistics with the purpose of 
assessing the predictive capabilities of four data mining methods (classification 
and regression based) for predicting outcomes (win or loss) in MLB regular 
season games. Our model approach uses only past data when making a prediction, 
corresponding to ten years of publicly available data. We create a dataset with 
accumulative sabermetrics statistics for each MLB team during this period for 
which data contamination is not possible. The inherent difficulties of attempting 
this specific sports prediction are confirmed using two geometry or topology 
based measures of data complexity. Results reveal that the classification 
predictive scheme forecasts game outcomes better than regression scheme, and of 
the four data mining methods used, SVMs produce the best predictive results with 
a mean of nearly 60% prediction accuracy for each team. The evaluation of our 
model is performed using stratified 10-fold cross-validation. 

KEYWORDS: MAJOR LEAGUE BASEBALL, SABERMETRICS, DATA MINING, 
PREDICTION, CLASSIFICATION, REGRESSION 

Introduction 

Sports result prediction is nowadays very popular among fans around the world, mostly due to 
the expansion of sports betting (Stekler, Sendor, & Verlander, 2010). Major League Baseball 
(MLB) is a multi-billion dollar statistically filled business, and many people are strongly 
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interested in developing systems with the aim of providing the best prediction of the winner in 
many specific baseball games (Baumer & Zimbalist, 2014). Some effort has been made, but 
the majority of the systems created are human based benchmarked and sometimes do not work 
with the right dataset. Hence, users are often strongly influenced by emotions and even the 
experts find it difficult to select correct evaluative criteria of performance for specific teams in 
certain situations. One approach to surpass these and other problems in the sport forecasting 
domain is using data mining methods. 

Data mining allows the search for valuable information in large volumes of data (Liao, Chu, & 
Hsiao, 2012). In particular, classification and regression methods have been widely used in 
predictive problems for a variety of different sport domains (Schumaker, Solieman, & Chen, 
2010b). For example, Edelmann-Nusser, Hohmann, and Henneberg (2002) predict the 
competitive performance of an elite female swimmer (200-m backstroke) at the Olympic 
Games 2000 in Sydney using artificial neural networks. Morgan, Williams, and Barnes (2013) 
apply decision tree induction for identifying characteristics in one-versus-one player 
interactions that drive the outcome in hockey contests. Robertson, Back, and Bartlett (2015) 
use logistic regression and decision trees for explaining match outcomes in Australian Rules 
football. Yuan et al. (2015) present a mixture of modelers approach to forecast the 2014 
NCAA men’s basketball tournament. 

Large quantities of historic baseball data are currently available (often publicly available) from 
different sources in the form of numerically or symbolically represented statistics (e.g., general 
season information, play-by-play, game logs, players line-up, etc.). However, despite the 
abundance of studies performed in the realm of financial baseball modeling, baseball games 
prediction have received relatively little attention in the data mining and sports informatics 
community (Sykora, Chung, Folland, Halkon, & Edirisinghe, 2015). Many studies have been 
written about the economic efficiency of baseball markets (Baumer & Zimbalist, 2014; Chang 
& Zenilman, 2013; Sauer, Waller, & Hakes, 2010; Witnauer, Rogers, & Saint Onge, 2007), but 
they lack the evaluation of the actual (or implied) outcome of games, thus studies have been 
emphasizing more on profitability rather than predictability. 

On the other hand, there have been some attempts to measure the impact of variables 
associated with baseball games using numerical models, with the aim of using these factors for 
a wide evaluation of the team performance (Menéndez, Vázquez, & Camacho, 2015; Yang & 
Swartz, 2004). Nowadays, sabermetrics has been consolidated as the science of learning about 
baseball through objective evidence, suggesting answers to difficult questions such as: “How 
many home runs will some player hit next year?”, “Is it easier to hit home runs in particular 
ballparks?” or “Are particular players especially good in clutch situations?” (Wolf, 2015). 
Many of the sabermetrics studies regarding to prediction are based on ranking and evaluating 
players individually, mainly for commercial purposes (Ockerman & Nabity, 2014; Robinson, 
2014). It is a general agreement that predicting game outcomes is one of the most difficult 
problems on this field. 

In this paper, we perform a study using four data mining methods (lazy learners, artificial 
neural networks, support vector machines and decision trees) and ten years of MLB regular 
season game data obtained from publicly available sources. Our objective consists in 
evaluating the predictive capabilities of these methods for both classifications (win or loss for 
the home team) and regression (runs difference between the home and visitor teams) schemes 
in the MLB games outcome prediction problem using sabermetrics statistics. 
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Methods 

Data mining is an experimental science, and there can be no “universal” best algorithm 
(Wolpert & Macready, 1997). Accordingly, this study follows the CRISP-DM methodology 
(Shearer, 2000), which provides a structured way of conducting the data mining analysis, with 
the consequent improvement in the probability of obtaining accurate and reliable results. It 
consists in six main steps (Delen, Cogdell, & Kasap, 2012): (1) understanding the problem’s 
domain and defining the objectives of the study; (2) identifying, accessing and understanding 
the data sources; (3) preprocessing the relevant data; (4) developing the model using 
comparable analytical techniques; (5) evaluating and assessing the validity and utility of the 
model against each other and against the objectives of the study and (6) deploying the model 
for its use in decision-making processes. 

First, we obtained data from two of the most popular and free of cost MLB data sources: the 
non-profit baseball organization called Retrosheet, and the Lahman Database (see 
Appendices). During the data preparation process, popular sabermetrics statistics were 
calculated and added to data. Next, feature selection algorithms are used in order to obtain a 
minimum set of original features, which increase the learning accuracy of the data mining 
algorithms and also improve the results comprehensibility (Han & Kamber, 2006). 

We used four popular data mining methods and compared them with each other according to a 
useful predictive methodology proposed by Delen, Cogdell, and Kasap (2012). Four predictive 
algorithms were selected because of their capability to model both classification and regression 
predictive schemes, and also due to their popularity in the recent data mining literature (Liao et 
al., 2012). 

Stratified 10-fold cross-validation methodology was employed in order to objectively assess 
the predictive capabilities of the different data mining algorithms and schemes. The layout of 
the general predictive model proposed is illustrated in Figure 1 and the parts of its structure are 
explained in the following subsections. 

Data management 
The MLB has 30 teams divided into two leagues, the American League (AL) and the National 
League (NL). Each team plays 162 games during the regular season (April through early 
October), which does not include the pre-season and the playoffs games.  

In baseball, individual players are usually chosen based on popular sabermetrics statistics such 
as On-Base Plus Slugging (OPS), Fielding Independent Pitching (FIP) or Ultimate Zone 
Rating (UZR) (Soto Valero & González Castellanos, 2015). There are communities of fans 
who closely follow this statistics play-by-play with the objective of analyzing the contribution 
of individual players to their corresponding teams (Chang & Zenilman, 2013). Also, 
researchers have created statistics for measuring the probability for a team to win a specific 
game, such as the Pythagorean Expectation (PE) shown in Equation 1 (Rosenfeld, Fisher, 
Adler, & Morris, 2010). 

PE=
runs scored2

runs scored2 + runs allowed2 (1) 
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Figure 1: A graphical representation of the general predictive model applied in this study.  

Exercising the data mining guidelines, we included as much relevant information in our model 
as we could. Data was retrieved from Retrosheet game logs for year 2005 to 2014, totaling 
1620 individual game records for each team. We created a Java library in order to parse and 
pre-process the data for using in our data mining schemes. Each individual Retrosheet game 
log contains 161 data fields, but our parser removed identifying information for individual 
batters, coaches, and umpires. In doing this, we distilled each game down to a record of the 
starting pitchers, accompanied by an array of team offensive, defensive, and pitching statistics 
of each game. These statistics are then organized and aggregated for each season to produce a 
day-by-day set of accumulative statistics for each team during ten regular seasons. 

During the data pre-processing stage, we reformulate the game records such that the game of 
each team represents a history of statistics accumulated prior to the game, rather than the 
statistics from the game itself. Summary of four accumulated statistics (calculated according to 
the previously known statistics at the moment of each game) for the 2014 MLB regular season 
of the San Francisco Giants and the Oakland Athletics appear in Figure 2. 

In order to represent the game-related comparative characteristics of the two opponent teams in 
the input variables, we calculated and used the differences between the accumulative statistics 
of both home and visiting teams (i.e., Won Percentage, Pythagorean Expectation, On-Base 
Plus Slugging, Runs Created, etc.). All of these features are represented from the home team’s 
perspective. For example, the variable WPDiff (Won Percentage Difference) represents the 
difference between the home team’s won percentage and the visitor team’s won percentage.  

The output variable represents whether the home team win or lose the baseball game. That is, 
if the RunsDiff variable (regression scheme) takes a positive integer value, then the home team 
is expected to win the game by that difference; otherwise (if the RunDiff variable is a negative 
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integer) the home team is expected to lose the game by that difference. In the case of the 
classification scheme, the value of the output variable is a nominal label, ‘‘Win’’ or ‘‘Loss’’, 
indicating the outcome of the game from the home team perspective. 

 
Figure 2: Example of four accumulated statistics corresponding to the San Francisco Giants (blue triangles) and 

Oakland Athletics (red circles) during the 2014 MLB regular season. 

Data contamination 

In sports forecasting, data contamination occurs when the selecting data for the predictive 
model is informed by “knowledge of the future” (Yuan et al., 2015). If the model’s results 
include statistics that were incorporated in previous data, then the input features essentially 
already “know” the future that they aim to predict, making the model unsuitable for true future 
predictions. 

Contamination is a serious problem if the data on which one trains a data mining method 
contains implicit information from the data on which one predicts future results. For instance, 
running a feature selection algorithm on baseball reveals that a strong predictive statistic for 
outcome prediction is the length of the game (in outs). This occurs because a normal baseball 
game consists of 9 innings for a total of 27 outs, but games can be extended to so called extra 
innings. In this situation, it is proven that the home team has an important advantage. As such, 
the number of outs in the game is an excellent but contaminated predictor of the game outcome 
and should not be considered as a predictor variable.  

As was stated before, attempting to use contaminated data can easily lead to disastrous results 
in actual forecasting. Our model avoids this problem by using only past data to train their 
predictive schemes. Each instance which represents a played game is built from previous 
statistics of the home and visitor teams, as Figure 2 shows.  
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Feature subset selection 

Feature subset selection decreases the dataset dimension by removing irrelevant and redundant 
features from data. Through the acquisition of a minimum set of the original features, this 
technique enables data mining algorithms to operate faster and more effectively, while 
improving results and comprehensibility of the model (Han & Kamber, 2006). 

Our generated feature set is fairly large, and it is not easy to distinguish which features are the 
most important for the prediction task. Also, it is possible that many of these features may be 
irrelevant or redundant (Trawiński, 2010). We use WEKA (Waikato Environment for 
Knowledge Analysis), a non-commercial and open-source data mining benchmark, for 
carrying out our feature selection process (M. Hall et al., 2009). 

This feature selection process has three basic stages: generation, evaluation and stopping 
criteria (Figure 3). The validation stage, which checks the validity of the selected subset and 
compares the results to find the best feature subset, may not be a stage of the process (Dash & 
Liu, 2003). 

First, the original feature set is inputting, which includes a number of features or input 
variables. Then the first stage of feature selection begins, which is called subset generation, 
where a search strategy is used for producing possible feature subsets of the original feature set 
for its evaluation. There are several search procedures to find the optimal subset of the original 
feature set (Dash & Liu, 2003). In this study, as is shown in Figure 3, the attribute ranking 
technique of WEKA is chosen for this task. 

 
Figure 3: Feature selection process applied in this study. 
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Once the candidate subsets are generated, evaluation algorithms determine the best features 
subset and majority voting is used in order to select the most representatives. Table 1 describes 
the five algorithms selected for performing the attribute evaluation during the ranking process. 

Table 1: Description of the attribute evaluator methods used in this study. 

Attribute evaluators Description 
SignificanceAttributeEval Evaluates the worth of an attribute by computing the probabilistic significance 

as a two-way function (Ahmad & Dey, 2005). 
ChiSquaredAttributeEval Evaluates the worth of an attribute by computing the value of the chi-squared 

statistic with respect to the class. 
CorrelationAttributeEval Evaluates the worth of an attribute by measuring the correlation (Pearson's) 

between it and the class. 
GainRatioAttributeEval Evaluates the worth of an attribute by measuring the gain ratio with respect to 

the class. 
ReliefAttributeEval Evaluates the worth of an attribute by repeatedly sampling an instance and 

considering the value of the given attribute for the nearest instance of the same
and different class (Robnik-Šikonja & Kononenko, 1997). 

 

A stopping criterion is needed for stopping the search and preventing an exhaustive search of 
subsets. The feature selection process stops by outputting the selected subset of features, which 
is then validated (M. A. Hall & Holmes, 2003).  

After the application of this technique, our final reduced datasets contains 60 input variables. 
Table 2 shows the first 15 selected features after averaging the ranks obtained from the five 
evaluation methods using the majority vote procedure. Our feature selection model suggests 
that the first and most important feature for predicting outcomes in baseball are the well-
known home field advantage (Smith & Groetzinger, 2010), followed by the Log5 and the 
Pythagorean Expectation statistics respectively. 

Table 2: Ranking list of the first 15 selected features, numeric attributes represents the difference between the 
home and visitor team accumulative statistics. 

Ranking Feature Type Description 
1 isHomeClub Nominal If the home team plays as the home club or not 
2 Log5 Numeric Log5 difference 
3 PE Numeric Pythagorean Expectation difference 
4 WP Numeric Won percentage for current season difference 
5 RC Numeric Runs Created difference 
6 HomeWonPrev Nominal If the home team won the previous game or not 
7 VisitorWonPrev Nominal If visitor team won the previous game or not 
8 BABIP Numeric BABIP difference 
9 FP Numeric Fielding Percentage difference 

10 PitchERA Numeric Starting pitchers ERA difference 
11 OBP Numeric On-base plus slugging difference 
12 Slugging Numeric Slugging difference 
13 HomeVersusVisitor Nominal Particular results between home team and visitor team 
14 Stolen Numeric Stolen bases difference 
15 VisitorLeague Nominal The visitor team League 

 

Datasets complexity 

Data mining prediction problems are usually difficult to afford for many reasons. In certain 
problems the attributes are ambiguous either intrinsically or due to inadequate feature 
measurement and this can occur regardless of the training data size or the feature space 
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dimensionality. Many problems have a complex decision boundary and subclass structures, 
thus no compact description of the class boundary is possible. Also, small sample size and 
dimensionality in data introduce another layer of difficulty through a lack of constraints on the 
generalization rules.  

Often, a classification problem becomes difficult because of a mixture of these effects. 
Sampling density is more critical for an intrinsically complex problem than an intrinsically 
simple problem (e.g., a linearly separable problem with wide margins). If the sample is too 
sparse, an intrinsically complex problem may appear deceptively simple. 

The empirically observed behavior of individual classifiers is strongly data dependent and a 
better understanding of such data dependency is critical for prediction. One practical measure 
of problem difficulty is the error rate or accuracy of a chosen classifier. However, in order to 
describe the real complexity of the problem and since our eventual goal is to study the 
behavior of various data mining methods for prediction, we need to find other measures that 
are independent of such choices. Previous works highlight the idea that a single descriptor may 
not be sufficient (Tin Kam & Basu, 2002).  

Therefore, we focused on effective ways of characterizing the geometrical complexity of our 
predictive model. Correspondingly, we selected two geometry or topology based measures of 
data complexity: the maximum Fisher's discriminant ratio (F1), and the maximum feature 
efficiency (F3). Our study explores the distribution of MLB statistical features in the data 
space, in order to estimate the geometrical or topological complexity of data for the 
classification task (win or loss), as we believe that cluster structures can be essential 
characteristics for this particular problem. 

 
Figure 4: Scatter plot between F1and F3 values corresponding to the 30 considered datasets. 

We use the KEEL Metrics-DC implementation (Alcalá-Fdez et al., 2008), in order to calculate 
the F1 and F2 values for each team data. Figure 4 shows the scatter plot with the results for the 
30 MLB datasets of this study. It is easy to note the extreme complexity of this prediction 
problem, which can be seen in the low values of F1 and F3 measures (mean values of 0.02 and 
0.007 respectively). 
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Algorithms 

Lazy learning 

Unlike eager learning methods, which produce a generalization as soon as the data has been 
loaded, lazy learning methods only approximate the function locally, and the whole 
computation is delayed until the execution of the classification query (Han & Kamber, 2006). 
Because lazy learners store the training instances, they are also referred to as instance-based 
learners, even though all learning is essentially based on instances.  

The k-Nearest-Neighbors algorithm (k-NN) is one of the most popular instance-based learning 
algorithms. It is based on learning by analogy, that is, by comparing a given instance with the 
training instances that are similar to it. The training instances are described by its n attributes. 
Each instance represents a point in an n-dimensional space, and all of the training instances are 
stored in an n-dimensional pattern space. When an unknown instance is given, the k-NN 
classifier searches the pattern space for the k training instances that are closest to the unknown 
instance. These k instances are the k “nearest neighbors” of the unknown instance. 

The “closeness” between instances is defined in terms of a distance measure, being the 
Euclidean Distance the standard choice. Let I1 = I11 , I12 , . . . , I1n  and I2 = 
(I21 , I22 , . . . , I2n ) be two instances. Then the Euclidean Distance (ED) is calculated using the 
Equation 2. 

ED I1, I2 = I1i-I2i

2
n

i=1

 

 

(2) 
 

This algorithm is clearly dependent on both the user defined metric and the value of k, and can 
be used for classification or regression. The output depends on whether the expected result is a 
label or a numerical value (Gutierrez-Osuna, 2002).  

In k-NN for classification, the output is a class membership. An object is classified by a 
majority vote over its neighbors, with the object being assigned to the class most common 
among its k nearest neighbors (k is a positive integer, typically small). If  k = 1, then the object 
is simply assigned to the class of that single nearest neighbor. In k-NN for regression, the 
output is the property value for the object. This value is the average of the values of its k 
nearest neighbors. In the most standard case, when k = 1 and the distance measure is the 
Euclidean Distance, the k-NN method is known as 1-NN. 

Artificial neural networks 

Artificial Neural Networks (ANNs) have been widely used for sport predictions (Aslan & 
Inceoglu, 2007; Edelmann-Nusser et al., 2002; Young, Holland, & Weckman, 2008). The 
method is a product of early artificial intelligence work aimed at modeling the inner workings 
of the human brain, as a way of creating intelligent systems. ANNs have proven being useful 
because of its capacity for modeling any given function, which make it specially convenient 
for classification and regression tasks (Haykin, 2008). 

In this study a feed-forward ANN model known as Multi Layer Perceptron (MLP) is used. 
This is a special ANNs algorithm that maps sets of input data onto a set of appropriate outputs 
using a technique called backpropagation for training the network (Han & Kamber, 2006). A 
MLP consists of multiple layers of nodes in a directed graph, with each layer fully connected 
to the next one. Except for the input nodes, each node is a neuron (or processing element) with 
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a nonlinear activation function (Figure 5). MLP has proven, given an appropriate topology, to 
be capable of achieving cutting-edge performance on several learning tasks (Hornik, 
Stinchcombe, & White, 1990).  

 
Figure 5: MLP topology with a hidden layer used in this study. The network is an interconnected group of 

nodes, comparable to the neurons in a brain. 

Decision trees 

Decision Trees (DTs) are one of the simplest and yet most successful methods used in data 
mining analysis (Loh, 2014). One of its main capabilities is that they can be transformed into 
human understandable rules, making DTs better than other data mining methods for 
understanding and deployment (Morgan et al., 2013; Robertson, Back, & Bartlett, 2015). A 
decision tree represents a function that takes as input a vector of attribute values and returns a 
“decision”, in a form of a single output value. DTs make their decisions by performing a 
sequence of tests. Each internal node in the tree corresponds to a test of the value of one of the 
input attributes Ai and the branches from the node are labeled with the possible values of Ai. 
Each leaf node in the tree specifies a value to be returned by the function.  

In order to construct a tree, DTs recursively separate instances into branches with the purpose 
of achieving the highest possible prediction accuracy. In doing so, different mathematical 
criteria (e.g., information gain, variance reduction, gini index, etc.) are used in order to split the 
set of instances into two or more subgroups (Han & Kamber, 2006). This is a recursive 
process, which is repeated gradually until the entire tree has been built.  

In this study, we use the Weka REPTree implementation of decision trees because of its 
capabilities of modeling both classification and regression type prediction problems (M. Hall 
et al., 2009). The algorithm is a fast decision tree learner, which builds a decision/regression 
tree using information gain/variance and prunes it using reduced error pruning (with 
backfitting). This method only sorts values for numeric attributes once. 

Support vector machines 

Support Vector Machines (SVMs) are a powerful supervised learning method used in data 
analysis and pattern recognition, which also have been widely adopted for prediction in a 
variety of sport domains (Demens, 2015; Haghighat, Rastegari, & Nourafza, 2013; Schumaker, 
Solieman, & Chen, 2010a). SVMs can be used for classification and regression. The method 
performs a nonlinear mapping in order to transform the original training data into a higher 
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dimension. Within this new dimension, it searches for the linear optimal hyperplane which 
separates the instances of one class from another. With an appropriate nonlinear mapping to a 
sufficiently high dimension, data from two classes can always be separated by a hyperplane. 

A SVM model represents the data as points in space, mapped in a manner that the examples of 
the separate categories are divided by a clear gap that is as wide as possible. SVMs uses 
nonlinear kernel functions to transform the input data (inherently representing highly complex 
nonlinear relationships) to a high dimensional feature space in which the input data become 
more controllable (i.e., more linearly representable) than in the original input space (Burges, 
1998).  

While an ANN may suffer from multiple local minima, the SVMs solution is global and 
unique (Fischer et al., 2011). Other advantages of SVMs are that they have geometric 
interpretation and give a sparse solution (unlike ANNs, the computational complexity of 
SVMs does not directly depend on the dimension of the input space). On the other hand, they 
use structural error minimization, while ANNs use empirical error minimization (one of the 
reasons for which they are less prone to overfitting). 

In this study we use the SMO algorithm, which is an improved implementation of the John 
Platt's sequential minimal optimization algorithm for training SVMs (Keerthi, Shevade, 
Bhattacharyya, & Murthy, 2001). It normalizes all attributes by default. Accordingly, the 
coefficients in the model are based on the normalized data, not the original data.  

Evaluation 

Cross-validation 

The traditional method for evaluating and comparing the predictive accuracies of two or more 
data mining algorithms is called holdout. It consists in splitting the data into two subsets for 
training and testing. Often, two thirds of the instances are used for model building and the rest 
is used for testing.  

However, the holdout method is often sampling biased, no matter what type of random 
sampling technique is used. In order to avoid this disadvantage, we used the 10-fold cross-
validation methodology as our evaluation method (Han & Kamber, 2006). This is a popular 
statistical technique that is commonly used in data mining for comparing the predictive 
accuracies of multiple methods, which has become the standard in practical terms (Witten, 
Frank, & Hall, 2011). 

During the 10-fold cross-validation procedure, the original set of instances is separated 
randomly into 10 partitions or “folds” of approximately equal size. Training and testing is 
performed 10 times. In iteration i, partition Pi is reserved as the test set, and the remaining 
partitions are collectively used to train the model. That is, in the first iteration, subsets P ,  . . . ,P  collectively serve as the training set in order to obtain a first model, which is 
tested on P ; the second iteration is trained on subsets P ,	P ,  . . . ,P  and tested on P ; and 
so on. The cross-validation estimate of the overall accuracy is calculated as the average of the 
10 individual accuracy measures (Equation 3). Here, tenFoldCV is the overall accuracy of the 
model and Fi is the individual accuracy of each fold. 

tenFoldCV=
∑ Fi

10
i=1

10
 (3) 

The overall cross-validation accuracy relies on the random assignment of the individual 
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instances to the different folds. Due this situation, a technique known as stratification ensures 
that each fold has the right proportion of each class value. Experimental studies have shown 
that the stratified 10-fold cross-validation procedure gives a very good estimate of the true 
accuracy (even if computation power allows using more folds) due to its relatively low bias 
and variance (Zeng & Martinez, 2000). 

Performance measure 

We use the accuracy measure of performance (Equation 4), in order to compare the predictive 
capabilities of the selected algorithms. The accuracy measures the proportion of correctly 
predicted games, thus forecasting the overall probability of correct classification. 

Accuracy =
TP+TN

TP+TN+FP+FN
 (4)

Here, true positive (TP), true negative (TN), false positive (FP) and false negative (FN) mean 
correct prediction of the baseball team wins, correct prediction of the baseball team losses, 
incorrect prediction of losses as wins, and incorrect prediction of wins as losses, respectively. 

Table 3: Accuracy obtained for all algorithms and prediction schemes, highest values are highlighted in bold. 

 
Team 

1-NN MLP REPTree SMO 

Classification 
scheme 

Regression 
scheme 

Classification
scheme 

Regression 
scheme 

Classification
scheme 

Regression 
scheme 

Classification 
scheme 

Regression 
scheme 

ANA 56.16 56.55 58.07 55.62 57.18 55.18 56.57 57.16 
ARI 55.34 55.49 56.22 53.63 58.67 56.67 59.12 58.53 
ATL 56.22 56.05 57.19 53.01 56.96 58.29 57.43 56.17 
BAL 55.55 54.53 56.33 56.58 57.79 58.51 59.25 54.21 
BOS 56.77 57.04 58.82 58.72 57.58 58.60 59.58 56.91 
CHA 57.12 57.07 56.76 56.64 56.81 54.78 57.88 58.00 
CHN 54.97 54.68 56.10 54.25 56.65 55.12 57.04 56.42 
CIN 56.78 56.83 58.41 58.63 59.72 59.68 60.13 59.61 
CLE 56.30 55.86 58.37 56.92 58.07 59.03 60.75 58.96 
COL 58.92 58.38 61.41 55.90 58.76 62.29 61.50 59.99 
DET 55.64 56.52 57.35 57.82 58.59 58.32 58.64 57.13 
FLO 52.35 52.11 55.78 53.16 57.01 52.85 56.41 56.14 
HOU 57.59 59.47 60.59 56.86 59.92 60.27 61.06 61.82 
KCA 53.48 54.06 59.35 59.34 58.75 55.74 60.08 60.27 
LAN 55.53 56.27 57.46 56.64 55.75 55.34 55.65 54.03 
MIL 52.81 52.76 58.82 57.48 58.48 58.54 58.65 56.85 
MIN 54.96 55.06 58.05 56.11 60.78 58.78 60.43 58.65 
NYA 55.63 55.74 60.35 57.85 59.63 60.27 60.26 58.72 
NYN 56.38 56.24 56.57 58.04 58.57 56.73 59.65 58.22 
OAK 54.07 53.04 57.61 56.02 56.37 58.57 58.88 58.31 
PHI 55.48 55.18 56.83 55.43 57.23 57.54 59.18 58.28 
PIT 57.68 57.01 58.74 58.82 60.29 60.56 62.27 59.99 
SDN 56.09 56.64 55.57 55.40 57.68 57.57 59.21 57.13 
SEA 58.13 58.41 58.99 54.62 57.04 57.17 57.87 54.77 
SFN 54.08 54.28 56.49 53.78 55.94 54.78 56.47 57.72 
SLN 54.37 53.53 58.24 57.33 59.10 59.25 59.03 59.50 
TBA 55.20 55.34 58.00 56.33 55.95 60.05 57.45 56.38 
TEX 57.25 56.39 58.28 54.96 57.04 58.94 58.36 55.52 
TOR 57.43 56.73 58.30 53.94 56.30 58.91 57.83 57.10 
WAS 61.26 62.08 57.72 55.49 57.24 58.73 61.16 57.35 

Mean 55.98 55.97 57.89 56.17 57.86 57.90 58.92 57.66 
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Results 

We used the Weka Experiment Environment Interface (M. Hall et al., 2009) to facilitate the 
execution and experimental comparisons of performance of our predictive model. Table 3 
shows the 10-fold cross-validation results, for both classification and regression based 
schemes, of the four data mining algorithms included in this study. 

Among the four data mining methods, SVMs used both for classification and regression 
offered the higher prediction accuracies (Figure 6). Overall, SVMs produced a mean accuracy 
of 59% and 58% for classification and regression schemes respectively (STD of 1.64 and 
1.82), followed by ANNs for classification with a mean accuracy of 58%, and DTs for 
regression with a mean accuracy of nearly 58%. It is noticeable a peak of just over 61% and 
62% of prediction accuracy for the team of Washington Nationals using lazy learning 
(classification and regression based schemes respectively) but this can be considered as an 
outlier and therefore it is not representative of the whole results.  

 
Figure 6: Box plots of accuracy obtained for both predictive schemes using the four chosen data mining 

methods. 

We performed a comparison of the accuracy values among all the data mining methods in 
order to determine the most competitive ones. The Aligned Friedman test applied detects 
significant differences on a significant level of α = 0.05 for both schemes (for classification 

scheme the ρ-value is 3.06*10-5 and for regression scheme it is 2.18*10-5). Table 4 shows the 
ranking obtained. The most accurate algorithm is chosen as the control method for the 
application of the post-hoc procedure on the predictive schemes. In both cases, the model 
selected is SMO, while 1-NN shows the lowest value of accuracy. The Hochberg post-hoc 
procedure detects significant differences in favor of SMO with respect to 1-NN, MLP and 
REPTree, with the exception of REPTree for regression. 

In order to determine the best predictive scheme, we applied a Wilcoxon Signed Ranks Test of 
accuracy to the SMO classification and regression outputs (the best method). The result shows 
that classification schemes outperform regression (Table 5). The difference obtained results 
significative at a significance level of α = 0.05. 
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Table 4: Aligned Friedman ranking of the accuracy for both predictive schemes. Adjusted -values for the post-
hoc procedure of Hochberg. 

Schemes Algorithms Average Rank  Hypothesis 
Classification 1-NN 97.40 0 Rejected 

 MLP 57.13 0.001638 Rejected 
 REPTree 58.62 0.001638 Rejected 
 SMO 28.85 - - 

Regression 1-NN 70.63 0 Rejected 
 MLP 86.40 0.000134 Rejected 
 REPTree 50.13 0.88473 Accepted 
 SMO 34.83 - - 

 

Table 5: Wilcoxon Signed Ranks Test of accuracy for SMO regression and classification predictive schemes. 

SMO schemes 
Negative 
Ranks 

Positive 
Ranks 

 

classification –
regression 6 24 7.2*10-5 

 

As an additional evaluation of this model, we compared its predictions with regards to the 
betting market. For this aim, we used information from the Covers1 odd publisher. We 
collected data from Moneyline odds and calculated its predictive accuracy for all MLB teams 
and games during the 2014 regular season. The SMO (our best method) was trained using 9 
years of data (2005-2013) and tested using the 2014 season. Table 6 shows the results 
obtained. The Wilcoxon Signed Rank Test shows no difference between Covers predictions 
and the SMO classification algorithm (ρvalue= 0.066) at a significance level of α = 0.05. 
According to this result, our approach could be considered competitive with regards to the 
betting market. 

Table 6: Comparison of classification accuracies between the Moneyline betting market and the SMO 
classification method for the 2014 MLB regular season. 

Team Moneyline SMO  Team Moneyline SMO 
ANA 60.00 56.43  MIL 52.47 53.49 
ARI 58.64 55.49  MIN 59.88 55.38 
ATL 52.47 51.52  NYA 55.56 59.34 
BAL 50.89 54.49  NYN 59.26 60.00 
BOS 50.00 54.00  OAK 63.19 49.28 
CHA 56.79 52.06  PHI 51.85 58.46 
CHN 56.79 53.55  PIT 61.35 56.00 
CIN 57.41 64.00  SDN 54.94 60.00 
CLE 56.17 56.88  SEA 53.70 47.00 
COL 64.20 58.46  SFN 60.89 57.38 
DET 54.55 53.04  SLN 57.31 56.43 
FLO 53.09 47.00  TBA 51.23 52.08 
HOU 54.94 57.47  TEX 59.26 57.88 
KCA 58.19 47.40  TOR 50.62 50.22 
LAN 60.24 50.67  WAS 62.65 55.69 

                                                 
1 http://covers.com 
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Discussion 

We presented a predictive model, based on the CRISP-DM methodology, in order to forecast 
baseball games using popular data mining methods. Our model employs stratified cross-
validation as evaluation criteria, and has the advantage that it could be easily expanded with 
more data mining methods and replicated in other sports when sufficient data is available. 

We tested our model by using ten years of MLB records and predicting outcomes for each 
MLB team separately. Data contamination was avoided by using predictors based only in past 
data. We surpassed some incompatibilities in the Retrosheet and Lahman databases, generating 
the largest possible set of sabermetrics statistics from raw data. 

Feature subset selection, based on a majority vote ranking procedure with five attribute 
evaluation methods, was applied for improving prediction results. Home club field advantage, 
Log5 and the Pythagorean Expectation (in this order) were selected as the most important 
features for our prediction task (Table 2). Experimental empirical studies performed suggest 
that the addition of more features do not improve the accuracy of our model. 

This study demonstrates the inherent complexity in predicting outcomes in MLB regular 
season games (Figure 4). The four popular data mining methods applied show accuracy values 
just under 60% (Figure 6), which represents an improvement over random guessing but it is 
not really a remarkable result in betting context (even when the most novel sabermetrics 
statistics were used as base predictors). 

The implementation of other data mining methods (rule based, rough sets, genetic algorithms, 
ensemble models, etc.) and the addition of more features from other baseball data sources such 
as Baseball Reference2 and PITCHf/x3 may produce somewhat different results. But due to the 
complexity and extension of the analyzed datasets, we strongly believe that more accurate 
results, when only statistical data is used, may not be feasible for predicting outcomes in MLB. 
In this sense, experimentation with other amateur and professional baseball leagues, such as 
the Korea Professional Baseball or the Nippon Professional Baseball, are needed in order to 
generalize this criterion. 

In the author’s opinion, modeling baseball games as a stochastic process and applying dynamic 
learning using “within-game” data should bring better predictive results than general models 
(Percy, 2015). In this sense, data mining methods have achieved success for selecting 
strategies and predicting outcomes in the context of some specific baseball game situations. 
For example, assessing pitcher and catcher influences on base stealing (Loughin & Bargen, 
2008); determining when a starting pitcher should be relieved (Gartheeban & Guttag, 2013); 
and predicting the probability of a strikeout for a particular batter/pitcher matchup (Healey, 
2015). However, to create general and accurate models for predicting MLB game outcomes is 
still an open field of research in the sports analytics domain today. 

In the future, we will focus on different improvements in our model deployment: adjusting 
parameters, refining features and extending datasets. Also, we plan to evaluate the proposed 
predictive model in teams of other sports such as basketball, football and water polo. We 
believe that this model can be useful for teams in certain seasonal phases and against specifics 
opponent teams. This is because we suppose that it is in specific baseball game environments 
that coaches could most effectively take advantage of our model, in order to translate statistical 
knowledge into team wins.  

                                                 
2 http:// baseball-reference.com  
3 http://gd2.mlb.com/components/game/mlb 
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Conclusion 

This paper compares the performance of four different data mining methods in the context of 
predicting outcomes (win or loss) for independent MLB regular season games. First, we 
proved the inherent difficulty of this particular prediction problem by showing and 
characterizing its complexity. In order to test our predictive model, we used sabermetrics 
statistics to measure teams performance and created a total of 30 datasets (one for each MLB 
team), corresponding to ten years of free available data (between 2005 and 2014 inclusively). 
Feature selection methods applied show that the most important predictor variable is the home 
field advantage. Four popular data mining methods were applied to reduced datasets 
(classification and regression based) and where evaluated using the 10-fold cross-validation 
criterion. Overall, classification schemes outperform the regression based schemes and SVMs 
results the best predictor method, with accuracy values of nearly 60%. In spite of results that 
were not surprisingly accurate, they became a good starting point for future works in this field. 
The application of this predictive model to an extended set of features and data could provide 
not only a basis for prediction, but also revealed potential strengths and weaknesses of 
individual teams by quantifying their win perspectives. The model could also show the 
significance of specific statistics and its relevance to victory, which is invaluable to MLB 
managers and enthusiasts of this sport. 
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Appendix 

This appendix contains detailed information about the two freely available data sources used in 
this study: Retrosheet game logs and Lahman database. Baseball records from these sources 
have a growing level of detail, from seasonal stats available since the 1871 season, to box 
score data for individual games, to play-by-play accounts covering most games since 1945. It 
is important to analyze carefully the structure of these datasets in order to correctly understand 
the information they provide.  

Retrosheet game logs 
The Retrosheet organization was founded in 1989 with the purpose of collecting play-by-play 
information about every game played in the MLB history. The Retrosheet website4 provides 
individual game logs data going back to 1871. A game log has details regarding when the 
game was played, how many spectators attended, the teams and the ballpark, and the score 
(both the final score and the inning by inning runs scored). In addition, the game log file 
includes teams offensive and defensive statistics, starting players, managers, and umpire crews. 
Table 7 shows details of all 161 fields compiled for each game. There are missing observations 
for some game log variables for earlier baseball seasons. The information used here was 
obtained free of charge from and is copyrighted by Retrosheet.  Interested parties may contact 
Retrosheet at www.retrosheet.org. 

Lahman database 
Sean Lahman, who is an active baseball journalist and book author, makes freely available at 
his website5 one of the most complete databases of baseball statistics. Lahman database 
provides seasonal pitching, hitting, and fielding statistics for all players in MLB from the first 
professional league in 1871, to the formation of MLB in 1901, to the present day. In addition, 
this database includes a number of supplemental tables including All-Star game appearances, 
Hall of Fame voting data, managerial statistics, and batting and pitching statistics for players in 
the post-season. The data is available in several formats: as SQL database, a set of comma-
separated-value (csv) tables, and recently also as R package.  Table 8 shows a description of 
each table in the comma-separated-value version. 

  

                                                 
4 http://retrosheet.org/gamelogs/index.html 
5 http://seanlahaman.com 
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Table 7: Summary of Retrosheet game logs data fields. 

Field(s) Description 
1 Date as a string in the form "yyyymmdd". 
2 Number of the game corresponding to the current season. 
3 Day of the week as a string. 

4-5 Name and league of the visitor team. 
6 Game number of the visitor team.  

7-8 Name and league of the home team. 
9 Game number of the home team. 

10-11 Runs of the visitor and home team, respectively. 
12 Length of game in outs.  A full 9-inning game would have a 54 in this field.  If the home team 

won without batting in the bottom of the ninth, this field would contain a 51. 
13 Day/night indicator ("D" or "N"). 
14 Completion information indicates if the game was completed at a later date (either due to a 

suspension or an upheld protest). 
15 Forfeit information. 
16 Protest information. 
17 Park identifier. 
18 Attendance. 
19 Duration of the game (in minutes). 

20-21 Visitor and home line scores as a string.  For example, "010000(10)0x" indicates a game where 
the home team scored a run in the second inning, ten in the seventh and didn't bat in the bottom 
of the ninth. 

22-38 Offensive statistics of the visitor team: at-bats,  hits, doubles, triples, homeruns, RBI, sacrifice 
hits, sacrifice flies, hit-by-pitch, walks, intentional walks, strikeouts, stolen bases, caught 
stealing, grounded into double plays, awarded first on catcher's interference and  left on base (in 
this order). 

39-43 Pitching statistics of the visitor team: pitchers used, individual earned runs, team earned runs, 
wild pitches and balks (in this order). 

44-49 Defensive statistics of the visitor team: putouts, assists, errors, passed balls, double plays and 
triple plays (in this order). 

50-66 Offensive statistics of the home team. 
67-71 Pitching statistics of the home team. 
72-77 Defensive statistics of the home team. 
78-79 Home plate umpire identifier and name. 
80-81 First base umpire identifier and name. 
82-83 Second base umpire identifier and name. 
84-85 Third base umpire identifier and name. 
86-87 Left field umpire identifier and name. 
88-89 Right field umpire identifier and name. 
90-91 Manager of the visitor team identifier and name. 
92-93 Manager of the home team identifier and name. 
94-95 Winning pitcher identifier and name. 
96-97 Losing pitcher identifier and name. 
98-99 Saving pitcher identifier and name. 

100-101 Game Winning RBI batter identifier and name. 
102-103 Visitor starting pitcher identifier and name. 
104-105 Home starting pitcher identifier and name. 
106-132 Visitor starting players identifier, name and defensive position, listed in the order (1-9) they 

appeared in the batting order. 
133-159 Home starting players’ identifier, name and defensive position listed in the order (1-9) they 

appeared in the batting order. 
160 Additional information. 
161 Acquisition information. 
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Table 8: Descriptions of tables in the Lahman database. 

Table Description 
AllStarFull Players’ appearances in All-Star games. 
Appearances Seasonal players’ appearances by position. 
AwardsManagers Recipients of the Manager of the Year award. 
AwardsPlayers Players’ recipients of the various awards. 
AwardsShareManagers Voting results for the Manager of the Year award. 
AwardsSharePlayers Voting results for the various awards for players. 
Batting Seasonal batting statistics. 
BattingPost Seasonal batting statistics for post-season. 
Fielding Seasonal fielding statistics. 
FieldingOF Seasonal appearances at the three outfield positions. 
FieldingPost Seasonal fielding data for post-season. 
HallOfFame Voting results for the Hall of Fame. 
Managers Seasonal data for managers. 
ManagersHalf Seasonal split data for managers. 
Master Biographical information. 
Pitching Seasonal pitching statistics. 
PitchingPost Seasonal pitching statistics for post-season. 
Salaries Seasonal salaries for players. 
Schools List of college teams. 
SchoolsPlayers Information on schools attended by players. 
SeriesPost Outcomes of post-season series. 
Teams Seasonal stats for teams. 
TeamsFranchises Timelines of franchises. 
TeamsHalf Seasonal split stats for teams. 

 


