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Abstract. De Finetti theorem establishes the conceptual basis of Bayesian inference replacing the 
independent and identically distributed sampling hypothesis prevalent in frequentist statistics with the 
much easier to justify in practical settings hypothesis of exchangeability. In this paper we make use of 
the extension of the concept of exchangeability from sequences to arrays arguing that the invariance to 
ordering is a much more tenable assumption than independent and identically distributed sampling in 
the financial modeling problems. Making use of the celebrated Aldous-Hoover representation theorem 
of exchangeable matrix we construct a Bayesian non-parametric model of the financial returns 
correlation matrices arguing that a Bayesian approach can mitigate many of the known shortcomings 
of the usual Pearson correlation coefficient.  We posit the correlation matrix to be an exchangeable 
matrix and construct a Bayesian neural network to estimate the functions from the Aldous-Hoover 
representation theorem. The correlation matrix model is coupled with a Student-t likelihood (accounting 
for the heavy tails of financial returns). The model is estimated with a Hamiltonian Monte Carlo sampler. 
The samples are used to construct an ensemble of networks where each edge is weighted by the size of 
the correlation between two financial instruments.  Various centrality measures are being calculated 
(betweenness, eigenvector) for each network of the ensemble allowing us to obtain a probabilistic view 
of each financial instrument’s importance. We also construct a minimum spanning tree associated with 
the mean correlation matrix allowing us to visualize the most important financial instruments from the 
universe selected. 
 
Keywords: Exchangeability, Correlation, Bayesian neural networks, Centrality, Networks.  
 

Introduction  
Modeling the financial dependence across assets is one of the corner stones of quantitative 
approach in finance. Failing to account for dependence between financial assets or using 
poorly specified models with unrealistic assumptions can lead to disastrous consequences as 
exemplified by the subprime crisis of 2007-2009.  The collateralized debt obligations (CDO) 
were securitized instruments which contained pools of mortgages, and their value was 
calculated using poorly fit correlation models. The pricing of the CDOs was made by having 
an overly optimistic assumption that the correlation between mortgages defaults was low. 
When the housing market started to fall, the number of mortgage defaults was higher than 
was than predicted by the valuation models leading to the collapse of the CDO market and of 
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the banking organizations that held those instruments in their portfolios. 
In this paper we argue for a principled approach in the modeling of the dependence 

between financial assets taking into account the uncertainty that is inherent to every 
modeling endeavor. We consider that the Bayesian approach to modeling dependence 
between financial instruments is well suited to the particularities of financial data. 

Bayesian framework lays bare all the modeling assumptions about the data 
generating process (in the form of likelihood function) about the plausible values of the 
parameters (in the form of the prior distribution of the parameters) and about the 
uncertainties in the measurement process (the prior distribution of the data).  Having all the 
assumptions laid out in a probabilistic form, forces the model’s stakeholders to always take 
into consideration the model limits.  The output of a Bayesian model is again presented in the 
form of a probability distribution (posterior) forcing again the stakeholder to consider the 
uncertainty of the results. This is where Bayesian approach departs the frequentist 
philosophy: in the Bayesian approach one does not reject or fail to reject a hypothesis, in the 
Bayesian approach one only updates one’s beliefs in one alternative or the other. 

In this paper we construct a probabilistic model of pairwise correlations between 
financial assets returns as general as possible, a model that takes into account the extreme 
complexity and its associated uncertainty of financial instruments evolution. We placed our 
approach under the framework of exchangeable sequences of random variables pioneered 
by de Finetti (De Finetti, 2017) and extended to the case of exchangeable arrays by Aldous 
and Hoover (Aldous, 1981 and Hoover, 1979). The representation theorem of Aldous and 
Hoover, discussed below, establishes the necessary and sufficient conditions for an array to 
be exchangeable.  As we consider exchangeability of correlation matrices (invariance to 
permutations) as a safe modeling assumption, we use the representation theorem to build a 
Bayesian model of correlation matrices. 

The Aldous and Hoover theorem only proves the existence of a representation of an 
exchangeable random matrix as a function of independently and identically distributed (i.i.d.) 
sequence of uniform random variables without offering a constructive method of finding that 
representation. Being universal approximators (Hornik et al, 1989), we use Bayesian models 
of neural networks to estimate the distribution of the correlation matrix from data. We used 
a Hamiltonian Monte Carlo sampler to estimate our model from data. 

The Bayesian model we specify, results in a distribution of probability over the space 
of correlation matrices.  We decided that listing the correlation matrices is simply not very 
useful even for moderately large matrices as it obscures the relationships between various 
components of the matrices. We express the correlation matrix as a weighted network, and 
we calculate various measures of nodes (financial instruments) importance. The utility of 
Bayesian approach becomes visible in this context, as we can derive with minimum effort a 
probability distribution of various centrality measures based on samples from the posterior 
distribution of correlation matrices.  We argue that due to the concentration of measure in 
high dimensional spaces (i.e. most of the probability mass is concentrated around the mean), 
the mean is the most informative summary of the posterior distribution of the correlation 
matrix. We build a representation of the mean correlation matrix under the form of a 
minimum spanning tree (MST).  We will also show how one can intuitively visualize these 
probability distributions by making use of boxplots. 

In the conclusion section we discuss the importance of the results obtained and trace 
out paths for future work. 
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Literature review  
There is a vast literature dedicated to modeling of financial correlation matrices. When 
modeling large random matrices, it was observed that sometimes one observes larger 
fluctuations from the mean value of the components than it was observed in the 
corresponding one-dimensional distribution. Following this observation, the econophysics 
literature (Laloux, 1999; Plerou, 1999; Sengupta, 1999) have proposed using the tools of 
random matrix theory to filter the empirical correlation matrices. 
 A different avenue of modeling correlation matrices is through the use of network 
theory (Mantenga, 1999; Kumar, 2012; Fieodor, 2014; Onnela, 2013; Onnela, 2014; 
Tumminello, 2010; Keneti, 2013; Namki, 2011). Network theoretic approach sets out to 
uncover the topological structure of dependence which is deemed to be more resilient to 
spurious relationships.  
 The heavy tail property of returns distribution has been widely documented in the 
econometrics theory (Peiro, 1999;  Cont, 2010). These authors argue for a departure from 
the gaussian distribution in modeling financial returns. 
 The use of Aldous-Hoover theorem in the context of exchangeable models of random 
arrays and graphs can be found in (Orbanz et al, 2015).  The application of Aldous-Hoover 
theorem in a machine learning setting can be found in (Loyd et al, 2012) where a gaussian 
process prior is used to infer the form of the graph generating function. Bayesian 
nonparametric models have also been proposed in the context of missing link prediction in 
large networks (Wolfe et al, 2013; Miller et al, 2009). 
 

Exchangeable random arrays. Aldous Hoover representation 
Following (Orbanz, 2013), we define an infinite sequence (𝑋𝑖) of random variables as 
exchangeable if the joint distribution of the sequence is identical with the joint distribution 
of any permutations of the sequence: 

𝑃(𝑋1 ∈ 𝐴1 ⋯ ) = 𝑃(𝑋σ(1) ∈ 𝐴1 ⋯ ) 

for every permutation σ.  
 In other words, an exchangeable sequence is invariant to permutation. 
 The definition of exchangeability extends this principle of symmetry to random 

sequences of 2 indices (𝑋𝑖𝑗). We have the following definition of an exchangeable array: 

 Definition. A random 2-array (𝑋𝑖𝑗) is called jointly exchangeable if: 

(𝑋𝑖𝑗) =𝑑 (𝑋σ(𝑖)σ(𝑗)) 

 The joint exchangeability implies the random matrix is invariant to the simultaneous 
reordering of columns and rows of the matrix that preserves pairwise relationships.  
 The Aldous-Hoover representation theorem (Aldous, 1981 and Hoover, 1979) establishes 
the equivalence between the exchangeable matrices and functions of sequences of i.i.d 
uniform random variables. The Aldous Hoover theorem states that: 

 Theorem:  A random array (𝑋𝑖𝑗) is jointly exchangeable if and only if it can be represented: 

(𝑋𝑖𝑗) =𝑑 (𝐹(𝑈𝑖 , 𝑈𝑗 , 𝑈𝑖𝑗)) 

 where 𝐹: [0,1]3 → 𝑋 and (𝑈𝑖) and (𝑈𝑖𝑗) are a sequence respectively an array of i.i.d of 

uniform random variables independent of F (the equality above is in distribution). 
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Bayesian model of financial correlations 
Pearson correlation coefficient for measuring financial correlations 
In this section we lay out the assumptions and the principles of constructing a Bayesian 
model of financial assets dependence. 
 Traditionally the correlation between the financial assets returns is measured by Pearson 
correlation coefficient.  The Pearson correlation coefficient for the random variables X and Y 
is defined as: 

ρ𝑋,𝑌 =
𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))]

σ𝑋σ𝑌
 

where σ is the standard deviation of the two random variables. 
 The Pearson correlation coefficient arises thus from a linear regression setting with 
normally distributed errors and it measures the strength of linear dependence between two 
random variables.  
 One of the disadvantages of the Pearson correlation coefficient is that it assumes both 
linearity of dependence and the normality of the random variables. The vast empirical 
research on financial returns (see, for example, Cont, 2001) has proven the absence of linear 
correlations (the efficient markets arbitrage away easy to trade linear relationships) and the 
non-gaussian character (the heavy tails are driven by asymmetry profit/loss). 
 The Pearson coefficient not only obscures from the model stakeholder (usually a financial 
markets professional not very proficient in statistics) the assumptions of linearity and 
gaussianity of financial returns distribution but it also obscure from the same stakeholder 
the uncertainty in the estimation of the coefficient.  
 We consider that the classical significance tests as a tool to ascertain the confidence of the 
correlation coefficients estimations are inapplicable in the financial setting because the non-
stationarity of financial returns invalidates the assumption of i.i.d sampling. 
 
Bayesian model of exchangeable financial correlations 
The Bayesian model we propose, takes into account the stylized facts of financial returns: 
non-gaussian character, absence of linear correlations and non-stationarity. The return of a 
financial asset is defined as the difference of the logarithm of the price of that asset. The 
logarithmic return thus defined is an approximation of the percentual change in the price of 
that asset. 
 Our model likelihood function (data generating process) is a multivariate Student-t 
distribution. The multivariate Student-t distribution has the density function: 

𝑓(𝑥|ν, μΣ) =
Γ((𝜈 + 𝑝)/2)

Γ(𝜈/2)𝜈𝑝/2|Σ|1/2𝜋𝑝/2
[(1 +

1

𝜐
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇))]

−(𝜐+𝑝)/2

 

where Σ is the covariance matrix, µ is the mean vector, 𝜈 is the degrees of freedom and p the 
dimensionality of the random vector x. 
 The degrees of freedom 𝜈 controls the heavy tailness of the distribution. In the limit of 
infinite degrees of freedom the multivariate t distribution converges to the multivariate 
normal distribution. We will attach a flat (uniform) prior on the degrees of distribution 𝜈 
quantifying our complete ignorance about them. The uniform distribution is the maximum 
entropy distribution (maximum ignorance) on the real line. 
 For the mean vector µ we specify the maximum entropy distribution with a known 
empirical mean (financial returns have an empirical mean closed to 0) and standard 
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deviation of 1 that is the standard normal distribution 𝑁(0,1) . 
 The prior for the covariance matrix ∑ will be factorized into a prior for variances (a 
standard normal distribution restricted to the positive real line 𝑁+(0,1)) and a prior for the 
correlation matrix 𝐶𝑜𝑟𝑟 . 
 The main assumption of this paper is that correlation matrices are exchangeable. In our 
opinion this assumption is sensible and safe. No matter how we change de order of the 
financial instruments in the matrix, the elements of the matrix refer to the same pairwise 
dependence of financial assets. Note that the exchangeability assumption is much weaker 
than the i.i.d assumption, and it only has to do with our method of construction of the 
correlation matrix itself rather than referring to the objective properties of return 
distributions. 
 We will specify a prior for the correlation matrix in a nonparametric fashion making use 
of the Aldous Hoover theorem. The Aldous Hoover theorem indicates that the problem of 
finding a prior for an exchangeable matrix can be translated into a problem of finding a 
function of uniformly distributed sequences of random variables. We will define a Bayesian 
model of neural network as a way to approximate the function F of the Aldous Hoover 
theorem. 
 Bayesian neural networks consist of layers of affine transformations passed through a 
nonlinearity, on whose parameters a prior distribution has been specified. For more details 
on Bayesian learning of neural networks we refer the reader to (Neal, 2012). Following Neal 
we propose the following model of Bayesian neural network to specify the function F of the 
Aldous Hoover theorem: 

𝑈𝑖 , 𝑈𝑖𝑗 ∼𝑖𝑖𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚([0,1]) 

𝑊𝑖 ∼ 𝑁(0,1)  
𝑎𝑐𝑡0 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑈) 

𝑊𝑜 ∼ 𝑁(0,1)  
𝐶𝑜𝑟𝑟 = 𝐹((𝑈𝑖, 𝑈𝑗 , 𝑈𝑖𝑗)) = 𝑡𝑎𝑛ℎ(𝑊𝑜𝑖𝑎𝑐𝑡0) 

where 𝑊𝑖 and 𝑊𝑜 are the parameters of the network. 
 We are now in position to specify the fully hierarchical Bayesian model of financial 
returns as: 

𝐶𝑜𝑟𝑟 = 𝐹(𝑈𝑖, 𝑈𝑗 , 𝑈𝑖𝑗) 

σ𝑖 ∼ 𝑁+(0,1) 
Σ = 𝑑𝑖𝑎𝑔(σ) ⋅ 𝐶𝑜𝑟𝑟 ⋅ 𝑑𝑖𝑎𝑔(σ) 

μ ∼ 𝑁(0,1) 
ν ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚([1,35]) 

𝑟𝑒𝑡𝑢𝑟𝑛 ∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 − 𝑡(μ, Σ, ν) 
 The above model makes little assumptions about the plausible values of the parameters. 
In specifying the hierarchical model; we made use as much as possible of maximum entropy 
distributions so that we do not bias the results with our prior beliefs.  
 Note that even though our primary subject of interest is the correlation matrix, we model 
the full multivariate distribution of the financial returns. 
 

Network representation of the Bayesian correlation matrix 
The inference of the hierarchical model specified in the previous section consists of 
estimating the posterior distribution of all the parameters of the models. Of all the 
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parameters we focus our attention on 𝐶𝑜𝑟𝑟 as a measure of pairwise financial returns 
dependence. 
 The posterior probability distribution of the correlation matrix is given as a sequence of 
samples obtained through the application of a Hamiltonian Monte Carlo samples. Having a 
large number of n by n matrices is not a very illuminating result of the analysis. Even for a 
single estimation of the correlation matrix, for a medium sized financial instruments universe 
visualizing the correlation matrix will not reveal any meaningful relationships.: 
 To create a more informative view of the posterior distribution we create an ensemble of 
networks out of an ensemble of correlation matrices. 
 A network is defined as a tuple (𝑉, 𝐸) of vertices and edges between those vertices.  The 
canonical representation of a network is through its adjacency matrix A in which 𝐴𝑖𝑗 = 1 if 

there is an edge between nodes i and j and 0 otherwise. Using the correlation matrix to 
bootstrap a weighted network has a vast literature dedicated to it (see for example Kumar, 
2012; Fiedor, 2014; Onnela, 2013; Onnela, 2014; Tumminello, 2010; Keneti, 2013; Namki, 
2011). To each non-zero entry in the correlation matrix we associate a link between the 
corresponding two nodes (financial instruments) with an associated weight 𝑊𝑖𝑗 equal to the 

correlation coefficient between nodes i and j. 
 
Measures of centrality of the correlation matrix 
Having converted the correlation matrix to a network representation will not advance in 
itself the analysis. The resulted network is densely connected (every node is connected to 
every other node) which does not allow visualize important dependences between nodes. 
 An apparent solution would be to prune de edges below a certain threshold. However, 
this solution seems arbitrary. Another solution is to define measures of node importance 
taking into account the whole set of links and their associated weights. Of the measures of 
centrality presented in the literature we decided to focus on: eigenvector and betweenness 
centrality (for a more detailed discussion of the measures of centrality we refer the reader to 
Newman, 2010). 
 The simplest measure of a node importance is the degree centrality measuring the 
number of link that a node has. However, for networks elicited from the correlation matrices 
this measure is superfluous as every node is connected to every other node. Another 
possibility is to define the centrality of a node as proportional to the weighted sum of 
centralities of the other nodes the node is connected to: 

𝑐𝑗 = 𝜆 ∑ 𝑊𝑖𝑐𝑖

𝑖

 

 Hence the centrality c is an eigenvector of the weight (correlation) matrix W. The 
eigenvector centrality measures not only the number of connections a node has but also the 
importance of the nodes the node is connected to. In the context of financial markets 
eigenvector centrality measures the influence a financial instrument has in the market. 
 The betweenness centrality measures the numbers of shortest paths a given node is part 
of. The betweenness centrality measures a node importance as an ”Influence broker”. In the 
contexts of financial assets, a high betweenness centrality translates into he node being a 
bridge between different sectors of the market. 
 A last network theoretic construct that we discuss here is the minimum spanning tree. 
The use of minimum spanning trees in financial correlation graphs was pioneered by Onnela, 
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et al. 2013. A minimum spanning tree (MST) is a connected acyclic graph with exactly n-1 
edges, of minimum cost measured by the edges’ weights. An MST has the minimum number 
of edges such that the graph is still connected. Nodes with a large number of links in an MST 
are important in transmission of information in the network. The more connected a node is 
in an MST, the more that node can project influence on the other nodes of the network. 
 

Experimental results. 
We fitted the hierarchical Bayesian model presented in this paper to a number of 16 currency 
pairs over the course of 2 years (January 2017 December 2018). 
 The inference was performed using a variant of the Hamiltonian Monte Carlo sampler 
called No U Turn sampler (see Hoffman, 2014). The reason we choose the Monte Carlo 
simulation over variational inference methods has to do with dependence introduced in the 
matrix  𝐶𝑜𝑟𝑟 by the sequences U, making it impossible to use mean field approximation 
required by the variational models. 
 For each of the samples we calculated the eigenvector centrality. In Figure 1 we present 
the boxplot of the distribution of probability of centralities for each asset. The horizontal line 
in the boxplot chart represents the mean of the distribution while the box represents the 
interquartile interval (Q1-Q3). The mean eigenvector centralities are presented in Table 1. 
We notice the high eigen vector centrality of the EUR currency and the surprisingly small 
centrality of GBP and JPY.  
 

Table 1. Mean eigenvector centrality 
DKK EUR CZK HUF RON PLN SEK NOK CHF 

0.335 0.334 0.325 0.324 0.319 0.315 0.259 0.250 0.238 

GBP AUD NZD ZAR CAD JPY TRY   

0.193 0.19 0.176 0.148 0.144 0.129 0.099   

Source: Authors’ own research. 
 

       The betweenness centrality is plotted in Figure 2 for the 5 assets that are non-zero. We 
notice that high values of betweenness centrality of the heavily traded emerging market 
currencies (ZAR South African rand, TRY Turkish lira) and of the carry currencies (JPY 
Japanese yen, CHF Swiss franc, GBP Great Britain pound). We conclude that these pairs act 
as bridges between developed and emerging markets.  
        The minimum spanning tree of the mean correlation matrix is presented in Figure 3. 
Following Ledoux (Ledoux, 2013) we argue that in high dimensional spaces (16 dimensions 
in our case) the probability mass of the distribution is concentrated around the mean. The 
concentration of measure phenomenon makes the mean relevant for the whole probability 
distribution. If we analyze the Figure 1 we will notice the concentration of measure 
phenomenon (very narrow boxes). 
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Figure 1. Eigenvector centrality. Boxplot 
Source: Authors research 

 
  

 
Figure 2. Betweenness centrality. Boxplot 

Source: Authors research 
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Figure 3. Minimum spanning tree 

Source: Authors research 

Conclusion 
In this paper we presented a general Bayesian approach in modeling and measuring pairwise 
multivariate correlation between assets. We showed how by using the Aldous-Hoover 
theorem and nonparametric priors on function spaces, one can specify very flexible and 
general Bayesian models of correlation matrices. 
 For future work we set up to relax the exchangeability assumption allowing one to 
elaborate more general dependent Bayesian model to account for temporal evolution of 
correlation matrices. 
 

References 
  
Aldous, D. J. (1981). Representations for partially exchangeable arrays of random 

variables. Journal of Multivariate Analysis, 11(4), 581-598. 
Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. 
De Finetti, B. (2017). Theory of probability: A critical introductory treatment (Vol. 6). John 

Wiley & Sons.Aldag, R.J., & Stearns, T.M. (1991). Management (2nd ed.). Cincinnati, 
OH: South-Western Publishing.  

Fiedor, P. (2014). Networks in financial markets based on the mutual information 
rate. Physical Review E, 89(5), 052801. 

Hoover, D. N. (1979). Relations on probability spaces and arrays of random 
variables. Preprint, Institute for Advanced Study, Princeton, NJ, 2.’ 



383 
 

10.2478/icas-2019-0032, pp 374-383, ISSN 2668-6309|Proceedings of the 13th International Conference on Applied Statistics 2019|No 1, 2019 

 

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path 
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 
1593-1623. 

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are 
universal approximators. Neural networks, 2(5), 359-366. 

Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., & Stanley, H. E. (2015). Partial correlation 
analysis: Applications for financial markets. Quantitative Finance, 15(4), 569-578. 

Kumar, S., & Deo, N. (2012). Correlation and network analysis of global financial 
indices. Physical Review E, 86(2), 026101. 

Laloux, L., Cizeau, P., Bouchaud, J. P., & Potters, M. (1999). Noise dressing of financial 
correlation matrices. Physical review letters, 83(7), 1467. 

Ledoux, M. (2001). The concentration of measure phenomenon (No. 89). American 
Mathematical Soc.. 

Lloyd, J., Orbanz, P., Ghahramani, Z., & Roy, D. M. (2012). Random function priors for 
exchangeable arrays with applications to graphs and relational data. In Advances in 
Neural Information Processing Systems (pp. 998-1006). 

Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical 
Journal B-Condensed Matter and Complex Systems, 11(1), 193-197. 

Miller, K., Jordan, M. I., & Griffiths, T. L. (2009). Nonparametric latent feature models for link 
prediction. In Advances in neural information processing systems (pp. 1276-1284). 

Namaki, A., Shirazi, A. H., Raei, R., & Jafari, G. R. (2011). Network analysis of a financial 
market based on genuine correlation and threshold method. Physica A: Statistical 
Mechanics and its Applications, 390(21-22), 3835-3841. 

Neal, R. M. (2012). Bayesian learning for neural networks (Vol. 118). Springer Science & 
Business Media. 

Newman, M. (2010). Networks: an introduction. Oxford university press. 
Onnela, J. P., Kaski, K., & Kertész, J. (2004). Clustering and information in correlation based 

financial networks. The European Physical Journal B, 38(2), 353-362. 
Onnela, Jukka-Pekka, Anirban Chakraborti, Kimmo Kaski, Janos Kertesz, and Antti Kanto. 

"Asset trees and asset graphs in financial markets." Physica Scripta 2003, no. T106 
(2003): 48. 

Orbanz, P., & Roy, D. M. (2015). Bayesian models of graphs, arrays and other exchangeable 
random structures. IEEE transactions on pattern analysis and machine 
intelligence, 37(2), 437-461. 

Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., & Stanley, H. E. (1999). Universal 
and nonuniversal properties of cross correlations in financial time series. Physical 
review letters, 83(7), 1471. 

Peiro, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23(6), 847-
862. 

Sengupta, A. M., & Mitra, P. P. (1999). Distributions of singular values for some random 
matrices. Physical Review E, 60(3), 3389. 

Tumminello, M., Lillo, F., & Mantegna, R. N. (2010). Correlation, hierarchies, and networks in 
financial markets. Journal of Economic Behavior & Organization, 75(1), 40-58. 

Wolfe, Patrick J., and Sofia C. Olhede. "Nonparametric graphon estimation." arXiv preprint 
arXiv:1309.5936 (2013) 


