GENUS *APODEMUS* IN THE PLEISTOCENE OF CENTRAL EUROPE: WHEN DID THE EXTANT TAXA APPEAR?

MARKÉTA KNITLOVÁ¹,*, IVAN HORÁČEK¹

¹Department of Zoology, Charles University, Viničná 7, CZ-128 44 Prague, the Czech Republic; e-mail: knitlova@natur.cuni.cz, horacek@natur.cuni.cz.

* corresponding author

Abstract: The extant species of the genus *Apodemus* represent the most common small mammals of Central Europe. Unfortunately, their phylogenetic past is only poorly known. With the aid of detailed biometric analyses we tried to identify the first appearance of the phenotypic patterns characterizing the extant populations. We examined dental material of *Apodemus* from 53 community samples from the territory of the Czech Republic and Slovakia dated from the early Villanyian (MN 16/17) to the late Middle Pleistocene (Q 3) with particular respect to their correspondence with the morphometric characteristics of the extant species. While the Toringian (Q 3) interglacial samples invariably include forms identical with the extant taxa *A. flavicollis*, *A. sylvaticus* and supposedly *A. uralensis* (including the items corresponding to *A. maastrichtiensis*), the samples of Early Pleistocene age (MN 17 – Q 2) exhibited clear differences in the variation pattern which results in questioning the possibility of their co-identification with the respective extant species. In most instances they varied within the limits in resembling *A. sylvaticus* but exceeded its variation ranges in some non-metric characters. Regarding serious doubts on real taxonomic status of other named fossil species we propose to denote these Plio-Pleistocene *sylvaticus*-like phenotypes provisionally with the prior name *A. atavus* Heller, 1936.

Key words: *Apodemus*, Pleistocene, Pliocene, Central Europe, dental phenotype

Received: September 19, 2017 | Accepted: October 30, 2017 | Issued: December 31, 2017

Introduction

The wood mice of the genus *Apodemus* are the most common murid rodents throughout the Palaeartic region (Niethammer 1978, Musser et al. 1996). The genus, phenotypically established within the early radiation of murid rodents during the Vallesian (Martín-Suárez and Mein 1998, Freudenthal and Martín-Suárez 1999) is characterized by rapid adaptive radiations (Serizawa et al. 2000, Suzuki et al. 2003, 2008). Initial divergence most likely started somewhere in Eastern or Central Asia, and resulted in diversification into two or three Asian clades – *Apodemus*, *Argenteus*, *Gurkha* group (*A. gurkha*) and a single European clade – *Sylvaeus* (Serizawa et al. 2000, Suzuki et al. 2003, 2008, Liu et al. 2004).

Currently, more than 20 species are recognized (Musser et al. 1996, Musser and Carleton 2005) and subdivided into 3–4 of the above mentioned subgenera (Serizawa et al. 2000, Suzuki et al. 2003, 2008, Liu et al. 2004). All the West Palaeartic representatives except for *A. agrarius* (subgenus *Apodemus*) belong to the subgenus *Sylvaeus*, the clade regularly represented in the European fossil record since the Turolian. Presumably, it was already established there in the Late Miocene (MN 13; van Daam 1997, Martín-Suárez and Mein 1998, Horáček et al. 2013), shortly after the westward expansion of the murids in MN 10. In contrast, all extant species of the subgenus *Sylvaeus* (including the European representatives, *A. alpica*, *A. flavicollis*, *A. mystacinus*, *A. epimelas*, *A. sylvaticus* and *A. uralensis*) are, according to molecular data (Bellinvia et al. 1999, Serizawa et al. 2000, Filippucci et al. 2002, Michaux et al. 2002, Bellinvia 2004, Suzuki et al. 2008), mutually closely related and separated by only shallow divergences (less than 10% in mtDNA), which suggests their radiation from a common ancestor during the Pliocene and Early Pleistocene age, supposedly due to the effects of the climatic changes at that time (Zachos et al. 2001).

The fossil record of the genus in Europe is almost continuous since the Late Miocene, the taxon appears in the vast majority of the Pliocene and Pleistocene assemblages...
throughout the whole of Europe. Kowalski (2001) listed it in 460 Late Pliocene and Pleistocene assemblages from 24 countries. In most instances the Quaternary fossil records are co-identified with extant European species, particularly the medium-sized species *A. sylvaticus*. Kowalski (2001) reported 227 records of *A. sylvaticus* dated from the late Villanyian (Villány 3, Schernfeld, Mas Rembault 2, Tegelen, Betfia 13, Akulaev) and Early Biharian (32 sites) to Middle and Late Pleistocene. The other extant species are reported relatively exceptionally in the fossil record (Kowalski 2001): 31 *A. flavidus* (except for one Villanyian and three Biharian records – Trasnassal, Voigtstedt, Atapuerca, Karaj Dubina, all of them Middle and Late Pleistocene age), 7 *A. agrarius*, no record of *A. uralensis* and *A. alpicola*. In addition at least 65 records mostly of the Villanyian and Early Biharian age were reported under the names denoting nominal fossil species *A. alsomyoides* Schaub, 1938 (MN 17, Villány 3, Hungary), *A. argyropuloi* Topácevska, 1973 (Q 1, Tarchunkt, Ukraine), *A. atavus* Heller, 1936 (MN 15, Gundersheim, Germany), *A. betfienis* Terzea, 1995 (MN 17, Betfia 13, Romania), *A. dominans* Kretzoi, 1959 (MN 15, Csarnótá 2, Hungary), *A. occitanus* Pasquier, 1974 (MN 16, Arondelli, Italy), *A. jeanteti* Michaux, 1967 (MN 17, Seynes, France), *A. maastrichtiensis van Kolfschoten, 1985* (Q 3, Maastricht-Belvedere 2, the Netherlands), *A. maximus* Thaler, 1972 (Q 1, Monte Pellegrino, Italy), *A. leptodus* Kretzoi, 1956 (Q 1, Villány 5, Hungary), some of them partly referred to the extinct genus *Parapodemus* Schaub, 1930.

The European fossil species of the genus *Apodemus* can be subdivided into two phenotypic groups often considered to represent separate clades which co-occurred from the Late Miocene and Pliocene: (i) large-sized forms with large broad molars, resembling the extant *A. mystacinus* and *A. epimelas*, represented by the species *A. barbarae*, *A. schaabi*, *A. gudrunae*, *A. gorafensis*, *A. jeanteti*: possibly related to the extant clade *A. mystacinus-epimelas* and/or the fossil genus *Rhagapodemus* Kretzoi, 1959 (frequens Kretzoi, 1956, primaevius Hugueney et Mein, 1964, huminaegnis Mein et Michaux, 1970, athensis Bruin et Meulen, 1975); and (ii) forms with smaller molars and M1 with almond-shaped outline, resembling the recent species *A. sylvaticus* and *A. flavidus*, represented by the remaining named species e.g. *A. atavus*, *A. dominans* etc. (Martin-Suárez and Mein 1998, Storch 2004, Nesin and Storch 2004). In addition to the fossil taxa, *A. sylvaticus* and *A. flavidus* have been reported in numerous European localities since the Early Pleistocene (Pasquier 1974, Michaux and Pasquier 1974, Storch 1974, Popov 1994, Argenti and Kotsakis 1999, Maul and Parfitt 2010, Minwer-Barakat et al. 2011, Marcolini et al. 2013).

However, the actual status and relationships between particular species within these groups are often considered doubtful and biased due to poor comprehension of the taxonomical relevance of formal diagnostic characters and patterns of phenotype variation. Among others this also concerns the two taxa to which most of the Pliocene records are ascribed, i.e. *atavus* and *dominans*, considered either quite distinct lineages (Martin-Suárez and Mein 1998) or, more recently, extreme phenotypes of a single species (Fejfar and Storch 1990, Martin-Suárez and Mein 2004, Minwer-Barakat et al. 2005, García-Alix et al. 2008, Colombero et al. 2014).

It should be stressed that identification at species level traditionally presents a serious problem, even in the case of extant species for which a far more complete record is available. Though individual extant species differ in mean body size, each of them shows a broad range of within-species variation and extensive between-species overlaps in the states of any morphometric traits (comp. e.g. Filippucci et al. 1996, Reutter et al. 1999, Frynta and Mikulová 2001, Spitzenberger 2001, Barčiová and Macholán 2009, Jojić et al. 2012). Just recently, with regard to the discriminatory bias of morphometric characters, differences in the distress call were proposed as the most reliable criterion for species identification (Ancillotto et al. 2016). Obviously, species identification is even more complicated in the case of fragmentary fossil material, which is often restricted to isolated molar teeth (Heinrich and Maul 1983a, b). It is no wonder that the species identification of fossil *Apodemus* was frequently regarded as provisional (cf.) and/or not provided at all (e.g. 119 out of 460 records in Kowalski 2001). In any case, species identification within the genus *Apodemus* is generally a very difficult task and in the case of a fragmentary fossil record this problem seems to be even more pertinent. Both fossil and recent species show a considerable variability in size and morphology over time (Pasquier 1974, Freundenthal and Martin-Suárez 1990), the fossil forms are often not properly diagnosed, their actual status and relationships to extant taxa, and consequently the history of extant species should be considered as rather unclear.

The recently proposed alternative approach to species identification (for more details see Knitlová and Horáček 2017) enabled retrieval of reliable information on the history of extant species from the mid-European Late Pleistocene and Holocene fossil record of the genus *Apodemus* which suggested that: (i) the genus is invariably absent in MIS 3 – MIS 2 assemblages but regularly appears during the Late Vistulian; (ii) all the Late Vistulian remains of the genus belong to *A. flavidis*, the species clearly predominating in the fossil record until the Late Holocene; (iii) *A. uralensis* accompanied it in all the studied area (the Czech Republic and Slovakia) until the late Boreal when it disappeared from the fossil record (except for Pannonia); (iv) contra to expectation, *A. sylvaticus* appeared later in the Early Holocene, first in the western part of the region and, until Atlantic, was relatively rare (the regular appearance of the species is mostly in the post-Neolithic period); (v) *A. agrarius* appeared sparsely from the Boreal with maximum frequency during the post-Neolithic period. Worth mentioning is that contrary to former interpretations, the picture resulting from the novel analyses of the fossil record conformed precisely to the picture proposed by molecular phylogeography (Libois et al. 2001, Michaux et al. 2003, 2004, 2005).

Here, we applied the same approach with material of the genus *Apodemus* from the Late Pliocene to Middle Pleistocene assemblages from the Czech Republic and Slovakia to reveal (i) the degree of phenotype correspondence between the extant forms and samples from different stratigraphic horizons, (ii) the differences in variation pattern in different stratigraphic horizons, and (iii) the period from which the phenotypic setting of extant species was established.

Instead of attempts to establish a definite identification of Plio/Pleistocene forms and discussion on the taxonomic
status of fossil species, we propose a provisional solution with respect to the complicated nature of the task and inherent bias.

Material and methods

The study is essentially based on material of the genus *Apodemus* from the faunal assemblages of the Late Pliocene and Pleistocene age deposited in the collection of the Department of Zoology, Charles University, Prague. The material was collected during last 50 years, mostly by the senior author. The study covers dental and cranial remains of *Apodemus* spp. in 53 community samples from 16 sites in the Czech Republic (CZ) and Slovakia (SK). Geographical position and the stratigraphical context of individual localities is shown in Text-fig. 1. A list of the respective sites is in Table 1. The stratigraphical position of particular samples is expressed in terms of the standard European biostratigraphic scale (Fejfar and Heinrich 1983, Bernor et al. 1996) and alternatively in terms of the Neogene (MN) or Quaternary (Q 1–4) mammalian biozones (Mein 1976, 1989, Horáček and Ložek 1988, Agustí et al. 2001).

The Plio-Pleistocene material under study comprised 361 remains identified as *Apodemus* spp. (mostly isolated teeth and jaw fragments). All items were photographed with the aid of an Olympus SZX12 stereomicroscope, and further measured using tpsDig image analysis software (by F. J. Rohlf) with an accuracy of 0.01 mm.

In total, 57 dental dimensions were measured (see Text-fig. 2), supplemented with 4 proportional ratios (M2U/M1U, M14U/M15U, m3L/m1L, m6L/m5L) and 25 non-metric variables (including the degree of tooth abrasion, see App. 1). The supplementary variables expressing the size of molar surfaces (SURM1, SURM2, SURm1, SURm2) were computed by multiplying molar length by molar width. The degree of tooth wear and the states of 24 non-metrical characters were scored using predefined scales (0–9) subdividing the span of the observed variation (see App. 1 for details). Further, the number of roots on M1–2 or the number of alveoli for M1–2 in the maxillary fragments were determined. All measurements were taken by the same author (M.K.). Cusp nomenclature follows Horáček et al. (2013), see Text-fig. 3. Maxillary molars are marked in upper case (M1–M3) and mandibular molars in lower case (m1–m3).

Text-fig. 1. Geographical position and stratigraphic context of the Pleistocene sites from the Czech Republic and Slovakia containing *Apodemus* material analyzed in this paper.

Text-fig. 2. Definition of the metric characters applied in this study, for non-metric characters see Appendix 1.
<table>
<thead>
<tr>
<th>No.</th>
<th>Locality abbr.</th>
<th>Name (administrative localisation, region)</th>
<th>Detailed primary data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>KOBY</td>
<td>Kobyla-Chlupářova say (Koněprusy, Bohemian Karst)</td>
<td>Horáček and Ložek (1988)</td>
</tr>
<tr>
<td>3</td>
<td>MENA</td>
<td>Měněný 2 (Měná, Bohemian Karst)</td>
<td>Horáček (1979)</td>
</tr>
<tr>
<td>4</td>
<td>CHL7</td>
<td>Chlum 7 (Srbsko, Bohemian Karst)</td>
<td>Horáček (1982)</td>
</tr>
<tr>
<td>5</td>
<td>CTIN</td>
<td>Ctiněves (Kájov-Dobrkovice, Český Krumlov distr.)</td>
<td>Horáček (1988)</td>
</tr>
<tr>
<td>6</td>
<td>CHL4C</td>
<td>Chlum 4C (Srbsko, Bohemian Karst)</td>
<td>Horáček and Sánchez-Marco (1984)</td>
</tr>
<tr>
<td>7</td>
<td>CHL7</td>
<td>Chlum 7 (Srbsko, Bohemian Karst)</td>
<td>Horáček (1982)</td>
</tr>
<tr>
<td>8</td>
<td>STRC</td>
<td>Stránská skála (Brno, Moravian Karst)</td>
<td>Kučera et al. (2009)</td>
</tr>
<tr>
<td>9</td>
<td>STRS1</td>
<td>Stránská skála cave (Brno, Moravian Karst)</td>
<td>Horáček and Ložek (1984)</td>
</tr>
<tr>
<td>10</td>
<td>MIAD</td>
<td>Mladá 2 (Mladá, Olomouc distr.)</td>
<td>Horáček and Ložek (1984)</td>
</tr>
<tr>
<td>11</td>
<td>CIJN</td>
<td>Balcarka (Jičín, Topolčany distr.)</td>
<td>Horáček and Ložek (1988)</td>
</tr>
<tr>
<td>12</td>
<td>TUNE</td>
<td>Turold W1 (Mladá, Břeclav distr.)</td>
<td>Horáček and Ložek (1983)</td>
</tr>
<tr>
<td>13</td>
<td>HONC</td>
<td>Horné (Horné, Slovak Karst)</td>
<td>Horáček and Ložek (1987)</td>
</tr>
<tr>
<td>14</td>
<td>VCEL</td>
<td>Velké říčky (Velké říčky, Slovak Karst)</td>
<td>Horáček (1985)</td>
</tr>
<tr>
<td>15</td>
<td>PLES</td>
<td>Přísečnice (Přísečnice, Slovak Karst)</td>
<td>Horáček and Ložek (1983)</td>
</tr>
<tr>
<td>16</td>
<td>VL6/7</td>
<td>Velké říčky 6/7 (Dovníky-Velké říčky, Slovak Karst)</td>
<td>Horáček (1985)</td>
</tr>
</tbody>
</table>

Table 1. List of the Czech and Slovak Pleistocene localities containing Apodemus remains which were examined in this study.
The procedure of phenotype categorization based on variation of extant species was applied: individuals falling in zones of overlap and those exhibiting the character states restricted to particular extant species were treated as different parataxa (for more detailed information see Knitlová and Horáček 2017). Diagnostic criteria for the respective parataxa were established based on morphometric characteristics: (i) length of molars (M1U, M18U, m1L, m16L) and (ii) surface area of molars (SURM1, SURM2, SURm1, SURm2) (see tab. 2 in Knitlová and Horáček 2017). All examined molars were categorized into parataxa 1–5 (1 – *A. uralensis*, 2 – *A. uralensis/A. sylvaticus*, 3 – *A. sylvaticus*, 4 – *A. sylvaticus/A. flavicollis*, 5 – *A. flavicollis*) based on the above mentioned morphometric criteria. For each item, three different determination techniques were used independently: SPA – preliminary identification “by eye” based on overall phenotype appearance; SPB – categorization based on molar length variables and SPC – categorization based on area variables.

The set of morphometric data was further analysed with the aid of a multivariation approach. A standard PCA of fossil samples and a series of discrimination functions were computed using different sets of metric and non-metric variables, with the samples of extant species as the primary source of discrimination factors. The biometric data for extant samples (n = 225) were retrieved from a previous study (Knitlová and Horáček 2017) as well as the default discrimination functions based on metric variables (applied in Text-fig. 6). Corresponding comparisons, based on a most robustly discriminating set of both metric and non-metric m1 and M1 variables respectively, are presented in Text-figs 7 and 8. Regarding the numerical scoring of the non-metric variables utilise in this study, for the purpose of multivariate comparisons their states were treated as metrical characters.

For each individual of the Recent and fossil samples, an average difference from the mean values for extant species (*A. uralensis*, *A. sylvaticus* and *A. flavicollis*) was computed separately for metric and non-metric characters. For metric characters the difference was expressed as a ratio of individual and mean state, for the non-metric as an absolute value of the respective numerical difference. The variation pattern was expressed in the form of plot of metric to non-metric values (Text-fig. 9).

Statistical analyses were performed in Microsoft Excel and Statistica Software 13.

Results

Out of 321 molars (80 M1, 52 M2, 120 m1, 69 m2) studied, 12 teeth were not categorized into any parataxa and excluded from most of morphometric analyses due to damage or a high degree of tooth wear. One tooth (m1 from Včeláře 7) was not classified into any parataxa due to significantly exceeding the upper limit of the variability of the Recent population of the largest Central European species (*A. flavicollis*, m1L = 2.05 mm). This specimen was identified as the genus *Rhagapodemus* (m1L = 2.29 mm) (see App. 2).

No item exhibited the characteristics of *A. agrarius*. This also concerns the M2 from Mokrá 1 with indistinct t3.
Text-fig. 6. Plot of discriminant scores (R1/R2) of individual m1 and M1 teeth of Apodemus spp. from particular Pleistocene biozones superimposed onto a plot of variation ranges for the respective variables for the Recent Apodemus sample (based on the discrimination analysis of metric variables of M1 and m1).
Phenotype categories (parataxa)

Data on size variation in specific stratigraphic horizons are presented in Text-figs 4 and 5. A clear difference can be seen between the Middle Pleistocene (Q 3) and earlier horizons (MN 17 – Q 2). While in the former more recent horizons, the *Apodemus* sample exhibits a bi- or trimodal distribution with peaks corresponding to extant species *A. uralensis, sylvaticus* and *flavicollis* (the most common species), similar to the Late Pleistocene-Holocene pattern, in the latter it show a unimodal distribution centered on the variation range exhibited by extant *A. sylvaticus*. In short, the vast majority of the Villanyian and Biharian items fall within the variation range of recent populations of *A. sylvaticus*, but most of them differ from extant species due to the well-developed t12 in M1 – M2 (comp. App. 3).

The identification of individual items in terms of arbitrary phenotype categories (parataxa), established based on variation within extant species, revealed the same picture. All parataxa (1–5) were represented in the Pleistocene material examined. On the basis of morphometric criteria...

Text-fig. 7. Plot of discriminant scores (R1/R2) of individual M1 of *Apodemus* spp. from particular Pleistocene biozones superimposed onto a plot of variation ranges for the respective variables for the Recent *Apodemus* sample (based on the discrimination analysis of total set of characters, both metric and non-metric).

Text-fig. 8. Plot of discriminant scores (R1/R2) of individual m1 of *Apodemus* spp. from particular Pleistocene biozones superimposed onto a plot of variation ranges for the respective variables for the Recent *Apodemus* sample (standardized discrimination scores based on nine most significant variables).
(SPB, SPC), most of the fossil record was assigned to parataxon 2 (38 molars), parataxon 3 (91 molars), parataxon 4 (74 molars) and parataxon 5 (93 molars), while the other parataxon, 1, was clearly less abundant – 12 molars (see also the results of the frequency analysis of M1U values in Text-fig. 4 and m1L values in Text-fig. 5).

A detailed survey of the determination results for particular community samples is in Appendix 2. In terms of individual parataxa it can be summarized as follows:

Parataxon 1 – *A. uralensis* s. str.: 12 molars (5 M1, 4 m1, 3 m2) from 6 community samples (Q 1: Mladeč 1B; Q 2: Chlum 4, 4C/4=Y; Q 3: Mladeč 2, 2 4m, 2 7/20)

Parataxon 2 – *A. uralensis/A. sylvaticus*: 38 molars (9 M1, 2 M2, 18 m1, 9 m2) from 18 community samples (MN 17: Javoříčko III; Q 1: Včeláře 4E, 5B, 5 base 90, 4/7, 6/3, 6/7, 6/8; Q 1/Q 2: Mladeč 3 7/10; Q 2: Chlum 4, 4C/4=Y, 4C/6, 4C/6/7; Stránská skála 1/6; Q 3: Mladeč 2, 2 1m, 2 vrch; Tuřold NE 8/1+2 base)

Text-fig. 9. Mean individual differences in non-metric and metric variables of M1 from respective mean values of extant *A. flavicollis*, *A. sylvaticus* and *A. uralensis* in the Recent samples (left) and fossils of particular Pleistocene biozones (right), superimposed to variation ranges and centroids of the former ones.
Parataxon 3 – *A. sylvaticus* s.str.: 91 molars (22 M1, 9 M2, 47 m1, 13 m2) from 27 community samples (MN 17: Ctiněves 25; Javoříčko IV; Plešivec E, 6556; Včeláře 6/1c, 6/1, 3, 7; Q 1: Měhany 2; Sovinec 4; Včeláře 3B/1, 4E, 5B, 5 base 90, 4/7, 6/3, 6/7, 6/8; Q 1/Q 2: Honce; Q 2: Bzince; Chlum 4C/4=Y; 4C/6/7; C “x”; Stránská skála 1/6; Q 3: Mladěc 2, 2 1m; Turol NE8/1+2 base)

Parataxon 4 – *A. sylvaticus/A. flavicollis*: 74 molars (13 M1, 22 M2, 17 m1, 22 m2) from 33 community samples (MN 17: Chlum 7; Ctiněves 23, 25; Javoříčko III, IV; Plešivec E; Včeláře 6/1c, 6/1, 3; Q 1: Mladěc 1; Sovinec 4, 4 (353); Včeláře 3B/1, 4E, 5B, 5 base 90, 4/7, 6/3, 6/7, 6/8; Q 1/Q 2: Honce; Q 2: Bzince A; Chlum 4/C3, 4C/4=Y, 4–3–6, 4B/10b, 4K/3B; Stránská skála 7; Q 3: Dobrkovice II; Mladěc 2, 2 4m, 2 7/20; Q 4: Kobyla 6, 9)

Number of roots

In the total of 80 M1 examined, 12 of them are three-rooted, 45 four-rooted, 14 M1 are in maxillary fragments and in 14 M1 the roots are not preserved. The representation of three-rooted and four-rooted M1 in individual community samples is listed below: three-rooted M1 – 12 molars in 8 community samples (MN 17: Javoříčko III; Plešivec A4, E; Včeláře 6/1, 3, 7; Q 1: Včeláře 3B/1, 4E, 5B, 5 base 90, 4/7, 6/3, 6/7, 6/8; Q 1/Q 2: Honce; Q 2: Bzince A; Chlum 4/C3, 4C/4=Y, 4–3–6, 4B/10b, 4K/3B; Stránská skála 7; Q 3: Dobrkovice II; Mladěc 2, 2 4m, 2 7/20; Q 4: Kobyla 6, 9)

In the total of 52 M2 studied, only one M2 had 3 roots (Q 1: Včeláře 6/8), 27 M2 are four-rooted, 13 M2 are in maxillary fragments and in 11 M2 the roots are not preserved.

In the total of 28 fragments of upper jaw examined, 8 of them have 3 alveoli for M1 (MN 17: Včeláře 6/1; Q 1: Mladěc 1; Sovinec 4 (353); Včeláře 6/7, 6/8; 18 have 4 alveoli for M1 (Q 1: Včeláře 5B, 5 base 90, 6/7, 6/8; Q 2: Bzince B; Chlum 4C/6; Q4: Kobyla 9), in 2 fragments alveoli are not preserved (Q 2: Bzince B; Chlum 4B/10b). None of studied maxillary fragments had 3 alveoli for M2 (11 maxillary fragments had 4 alveoli for M2, the remaining alveoli are not preserved). We found no clear relationship between the number of roots and categories of the phenotypic classification (parataxae). At the same time, both the presumptive plesiomorphic condition (3 roots) and derived condition (4 roots) appeared in all stratigraphic horizons at roughly the same frequencies, no clear trend could be identified.

Multivariate comparisons

All discriminant analyses exhibiting for a given set of characters (m1, M1, etc.) the best discrimination capacity, revealed roughly the same picture (comp. Text-figs 6, 7 and 8). The Q 3 samples are clearly split into clusters corresponding to extant species with that of *A. flavicollis* as the most frequent. Only a few items fall beyond the limits of the variation ranges of extant samples. The Q 2 material exhibited the least variation, clearly corresponding to the variation range of *A. sylvaticus*. In contrast, Q 1 and MN 17 samples showed relatively broad variation centred within the variation span of *A. sylvaticus* but exceeding it both up to the marginal areas of *A. flavicollis* and *uralensis* clusters and beyond the variation ranges of extant species. The centroids of Q 1 and particularly MN 17 samples are shifted relatively far from the centroid of extant *A. sylvaticus*, being close to the overlap zone of *sylvaticus/flavicollis* clusters.

Quantitative pattern of phenotype variation

A comparison of extant and fossil forms with respect to individual differences from mean states of metric and nonmetric variables in three extant species (Text-fig. 9) revealed a picture which clearly supports the above mentioned patterns. There is a perfect correspondence in population variation pattern between Q 3 samples and extant populations but clear differences between MN 17 and Q 2 samples. Regarding the relationship to *A. uralensis* and *A. flavicollis*, it appears that almost all items of MN 17 to Q 2 age fall in the clusters of *A. sylvaticus*. Nevertheless, regarding the relationship to the mean of *A. sylvaticus*, they show considerable difference from the cluster characterizing the variation pattern of extant *A. sylvaticus* (including the centroid position) particularly in the value of non-metric characters.

Discussion

The classification of fossil species of the genus *Apodemus* is exclusively based on odontological characters. Martín-Suárez and Mein (1998) list for most of them a default generic state and orientation of their phylogenetic morphoclines: (i) a stephanodont pattern of M1, M2 forming a nearly continuous crest connecting cusps t4–5–9–8, with gradual inflation of t8 and appearance of t7 at its labial base; (ii) the cusps t6 and t9 grow closely connected; (iii) cusp t12 is large in the fossil forms, in the majority of more recent forms it tends to be reduced (supposedly due to the increase in volume of t8); (iv) M1 with t1 in an anterior position and three or four roots; (v) M2 without t1bis; (vi) typically, no longitudinal connections between cusps of lower molars while the cusp pairs tend to form chevrons; (vii) a distinct tma cusp on m1, as a rule.

All the items included in our study corresponded well to these diagnostic features. Both in metric and non-metric characters the Pleistocene samples covered almost the whole variation range of the Recent and Holocene populations of extant mid-European species, *uralensis*, *sylvaticus* and *flavicollis*, including extensive zones of between-species overlap (comp. Knitlová and Horáček 2017). Application of diverse techniques quantifying the degree of correspondence between the extant and Pleistocene samples of course revealed considerable differences. While the samples of Middle Pleistocene age (Q 3) corresponded quite perfectly to extant phenotype diversity of the genus in the pattern of variation span, position of centroids, quantitative patterns of within-species variation (both in metric and non-metric
characters) and even frequency of individual species (with dominating *A. flavicollis*), the samples from all stages of the Early Pleistocene (MN 17 – Q 2) show in all these respects clear differences from the Recent forms.

In this respect, our results robustly support the conclusion by Pasquier (1974) that based on phenotypic traits *A. sylvaticus* and *A. flavicollis* appeared initially as two separate species at the beginning of the Middle Pleistocene. The shift in the phenotype pattern at the Q 2/Q 3 boundary, at which point the phenotypes characterizing the extant species were being established, is synchronous with analogical rearrangements in other clades (*Sorex runtonensis*- *S. araneus*, *Mimomys savini-Arvicola, Microtus gregaloides-M. gregalis* etc. – comp. e.g. Horáček and Ložek 1988). This could have been driven by dramatic climatic and environmental changes originated at the Early-Middle Pleistocene transition (Head and Gibbard 2005).

The Early Pleistocene record of the genus is dominated with a form corresponding in overall size to extant *A. sylvaticus* but at the same time showing significant differences from the extant species. However, what is the actual taxonomic relevance of these differences and, correspondingly, relevance of the differences between the samples from particular Early Pleistocene localities (clearly pronounced in MN 17 and older samples) cannot be answered with any certainty at the moment. Whether more species were part of the group, and which would reflect actual taxonomic diversity of the genus in Europe during the course of the Late Cenozoic past, the status of particular nominate fossil species and their relationship to extant taxa, remains with the present state of knowledge unknown. Answering these questions is confounded by multiple factors – from the fragmentarity of the fossil record (a lack of abundant population samples) to poor comprehension of some aspects of character variation and their phylogenetic significance. Many times it has been stressed that species identification of the Pliocene *Apodemus* is particularly difficult, because – notwithstanding the broad variation – some of the characters discriminating them are mostly symplesiomorphies, e.g. a three-rooted M1 and M2, a relatively well developed t12 in the M1 and M2 and the presence of the cingular cuspid c1 in the m1 and m2 (Martin-Suárez and Mein 1998), (1998), (1998). This relationship may be corroborated by some remains of *A. atavus* from Willerhausen (Rietschel and Storch 1974), where the exceptional preservation of bones and soft tissues allowed the authors to note that the habitus and size of the two species are similar and that *A. atavus* differs solely in a few characters such as the shorter ulna and femur and the more prominent t12 in M1 and M2. (iii) According to Martin-Suárez and Mein (1998), *A. atavus* could be a common ancestor of *A. sylvaticus* and *A. flavicollis* in the Early Pleistocene of Europe. (iv) Most of the Early Pleistocene European samples of *Apodemus* can be considered as *A. atavus*, finally including the Late Biharian populations as proposed by Marchetti et al. (2000) who reported the largest population sample (more than 500 remains) from the site Monte La Mesa, Italy. *A. dominans* Kretzoi, 1959 (type locality Csarnóta 2, MN 15b) was reported in Europe since the latest Miocene to the Pleistocene. According to Martin-Suárez and Mein (1998), *A. dominans* represented a very conservative lineage leading from the Late Miocene to the Pleistocene. According to Rietschel and Storch (1974) and Pasquier (1974), *A. dominans* could be an ancestor of *A. flavicollis*. Feijfar and Storch (1990) suggested that putative distinctive characters of *A. dominans* including the presence of a prominent t12 on M1, M2, three radiculated upper molars, and the presence of rearward facing c1 on m1 and m2 should be regarded as symplesiomorphies of the genus. The size differences between *A. dominans* from the type locality of Csarnóta 2 (van de Weerd 1976) and *A. atavus* from Gundersheim 4 (Heller 1936): always well-developed t7 and t12, t3 with short posteriorly directed spur, separated t4 and t7 until a fairly advanced stage of wear and three roots on the slender M1 and an almost well-developed tma, the spur of the protoconid/metaconid chevron connected to the lingual cusp of the anteroconid complex and a variable number of labial accessory cuspsulids on the m1, large posterior heel of m2 that usually protrudes over the outline. Rietschel and Storch (1974) gave as diagnostic criterion of *A. atavus* that the c1 of m2 is large. Yet, in larger samples that character appears to be highly variable: some specimens have a well-developed c1, and in other cases it is much reduced (Minwer-Barakat et al. 2005). In the collection from the type locality, Gundersheim, no m2 are available. The majority of the small Pliocene *Apodemus* with individualized t7 are attributed to *A. atavus* (Heller 1936, Rietschel and Storch 1974, Maul 1990, Bollinger et al. 1993, Mörs et al. 1998, van Kolfschoten et al. 1998, Marchetti et al. 2000).

Diverse opinions were proposed concerning the phylogenetic relationships of *A. atavus*. (i) *A. atavus* does not show an ancestor-descendant relationship with any western European Miocene taxon, it may be an Asian immigrant (Martin-Suárez and Mein 1998). The geographic distribution of *A. atavus* extends throughout the Palaearctic region (Cai and Qui 1993, Martin-Suárez and Mein 1998), and, chronologically from the latest Miocene to the Early Pleistocene (Minwer-Barakat et al. 2005). It is a species with relatively conservative morphology, with few differences between the oldest and the youngest populations (Minwer-Barakat et al. 2005). (ii) *A. atavus* should be considered as a direct ancestor of the extant species *A. sylvaticus* (Rietschel and Storch 1974, Feijfar and Storch 1990, Martin-Suárez and Mein 1998). This relationship may be corroborated by some remains of *A. atavus* from Willerhausen (Rietschel and Storch 1974), where the exceptional preservation of bones and soft tissues allowed the authors to note that the habitus and size of the two species are similar and that *A. atavus* differs solely in a few characters such as the shorter ulna and femur and the more prominent t12 in M1 and M2. (iii) According to Martin-Suárez and Mein (1998), *A. atavus* could be a common ancestor of *A. sylvaticus* and *A. flavicollis* in the Early Pleistocene of Europe. (iv) Most of the Early Pleistocene European samples of *Apodemus* can be considered as *A. atavus*, finally including the Late Biharian populations as proposed by Marchetti et al. (2000) who reported the largest population sample (more than 500 remains) from the site Monte La Mesa, Italy.
A. uralensis (including A. occitanus synonymized with dominans already by de Bruijn and van der Meulen 1975), the view later also accepted by Martin-Suárez and Mein (2004), Minwer-Barakat et al. (2005), García-Alix et al. (2008), and Colombero et al. (2014).

Our results revealing the differences in variation pattern, particularly in non-metric characters, between the extant sylvaticus and the Early Pleistocene medium-sized form suggest that the extant and fossil form present distinct entities, a fact worth being emphasized by denoting the latter as a separate taxon. With regard to the above discussed taxonomic conclusions we propose as a provisional solution (until a detailed comparison is made of Pliocene and Pleistocene with the prior name A. maastrichtiensis to denote all the medium-sized sylvaticus-like forms from the mid-European Early Pleistocene with the prior name A. atavus Heller, 1936.

The other question to be discussed concerns the rare small-sized items which partly fall in the range of extant A. uralensis (comp. parataxon 1), appearing mostly in the early Middle Pleistocene assemblages. The fossil taxon which come here in account is A. maastrichtiensis van Kolfschoten, 1985 (type locality Maastricht-Belvedere, Middle Pleistocene, with further records from Q 3 sites Fransche Kamp, Wageningen, Miesenheim). Its diagnosis is as follows (van Kolfschoten 1985): the M1 with 3–4 roots (mostly 3) and t9 which is smaller than t6 and a narrow, elongated t7. The t3 of the M2 is incipient or absent, t7 and t9 are small. The slopes of the m1 and m2 cusps are more or less vertical and the angle formed by the chevrons is obtuse. The tma of m1 is isolated in most of the specimens. The m2 antero-labial cusp is small. A. maastrichtiensis differs from all other Apodemus species in the extreme steepness of the cusp slopes in its lower molars. From A. uralensis it differs in the size of the t3 of M2 which is more strongly developed in A. uralensis. Only a small number of specimens of A. uralensis (2 out of 114) show a reduction in t3 (Steiner in Niethammer 1978). The t9 of M1 and M2 of A. uralensis are also larger than those of A. maastrichtiensis. In addition several specimens from our Q 2 and Q 3 sites (Mladeč 3, Chlum 4) and also the teeth from MN 17 sites (Ctinéves, Javoličko III) clearly show a closer correspondence to A. maastrichtiensis in its diagnostic characters than to uralensis. What is actual significance of these relationships and what was the Pleistocene history of the small-sized Apodemus remains an important task for further study.

Acknowledgements

The authors are particularly obliged to Oldřich Fejfar, Gerhard Storch, Vojen Ložek, Jan Zima, Stanislav Čermák and Jan Wagner for numerous discussions on the topics and to the reviewers, Thijs van Kolfschoten and Vasil Popov, for careful reading of previous version of the manuscript and constructive comments. The research was partly supported by grant GACR 13-08169S.

References

van Kolfshoten, T. (1985): The Middle Pleistocene (Saalian) and Late Pleistocene (Weichselian) mammal fauna from Maastricht-Belvédère (Southern Limburg, the Netherlands). – Mededelingen Rijks Geologische Diens, 39: 45–74.

Appendix 1
List of non-metric variables, span of their variation and scoring categories.

(a) The non-metric variables of M1.

- **F1**: degree of asymmetry of t1/t3
- **F2**: degree of confluence of t4/t7
- **F3**: relative size of t7
- **F4**: degree of differentiation of t12
- **F5**: shape of distal margin of the tooth
- **F6**: degree of differentiation of t0 (t1bis)
- **F7**: degree of differentiation of t0 (t2bis)
- **F8**: relative size of medial ridge between t1 and t5
- **F9**: relative size of medial ridge between t3 and t5
Appendix 1
List of non-metric variables, span of their variation and scoring categories.

(b) The non-metric variables of m1

- **F14**: size of tma
 - 0 to 9

- **F15**: degree of asymmetry of anteroconid complex
 - 3 to 9

- **F16**: relative thickness of cingular ridge
 - 0 to 9

- **F17**: differentiation of cingular ridge
 - 0 to 9

- **F18**: relative size of cingular cusps c3 and c4
 - 0 to 9

- **F19**: relative size of cingular cusp c2
 - 0 to 9

- **F20**: relative size of cingular cusp c1
 - 0 to 9

- **F21**: relative size of central distoconid
 - 0 to 9
Appendix 1
List of non-metric variables, span of their variation and scoring categories.
(c) The non-metric variables of M2.

Appendix 1
List of non-metric variables, span of their variation and scoring categories.
(d) The non-metric variables of m2.
Appendix 1
List of non-metric variables, span of their variation and scoring categories.
(e) A degree of tooth wear.

F22
relative thickness of cingular ridge

F23
relative size of labial anteroconid

F24
relative size of central distoconid
Appendix 2

A detailed list of material and representation of particular parataxa in individual fossil samples.

LOC	LAY	STRA	M1	M2	m1	m2	Rhagapodemus sp.	Number of unidentified teeth																																
CHLU	4S	Q 2	0	1	2		1		1		1		1		1		1		1		1		1		1		1		2		1		1		1		1		1	
CHLU	4C/3	Q 3	1			2	1	1	1		1		1		3		1		3		1		3		1		1		1		1		1		1					
CHLU	4C/4+Y	Q 3	2	1	3	4	1		1		1		1		3		1		1		3		1		1		1		1		1		1							
CHLU	4C/6	Q 3		2	1	1		3		1		3		1		1		1		1		3		1		1		1		1		1								
CHLU	4C/6/7	Q 3			2	1		1		1		1		1		3		1		1		3		1		1		1		1		1								
CHLU	4C/ 3–6	Q 3			2	1	1		1		1		1		3		1		1		3		1		1		1		1		1									
CHLU	4B/10b	Q 2		2	1		1		1		1		1		1		1		1		1		1		1		1		1											
CHLU	4K/3B	Q 2			2	1		1		1		1		1		1		1		1		1		1		1														
CHLU	4C/“x”	Q 3			4	1		1		1		1		1		3		1		1		3		1		1		1												
CHLU	7	Q 3	1				1		1		1		1		1		1		1		1		1		1		1													
KOBY	6	Q 3		2	1	2		1		1		1		1		1		1		1		1		1		1														
KOBY	9	Q 3	1	2	2	1		1		1		1		1		1		1		1		1		1																
MENA	2	Q 1	1	1		1		1		1		1		1		1		1		1		1		1																
CTIN	23	MN 17	1	1		1		1		1		1		1		1		1		1		1		1																
CTIN	25	MN 17	2	1	1	1		1		1		1		1		1		1		1		1																		
DOBR	II	Q 3	1				1		1		1		1		1		1		1		1		1																	
BALC	Q 3	3	1				1		1		1		1		1		1		1		1																			
STRS	1/6	Q 2		1	1	3		2		1		1		1		1		1		1		1																		
STRS	1/7	Q 2			1	1		1		1		1		1		1		1																						
STRS	Q 3			1	1		1		1		1		1		1																									
JAVO	IV	MN 17		3	2		1		1		1		1		1																									
JAVO	III	MN 17		1	2	2		1		1		1		1		1		1		1		1		1																

Unauthentifiziert | Heruntergeladen 10.09.19 13:51 UTC
<table>
<thead>
<tr>
<th>MLAD 1</th>
<th>Q 1</th>
<th>O 1</th>
<th>O 2</th>
<th>O 3</th>
<th>O 4</th>
<th>O 5</th>
<th>O 6</th>
<th>O 7</th>
<th>O 8</th>
<th>O 9</th>
<th>O 10</th>
<th>O 11</th>
<th>O 12</th>
<th>O 13</th>
<th>O 14</th>
<th>O 15</th>
<th>O 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLAD 1B</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>MLAD 2</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>MLAD 2f</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>MLAD 2g</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>MLAD 3</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>SOVI 4</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>SOVI 4 (353)</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>TURO W1</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>TURO W1</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>BZIN A</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>BZIN B</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>HONC</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>PLES A4</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>PLES E</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>PLES 6556</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 38/1</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 4E</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 5/8</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 6/5</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 6/8</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 6/1c</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>VCEL 7</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Q 1</td>
<td>O 1</td>
<td>O 2</td>
<td>O 3</td>
<td>O 4</td>
<td>O 5</td>
<td>O 6</td>
<td>O 7</td>
<td>O 8</td>
<td>O 9</td>
<td>O 10</td>
<td>O 11</td>
<td>O 12</td>
<td>O 13</td>
<td>O 14</td>
<td>O 15</td>
<td>O 16</td>
</tr>
</tbody>
</table>

Appendix 2 – continued.
Appendix 3
Selected items representing particular taxa under study. a – *Apodemus atavus.*
Appendix 3