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Abstract. The aim of this study is to investigate the performance of the optimal cut-off methods, which 
are generally used for the diagnostic tests with the continuous response, for the tests with the ordinal 
response. Diagnostic accuracy studies examine the ability of a diagnostic test to discriminate between 
the patients with and without the condition. For diagnostic tests with a continuous response, it is 
important in practice to calculate the optimal cut-off point that can differentiate patients and healthy 
individuals. There are many methods proposed in the literature to obtain the optimal cut-point value for 
continuous test results. The Youden index, the point closest-to-(0, 1) corner in the ROC plane approach, 
the concordance probability, and the minimum P-value approach are commonly used methods to 
determine optimal-cut-point. But the researches examining the performance of these methods in the 
setting of the ordinal response tests are lacking in the literature. So, we compared the mentioned optimal 
cut-off methods for the ordinal response data by the way of simulation design by considering the sample 
size and the balance of groups as simulation conditions. The sample sizes of the diseased and non-
diseased group were set (50, 50), (100, 100), and (200, 200) for balanced design and (50, 100), (50, 150) 
and (50, 200) for unbalanced design. For each scenario, 1000 repeats were generated. The differences 
between the estimated and the true cut-off points (biases) were calculated. All these methods 
overestimated the true cut-off point, but the median biases of the methods were varying. For the 
unbalanced design, the same result was relevant but for the balanced design, the minimum P-value 
approach had a median bias as 0 while others have 1.  
 
Keywords: ordinal data, optimal cut-off, Youden index, minimum P-value, concordance probability, 
point closest-to-(0, 1) corner in the ROC plane. 

 

Introduction 
Diagnostic medicine is the process of identifying the disease, or condition, that a patient has, 
and ruling out conditions that the patient does not have, through assessment of the patient's 
signs, symptoms, and results of various diagnostic tests. Diagnostic accuracy studies are 
research studies that examine the ability of diagnostic tests to discriminate between patients 
with and without the condition (Zhou et al., 2011). 
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In the case of a numeric or ordinal response test, it is the interest to determine the 
optimal cut-off point which is used to classify subjects as testing positive from those testing 
negative. The receiver operating characteristic curve (ROC) is often the starting point for 
determining the optimal cut-point (Rota and Antolini, 2014). The ROC curve is a plot of the 
true positive fraction (TPF) and the false positive fraction (FPF) for all possible cut-point 
values of the test (Pepe, 2003). The selection of the cut-off point necessitates a compromise 
between sensitivity and specificity (Liu, 2012; Habibzadeh et al, 2016). Although there are 
some criteria that consider both sensitivity and specificity, the optimal cut-off point is 
criterion dependent (Liu, 2012). 

There are several methods to determine the optimal cut-off point. The Youden index 
(Youden, 1950), the point closest-to-(0, 1) corner in the ROC plane approach (Perkins and 
Schisterman, 2006), the concordance probability (Liu, 2012), the minimum P-value approach 
(Miller and Siegmund, 1982) are the most known and commonly used methods for 
diagnostics tests with continuous response. 

According to the distribution of the continuous test result or the proportion of the 
number of individuals in the patient and healthy group, there are some simulation studies to 
search which of these tests are superior in determining the optimal cut-off point (Rota and 
Antolini, 2014). But the researches examining the performance of these methods in the 
setting of the ordinal response tests are lacking in the literature. Thus, the aim of this study 
is to investigate the performance of the optimal cut-off methods, which are generally used for 
diagnostic tests with a continuous response, for tests with an ordinal response. 
 

Literature review 
The contents of the mentioned methods are given below. 

Let X be an ordinal test with five possible results which is assumed to be related to the 
true disease status, where D and  𝐷̅ present the presence and the absence of the disease, 
respectively. The true positive fraction TPF(c) and the false positive fraction FPF(c) are 
respectively defined, at any given possible cut-off point c of X, as 
 

𝑇𝑃𝐹(𝑐) = 𝑃(𝑋 > 𝑐|𝐷) = 𝑆𝐷(𝑐) 
and 

𝐹𝑃𝐹(𝑐) = 𝑃(𝑋 > 𝑐|𝐷̅) = 𝑆𝐷̅(𝑐) 
 
The minimum P-value approach (minP): 
The minimum P-value approach (Miller and Siegmund, 1982) is based on a systematic search 
of the optimal cut-off point that achieves the minimum of the P-value of the Chi-square test 
statistic on the absence of association between the resulting dichotomized biomarker and the 
binary outcome, or, in other words, the maximum of the associated Chi-square statistic over 
all possible cut-off point values c of X. The Chi-square objective function is 
 

𝐶𝐻𝐼1
2(𝑐) =

(𝑆𝐷(𝑐) − 𝑆𝐷̅(𝑐))
2

(
𝑛𝐷𝑆𝐷(𝑐) + 𝑛𝐷̅𝑆𝐷̅(𝑐)

𝑛𝐷 + 𝑛𝐷̅
) (1 −

𝑛𝐷𝑆𝐷(𝑐) + 𝑛𝐷̅𝑆𝐷̅(𝑐)
𝑛𝐷 + 𝑛𝐷̅

) (
1

𝑛𝐷
+

1
𝑛𝐷̅

)
 

where 𝑛𝐷 is the number of diseased subjects and 𝑛𝐷̅ is the number of non-diseased 
subjects (Rota and Antolini, 2014). 
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Youden Index method (J): 
The Youden index (J) (Youden, 1950) is the maximum achievable value of the Youden 
function J(c), defined as the difference between the population quantities TPF(c) and FPF(c)  
 

𝐽(𝑐) = 𝑆𝐷(𝑐) − 𝑆𝐷̅(𝑐) 
 

The optimal cut-off point 𝑐̂𝐽 is the c that achieves the maximum of the Youden Function 

𝐽(𝑐) over all possible cut-off values of 𝑋. 
 
Concordance probability method (CZ): 
The concordance probability (Liu, 2012) objective function could be defined as the product 
of the population quantities TPF(c) and the complement to one of FPF(c), 
 

𝐶𝑍(𝑐) = 𝑆𝐷(𝑐)(1 − 𝑆𝐷̅(𝑐)) 

 
The optimal cut-off point 𝑐̂𝐶𝑍 is the c that achieves the maximum of the concordance 

probability function 𝐶̂𝑍(𝑐) over all possible cut-off values of 𝑋. 
 
Point closest-to-(0, 1) corner in the ROC plane approach (ER): 
The objective function of this ROC-based method (Perkins and Schisterman, 2006) could be 
easily defined by applying the Euclidean distance formula between the point on the ROC 
plane defined by the population quantities TPF(c) and FPF(c) and the point (0, 1), 
 

𝐸𝑅(𝑐) = √𝑆𝐷̅(𝑐)2 + (𝑆𝐷(𝑐) − 1)2 
 

The optimal cut-off point 𝑐̂𝐸𝑅 is the c that achieves the minimum of the objective 
function 𝐸𝑅̂(𝑐) over all possible cut-off values of 𝑋. 

We assumed that 𝑋 has five possible ordinal outcomes as 0: definitely negative, 1: 
probably negative, 2: suspicious, 3: probably positive and 4: definitely positive for the 
presence of the disease. Data were generated using item response theory to ensure that 
higher responders were more likely to be diseased. So, the rating scale model (RSM) was used 
in this study because responses were given on a 0-4-point rating scale, thought that with the 
same threshold. 

Let 𝜃 be the underlying latent trait related to what test measures and 𝛽 be the item 
difficulty.  The RSM is  
 

𝝅𝒏𝒄 =
𝒆𝒙𝒑 ∑ (𝜽𝒏 − (𝜷 + 𝝉𝒋))𝒄

𝒋=𝟎

∑ 𝒆𝒙𝒑 ∑ (𝜽𝒏 − (𝜷 + 𝝉𝒋))𝒌
𝒋=𝟎

𝟒
𝒌=𝟎

    𝒋 = 𝟎, 𝟏, 𝟐, 𝟑 

𝝉𝒋 ≡ 𝟎, 𝒆𝒙𝒑 ∑ (𝜽𝒏 − (𝜷 + 𝝉𝒋))
𝟎

𝒋=𝟎
= 𝟏 

 

(1) 

where 𝜋𝑛𝑐 is the probability of resulting in a score of c for individual n, 𝛽 is the item 
difficulty and 𝜏𝑗  is the threshold of the jth category (Andrich, 1978). 
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Let us assume that the latent trait is normally distributed for non-diseased and 
diseased populations, respectively as 𝜃𝐷̅~𝑁(𝜇𝐷̅ = 0, 𝜎𝐷̅

2 = 1) and 𝜃𝐷~𝑁(𝜇𝐷 , 𝜎𝐷
2 = 1) (Figure 

1). These two distributions intersect at  𝜇𝐷/2 resulting in the optimal cut-off point for the 
latent trait to discriminate the diseased subjects from those without the disease (Rota and 
Antolini, 2014).  
 

 
Figure 1. The distribution of the latent trait in disease and non-diseases population (ND: Non-

diseased population, D: Diseased population) 

 
The test result of a person with the latent trait of 𝜇𝐷/2 is estimated by equation 1 with 

specified item parameters, which gives the optimal cut-off point for the ordinal response test.  
 

Methodology 
Simulation design 
R language (ver. 3.5) and RStudio (Version 1.1.463 – © 2009-2018 RStudio, Inc) were used 
for simulation (R Core Team, 2018). We considered the balanced and unbalanced designs for 
1000 repeats for each scenario. The sample sizes of the diseased and non-diseased samples 
were set 50, 100 and 200 in the balanced design, and (50, 100), (50, 150) and (50, 200) in the 
unbalanced design. 

We first randomly generated the latent trait of non-diseased samples from N(0,1). For 
the diseased samples, 𝜇𝐷 is set to equal {0.51, 1.05, 1.68, 2.56} resulting the optimum cut-off 
points of latent trait as {0.255, 0.575, 0.84, 1.28}. Then, we set the item difficulty of the ordinal 
test as 0.25 and the category thresholds as {-2.25, -0.75, 0.75, 2.25}. The test score 
probabilities of a person with the latent trait of {0.255, 0.575, 0.84, 1.28} were estimated by 
substituting the difficulty and the category thresholds in equation 1. The test score with the 
highest response probability was considered as the true cut-off points of the test, which are 
{2, 2, 2, 3}. 

We generated the test results of the samples from RSM via the genPattern() function 
of the catR package (Magis D. and Raiche G., 2012) by using the latent trait and the item 
parameters.  

After data generation and determination of the optimal true cut-off points, the cut-off 
points maximizing the functions of J, CHI2, CZ, and minimizing the ER function were estimated 
via the optimal.cutpoints() function of the OptimalCutpoints package (Lopez-Raton M. et 
al.,2014). In the case of multiple values satisfying the corresponding conditions, the minimum 
of these values was selected as the estimated cut-off point. The bias of each method was 
defined as the difference between the estimated cut-off points and the corresponding true 
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cut-off point. The same procedure was followed in the case of the unbalanced design. The 
design of the simulation study is summarized in the flow chart given below (Figure 2). 
 

 Figure 2. The steps of the simulation study 
 

Results and discussions 
The range of bias was the widest in the J method and the narrowest in the ER method, while 
all methods had the same median bias of 1 (Figure 3). This result didn’t change in the 
unbalanced design (Figure 4). The median bias of the minP method decreased to 0 and the 
range of bias in CZ method became narrower in the balanced design, however, the bias of 
other methods remained the same (Figure 4).  

Sample size: The sample sizes of diseased and non-
diseased samples are (50, 50); (100, 100); (200, 200) 
in balanced designs; (50, 100); (50, 150); (50, 200) in 
unbalanced designs were set as simulation condition. 

The latent trait was generated by 𝑁(µ = 0, 𝜎2 = 1) for non-diseased samples and 
by 𝑁(𝜇𝐷, 𝜎2 = 1) for diseased samples; 𝜇𝐷={0.51, 1.05, 1.68, 2.56}. 𝜇𝐷/2 is the 

intersection point of the latent trait (Rota and Antolini, 2014)? 

The difficulty and the ordered response thresholds of the ordinal test were set to 
equal 0.25 (moderate difficulty), and {-2.25, -0.75, 0.75, 2.25}, respectively. 

 
The test scores of the samples were obtained from RSM with these item parameters. 

The intersection points of the latent trait are {0.255, 0.575, 0.84, 1.28} logits. The 
probabilities of each test score for these logits were estimated with RSM. The score 

that has the maximum probability was determined as the true cut-off value.  
 

The true cut-off points for ordinal response test are obtained as {2, 2, 2, 3}.  

The cut-off point values for the generated data were estimated by the minP, J, CZ 
and ER methods via the related R packages. 

 

The difference between the true cut-off value and the estimated cut-off point is 
calculated for each method. All steps were repeated 1000 times. 
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Figure 3. The bias distribution of each 

method 
Figure 4. The bias distribution of methods 

based on the study design 
 

Table 1 shows the descriptive statistics of the bias based on the sample size in the 
balanced design. The median bias of the J method decreased to 0 when the sample size was 
50. For other methods, the sample size didn’t affect the distribution of the bias. 
 

Table 1. Median (min; max) bias for the methods-balanced scenario. 
Sample size 

𝒏𝑫=𝒏𝑫̅ 
J minP ER CZ 

50 0(-2;2) 0(-1;2) 1(0;1) 1(0;1) 

100 1(-2;2) 0(-1;2) 1(0;1) 1(0;1) 

200 1(-1;2) 0(-1;2) 1(0;1) 1(0;1) 

Overall 1(-2;2) 0(-1;2) 1(0;1) 1(0;1) 

 
In the unbalanced design, all methods had the median bias of 1 in all sample sizes. The 

sample size didn’t change the bias distribution in all methods except CZ (Table 2). When the 
sample size in the non-diseased group was 100 and 150, the range of the bias got narrower 
for the CZ method. The ER method outperformed compared to the other methods considering 
the range of bias.  
 

Table 2. Median (min; max) bias for the methods-unbalanced scenario. 
Sample size 

J minP ER CZ 
𝒏𝑫 𝒏𝑫̅ 

50 100 1(-2;2) 1(-1;2) 1(0;1) 1(0;1) 

50 150 1(-2;2) 1(-1;2) 1(0;1) 1(0;1) 

50 200 1(-2;2) 1(-1;2) 1(0;1) 1(0;2) 

Overall 1(-2;2) 1(-1;2) 1(0;1) 1(0;2) 

  
Since the studies examining the performance of these methods for the ordinal 

response tests are lacking in the literature, we cannot compare our results. But, we can say 
that our results are similar to those of Rota and Antolini (2014) irrespective of the data type 
of the diagnostic test.  
 

Conclusion 
In this study, the simulation design was conducted under similar conditions with Rota and 
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Antolini (2014). There were also the distributions of the continuous test among the 
simulation conditions of that study. For all simulation scenarios they held, the point closest 
to (0-1) corner in the ROC plane and the concordance probability approaches showed a 
better performance in the estimation of the optimal cut-off, compared to the minimum P-
value and Youden Index methods. In our study, similar methods were investigated for 
diagnostic tests with ordinal responses, unlike the Rota’s study. When the range of bias in 
both balanced and unbalanced scenarios are considered, the point closest to (0-1) corner in 
the ROC plane and the concordance probability methods are optimistic, but when the median 
biases are examined, it can be said that the minimum P-value method is better than others in 
the balanced scenario.  
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