MAXIMUM OXYGEN UPTAKE AND POST-EXERCISE RECOVERY IN PROFESSIONAL ROAD CYCLISTS

doi: 10.1515/humo-2016-0024

ŁUKASZ RUTKOWSKI*, MAREK ZATOŃ, KAMIL MICHALIK
University School of Physical Education, Wrocław, Poland

ABSTRACT

Purpose. The aim was to investigate the relationship between aerobic fitness as ascribed by maximum oxygen uptake (VO₂max) and post-exercise recovery after incremental exercise to volitional exhaustion. Methods. A sample of 17 professional cyclists (age 17.4 ± 3.1 years; VO₂max 61.1 ± 7.2 ml/min/kg) were recruited. A graded exercise test was administered on a cycle ergometer. Upon termination, the participants remained seated, and oxygen uptake (VO₂), minute ventilation (VE), and heart rate (Hr) were measured in the 1st, 3rd, and 5th minute of recovery. Results. Post-exercise VO₂ dynamics revealed a 69% and 80.9% reduction from VO₂max in the 1st and 5th minute, respectively. Hr decreased only by 41% of Hrmax, in the 5th minute of recovery. A positive correlation between the differential rate of recovery for VO₂ and VO₂max indicated a dependency between aerobic fitness and recovery potential. Correlative strength decreased with time, and by the 5th minute of recovery a significant correlation was evidenced only between VO₂ and VE. Conclusions. As recovery potential is associated with the aerobic fitness level, training effects may be monitored based on the recovery of VO₂ and Hr to pre-exercise values.

Key words: physical capacity, maximum oxygen uptake, post-exercise recovery, road cyclists

Introduction

Aerobic fitness is defined as the ability to transport and utilize oxygen (consumption) and therefore generate energy during exercise [1]. The level of aerobic fitness is influenced by many factors, including cardiorespiratory function, age, sex, and training status. It is generally accepted that the maximum value of oxygen uptake registered during incremental exercise (VO₂max) is a reliable physiological variable that can quantify aerobic fitness and endurance and serve as an indicator of performance in long-term submaximal efforts [2]. In the athletic realm, individuals with higher VO₂max values possess definite physiological advantages over those with lower values [3].

Energy production during exercise is time- and intensity-dependent and based on two distinct albeit integrated metabolic processes – the anaerobic (phosphagen and glycolytic pathways) and aerobic energy systems. The former is the dominant in short-duration high-intensity exercise, in which adenosine triphosphate (ATP), phosphocreatine, and muscle glycogen serve as the sources of energy. The latter is the prime energy source in low- and moderate-intensity efforts, as well as during recovery intervals between successive efforts, and is contingent on numerous supply- and demand-side determinants, including stroke volume, mitochondrial volume density, myoglobin concentration in muscle fibre, aerobic enzyme activity responsible for ATP resynthesis, and blood haemoglobin level [4].

Post-exercise recovery involves a series of complex mechanisms, dependent on the type of exercise stimuli (exercise mode and volume) and the body’s compensatory response to the said exercise. It is characterized by an initial rapid phase, lasting from 10 seconds to several minutes, followed by a slower recovery phase, which lasts from a few minutes to several hours [5]. Generally, the rapid recovery phase involves a sudden decrease in VO₂max and heart rate (HR); during the phase, the majority of intramuscular ATP and phosphocreatine depleted during exercise is resynthesized. In turn, the slow phase is marked by increased metabolism.

Heart rate attenuation in the initial phase following peak exercise is due to a combination of increased parasympathetic reactivation alongside sympathetic withdrawal. The rate of this reduction is termed heart rate recovery (HRR), and faster reduction is strongly associated with cardiovascular health and fitness level [6]. HRR is sensitive to training effects and is known to improve particularly in response to submaximal exercise, or efforts in which oxidative metabolism serves as the dominant energy source in ATP resynthesis [7–9].

The literature has indicated a relationship between the HRR and VO₂max, in which the rate of recovery to pre-exercise levels is faster in individuals with VO₂max above 60 ml/kg/min [6]. Tomlin and Wenger [5] indicated that athletes with high VO₂max presented elevated activities of various enzymes involved in oxidative energy provision, as well as increased mitochondrial and myoglobin content. These biochemical effects allow for improved oxygen transport and utilization during exercise. In combination with enhanced ATP, phosphocreatine, and creatine kinase deposits, a working muscle

* Corresponding author.
can generate more energy during exercise utilizing the oxidative and phosphagen energy systems. This reduces the relative anaerobic lactic contribution to exercise and minimizes energy expenditure needed for the removal of lactate and hydrogen ion accumulation, which may speed the post-exercise recovery process.

While VO$_2$max is considered by exercise physiologists to be the gold standard measure of cardiovascular fitness, strongly correlated with performance during aerobic endurance exercise [1], it has been suggested that a more objective measure of monitoring change in training status is analysis of the autonomic nervous system response, particularly parasympathetic reactivation, to a given training load as it is responsible for conserving energy expenditure and reducing blood pressure and HR to the pre-exercise levels. Buchheit et al. [10] observed that autonomic control of cardiac activity depended to a large extent on the elevated concentrations of post-exercise metabolites (lactate [LA], H$^+$, phosphate anion [P]) resulting from anaerobic energy production and also hormones (epinephrine and norepinephrine) secreted as an effect of heightened sympathetic nervous activity. This mechanism accordingly modulates vagal restoration and is itself associated with reduced post-exercise parasympathetic activation.

For the above reasons, investigators have appropriated VO$_2$max, HR, and minute ventilation (VE) kinetics as important indicators in the non-invasive assessment of training adaptations, aerobic fitness, and cardiovascular function [11, 12]. The aim of the present study was to further elucidate the associations between aerobic fitness as determined by VO$_2$max and the rate of recovery via HR measurement in young well-trained cyclists.

Material and methods

The study involved 17 road cyclists recruited from national and professional-level cycling teams. The minimum training experience was 3 years and many of the participants trained twice daily. The participants’ characteristics are presented in Table 1.

All the procedures were conducted in laboratory conditions in the Exercise Laboratory of the University School of Physical Education in Wrocław, Poland (PN-EN ISO 9001:2001 certified). After anthropometric parameters were determined, the participants performed a graded exercise test on a Excalibur Sport cycle ergometer (Lode BV, The Netherlands). Before use, the device was calibrated with special software. A standardized testing protocol was executed, in which the starting workload of 50 W was increased by 50 W every 3 minutes while maintaining a minimum cadence of 60 rpm [2]. The test was performed until volitional exhaustion or attainment of VO$_2$max. Upon concluding the test, each participant remained seated on the ergometer for 5 minutes for recovery.

Respiratory function (VO$_2$ and VE) on a breath-by-breath basis was recorded 2 minutes prior to and 5 minutes after the test termination, with the use of a Quark b2 gas analyser (Cosmed, Italy). The analyser was calibrated before use with a reference gas mixture of CO$_2$ (5%), O$_2$ (16%), and N$_2$ (79%). HR was continuously measured with a S810 heart rate monitor (Polar Electro, Finland). Data were averaged over 30-second intervals. Measures of VO$_2$, VE, and HR selected for analysis included the maximum values and those recorded in the 1st, 3rd, and 5th minute of recovery. The absolute (Δ_{max}) and percentage decrease (%) between the maximum value and the values in the 1st ($\Delta_{\text{max–1}}$ and %$_{–1}$), 3rd ($\Delta_{\text{max–3}}$ and %$_{–3}$), and 5th ($\Delta_{\text{max–5}}$ and %$_{–5}$) minute of recovery were calculated, as was the relative value (%X$_{\text{max}}$) of VO$_2$, VE, and HR in the 5th minute of recovery with respect to the maximum value. To aid the quantification of recovery dynamics, a differential rate of recovery (ROR) for VO$_2$, VE, and HR was also calculated using the maximum, resting, and 5th minute of recovery values [13].

$$WSR_{HR} = \frac{HR_2 - HR_3}{HR_2 - HR_3} \cdot 100 \%,$$

where: HR_1 – HR_{rest}, HR_2 – HR_{max}, HR_3 – $HR_{5'}$, WSR$_{HR}$ = HR_{ROR}.

$$WSR_{VO2} = \frac{VO_2 - VO_3}{VO_2 - VO_1} \cdot 100 \%,$$

where: VO$_2$1 – VO$_{2rest}$, VO$_2$2 – VO$_{2max}$, VO$_2$3 – VO$_{2–5'}$, WSR VO$_2$ = VO$_{2ROR}$.

$$WSR_{VE} = \frac{VE_2 - VE_3}{VE_2 - VE_1} \cdot 100 \%,$$

where: VE$_1$ – VE$_{rest}$, VE$_2$ – VE$_{max}$, VE$_3$ – VE$_{5'}$, WSR$_{VE}$ = VE$_{ROR}$.

| Table 1. Anthropometric and physiological characteristics of the sample, expressed as mean (\(\bar{x}\)) and standard deviation (SD) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Age \[\text{years}\] | Body height \[\text{cm}\] | Body mass \[\text{kg}\] | BMI \[\text{kg/cm}\] | VO$_{2max}$ \[\text{l/min}\] | VO$_{2max}$/kg \[\text{ml/kg/min}\] | HR$_{max}$ \[\text{bpm}\] | VE$_{max}$ \[\text{l/min}\] |
| \(\bar{x}\) | 17.4 | 178.1 | 69.2 | 21.8 | 4.1 | 61.1 | 193.2 | 165.9 |
| SD | 3.1 | 7.1 | 7.9 | 2 | 0.4 | 7.2 | 7.5 | 20.1 |

BMI – body mass index, VO$_{2max}$ – absolute maximum oxygen uptake, VO$_{2max}$/kg – relative maximum oxygen uptake, HR$_{max}$ – heart rate maximum, VE$_{max}$ – maximum minute ventilation.
Correlations between the maximums and recovery values of the respiratory and physiological variables were assessed with the use of Spearman’s rank correlations. All the statistical analysis was performed with the Statistica 10.0 software (StatSoft, USA). Statistical significance was defined at $\alpha = 0.05$.

Results

The analysis of post-exercise VO$_2$ dynamics revealed that the greatest decrease occurred in the 1st minute of recovery (at 69% of VO$_{2\text{max}}$). The reduction in VO$_2$ at the subsequent time points was similar, with the oxygen uptake in the 3rd and 5th minute of recovery amounting to 75% and 80% of VO$_{2\text{max}}$, respectively (Figure 1).

A partially similar situation was observed in regard to HR. Here, an evident decrease was observed in the 1st and 3rd minute of recovery as compared with HR$_{\text{max}}$ (26% and 38% decrease, respectively), although the difference between the 3rd and 5th minute was relatively minor (only 3% of HR$_{\text{max}}$) (Figure 2).

When considering VO$_2$, VE, and HR, the concurrent decrease in HR was temporally slower than the former variables. In the 5-minute recovery period, HR decreased by 41% of HR$_{\text{max}}$, whereas absolute (l/min) and relative (ml/kg/min) VO$_2$ decreased by 80.9% and 80.57%, respectively, and VE decreased by 78.9% as compared with the recorded maximums (Figure 3).

The initial analysis revealed very strong correlations between VO$_{2\text{max}}$ and ΔVO$_{2\text{max}-1'}$, ΔVO$_{2\text{max}-3'}$, and ΔVO$_{2\text{max}-5'}$. The relationships between the VO$_2$, HR, and VE variables are presented as a correlation matrix in Table 2. Strong correlations were found between VO$_2$ and HR, as well as VE, particularly in the percentage decrease from the maximum value to those in the 1st ($\%_{-1'}$) and 3rd ($\%_{-3'}$) minute. This indicates that the greater the decrease in VO$_2$, the bigger the reduction in HR and VE. The significant correlations among the measures recorded in the 3rd minute of recovery were weaker than

![Figure 1. VO$_{2\text{max}}$ and VO$_2$ in the 1st, 3rd, and 5th minute of recovery](image1)

![Figure 2. HR$_{\text{max}}$ and HR in the 1st, 3rd, and 5th minute of recovery](image2)

![Figure 3. Percentage decrease in VO$_2$, VE, and HR in the 5th minute of recovery as compared with the recorded maximums](image3)

those in the 1st minute, excluding the correlation between the percentage decrease in VO$_2$ and VE ($r = 0.66$), which was weaker in the 1st minute of recovery ($r = 0.52$). In the 5th minute of recovery, the only significant correlations were between a few of the VO$_2$ and VE variables. No significant associations were observed between any of the rate of recovery differentials (ROR).

Discussion

The aim of the present study was to evaluate the relationships between VO$_{2\text{max}}$ as an physiological indicator of aerobic fitness and the rate of recovery for HR, VO$_2$, and VE following a graded exercise test.

Strong positive correlations were observed between VO$_{2\text{max}}$ and ΔVO$_{2\text{max}-1'}$, ΔVO$_{2\text{max}-3'}$, and ΔVO$_{2\text{max}-5'}$. They suggest that a high level of aerobic fitness is associated with a faster reduction in oxygen uptake upon concluding the exercise. A similar finding was reached by Durocher et al. [3]. It is worth noting that among the 3
Table 2. Correlations between the VO₂ (ml/kg/min), VE, and HR variables

| Variable | VO₂ max | VO₂ –1' | VO₂ –3' | VO₂ –5' | ∆VO₂ max–1' | ∆VO₂ max–3' | ∆VO₂ max–5' | %VO₂ –1' | %VO₂ –3' | %VO₂ –5' | VO₂rOr | ∆Hr max–1' | ∆Hr max–3' | ∆Hr max–5' | %Hr –1' | %Hr –3' | %Hr –5' | HrROr | VE max | VE –1' | VE –3' | VE –5' | ∆VE max–1' | ∆VE max–3' | ∆VE max–5' | %VE –1' | %VE –3' | %VE –5' | VErOr |
|----------|---------|---------|---------|---------|-------------|-------------|-------------|----------|----------|----------|---------|-------------|-------------|-------------|---------|---------|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| HR max | -0.02 | 0.08 | -0.19 | -0.34 | -0.03 | 0.09 | 0.15 | -0.26 | 0.22 | 0.19 | 0.29 | 0.11 | -0.39 | -0.15 | 0.29 | 0.06 | 0.51* | 0.54* | 0.13 | 0.06 | 0.36 | 0.30 | 0.11 | 0.41 | 0.51* | -0.01 | 0.16 |
| HR –1' | -0.09 | 0.45 | 0.25 | 0.01 | -0.33 | -0.18 | -0.01 | -0.66* | -0.32 | -0.03 | 0.24 | 0.20 | 0.04 | -0.16 | -0.37 | -0.25 | -0.08 | -0.55* | -0.27 | -0.02 | 0.27 | 0.36 | 0.30 | 0.11 | 0.41 | 0.51* | -0.16 | 0.10 |
| HR –3' | -0.20 | 0.20 | 0.04 | -0.16 | -0.37 | -0.25 | -0.08 | -0.55* | -0.27 | -0.02 | 0.27 | 0.22 | -0.20 | -0.11 | 0.36 | 0.27 | 0.15 | 0.36 | 0.41 | 0.11 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| HR –5' | -0.23 | 0.13 | 0.01 | -0.01 | -0.35 | -0.22 | -0.13 | -0.47 | -0.19 | -0.13 | 0.15 | 0.22 | -0.20 | -0.11 | 0.36 | 0.27 | 0.15 | 0.36 | 0.41 | 0.11 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Hrmax | 0.11 | -0.39 | -0.45 | -0.15 | 0.29 | 0.26 | 0.06 | 0.51* | 0.54* | 0.13 | 0.06 | 0.07 | 0.07 | 0.07 | 0.36 | 0.30 | 0.11 | 0.41 | 0.51* | -0.01 | 0.16 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
| Hr –1' | -0.20 | -0.24 | -0.32 | 0.07 | 0.36 | 0.30 | 0.11 | 0.41 | 0.51* | -0.01 | 0.16 | 0.07 | 0.07 | 0.07 | 0.36 | 0.30 | 0.11 | 0.41 | 0.51* | 0.06 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
| Hr –3' | -0.22 | 0.20 | 0.11 | 0.36 | 0.27 | 0.15 | 0.36 | 0.41 | 0.11 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.36 | 0.30 | 0.11 | 0.36 | 0.41 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Hr –5' | -0.23 | 0.13 | 0.01 | -0.01 | -0.35 | -0.22 | -0.13 | -0.47 | -0.19 | -0.13 | 0.15 | 0.22 | -0.20 | -0.11 | 0.36 | 0.27 | 0.15 | 0.36 | 0.41 | 0.11 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |

*Correlations statistically significant at p < 0.05
VO₂ – maximum oxygen uptake, HR – heart rate, ROR – rate of recovery, VE – minute ventilation

The literature provides opposing results, with many studies reporting that the time-course of VO₂ and VE recovery is significantly greater than that of HR [14–18]. These studies indicate that the return to pre-exercise levels can in fact require several hours. This discrepancy can be explained by the relatively short period of recovery under observation (5 minutes) compared with the aforementioned studies.

The significant relationships observed in the 1st minute of recovery indicate that the greater the decrease in HR, the bigger the reduction in VE and VO₂. The time course shows a downward trend in regard to correlative strength, as by the 3rd minute of recovery weaker correlations were observed as compared with the 1st minute, and by the 5th minute of recovery only very weak correlations remained. This may indicate that the associations between these variables are similar only in a short-term observation (first 3 minutes of recovery). At later times points, the only significant correlation was observed between the absolute VO₂ and VE, although this finding affirms that these two variables are largely interdependent, as proposed by Tocco et al. [19]. It is also important to note that no statistically significant relationships were found between aerobic fitness (assessed by VO₂ max) and HR, implying that both variables need to be independently monitored when studying training effects.

The present investigation has some limitations with reference to the adopted procedure. Firstly, the participants remained seated during the recovery period when VO₂, VE, and HR were assessed. The works of Larson et al. [20], Ostojic et al. [6], and Buchheit et al. [21] recorded enhanced HrR in the supine position compared with an active or seated position. Secondly, VO₂, VE, and HR were all measured within the first 5 minutes of recovery. However, several investigators have reported that complete recovery may require several hours following strenuous exercise (as in a graded exercise test) [5, 15]. Thirdly, some differences may have arisen owing to the influence of different potentiating factors [6, 22–24]. Many of the previously cited studies assessed the effects of a training prescription in various populations, where exercise testing and the assessment of the physiological and respiratory function were preceded by several weeks of training. The present study involved well-trained cyclists with intensive training schedules but without the administration of specific training intervention, which may limit the interpretation of the results.

Conclusions

The positive correlation between the differential rate of recovery for VO₂ and VO₂ max confirms the relationship between aerobic fitness and recovery potential. The percentage decreases in VO₂, HR, and VE were correlated
only in the 1st and 3rd minute of recovery and indicated a
downward trend in which the greater the decrease in
VO$_2$ was, the bigger the reduction in HR and VE turned
out. The only significant correlation observed in the 5th
minute of recovery was between the relative and
absolute VO$_2$ and VE. The lack of association between
aerobic fitness, as determined by VO$_{2\max}$ and HRR
suggests that both variables ought to be independently
monitored when studying training effects.

References
1. Armstrong N., Tomkinson G., Ekelund U., Aerobic fit-
ness and its relationship to sport, exercise training and
habitual physical activity during youth. Br J Sports Med,
2. Bentley D.J., Newell J., Bishop D., Incremental exercise
test design and analysis: implications for performance
assessment of lactate threshold and aerobic capacity
throughout a collegiate hockey season. Appl Physiol Nutr
4. Zatoń M., Jastrzębska A., Physiological tests in the as-
essment of physical efficiency [in Polish]. PWN, War-
szawa 2010.
aerobic fitness and recovery from high intensity inter-
10.2164/00070256-200131010-00001.
6. Ostojic S.M., Stojanovic M.D., Calleja-Gonzalez J., Ul-
tra short-term heart rate recovery after maximal exer-
ction: relations to aerobic power in sportmen. Chin J
AMM018.
7. Lamberts R.P., Swart J., Noakes T.D., Lambert M.I.,
Changes in heart rate recovery after high-intensity train-
ing in well-trained cyclists. Eur J Appl Physiol, 2008,
8. Sugawara J., Murakami H., Maeda S., Kuno S., Matsu-
da M., Change in post-exercise vagal reactivation with
exercise training and detraining in young men. Eur J
9. Yamamoto K., Miyachi M., Saitoh T., Yoshioka A., On-
dera S., Effects of endurance training on resting and
post-exercise cardiac autonomic control. Med Sci Sport
Exer, 2001, 33 (9), 1496–1502, doi: 10.1097/00005768-
200109000-00012.
reactivation after repeated sprint exercise. Am J Physiol
Heart Circ Physiol, 2007, 293 (1), 133–141, doi: 10.1152/
apheart.00062.2007.
V.O., Reis V.M., Oxygen uptake and heart rate kinetics
after different types of resistance exercise. J Hum Kinet,
12. Stasiule L., Capkauskienė S., Kinetics of pulmonary
ventilation and carbon dioxide output during intermit-
tent increasing cycling exercise after a prior anaerobic
13. Klonowicz S., Physiological test methods in an indus-
14. Otsuki T., Maeda S., Iemitsu M., Saito Y., Tanimura Y.,
Sugawara J., et al., Postexercise heart rate recovery ac-
ms.s000021467.13220.4c.
15. Black C.D., Gonglach A.R., Hight R.E., Renfroe J.B.,
Time-course of recovery of peak oxygen uptake after
exercise-induced muscle damage. Respir Physiol
16. Townsend L.K., Couture K.M., Hazel T.J., Mode of ex-
ercise and sex are not important for oxygen consump-
tion during and in recovery from sprint interval train-
17. Skelly L.E., Andrews P.C., Gillen J.B., Martin B.J., Per-
cival M.E., Gibala M.J., High-intensity interval exercise
induces 24-h energy expenditure similar to traditional
endurance exercise despite reduced time commitment.
Appl Physiol Nutr Metab, 2014, 39 (7), 845–848, doi:
consumption and recovery rate in trained and untrained
19. Tocco F., Sanna L., Mulliri G., Magnani S., Toddle F.,
Mura R., et al., Heart Rate Unreliability during Interval
Training Recovery in Middle Distance Runners. J Sports
20. Larson L.M., Smeltzer R.M., Petrella J.K., Jung A.P.,
The effect of active versus supine recovery on heart rate,
power output, and recovery time. Int J Exerc Sci, 2013,
Effect of body posture on postexercise parasympathetic
reactivation in men. Exp Physiol, 2009, 94 (7), 795–804,
22. Anari L.M., Ghanbari-Firoozabadi M., Ansari Z., Ema-
mi M., Nasab M.V., Nemaiande M., et al., Effect of car-
diac rehabilitation program on heart rate recovery in
chronic heart disease. J Teheran Heart Cent, 2015, 10
(4), 176–181.
23. Yaylai Y.T., Findikoglu G., Yurdmas C., Konukcu S., Se-
nol H., The effects of baseline heart rate recovery nor-
mality and exercise training protocol on heart rate re-
covery in patients with heart failure. Anatol J Cardiol,
24. Currie K.D., Rosen L.M., Millar P.J., McKelvie R.S.,
MacDonald M.J., Heart rate recovery and heart rate
variability are unchanged in patients with coronary ar-
tery disease following 12 weeks of high-intensity interval
and moderate-intensity endurance exercise training.
Appl Physiol Nutr Metab, 2013, 38 (6), 644–650, doi:

Paper received by the Editor: April 22, 2016
Paper accepted for publication: June 20, 2016

Correspondence address
Łukasz Rutkowski
Akademia Wychowania Fizycznego
al. I.J. Paderewskiego 35
Wrocław, Poland
e-mail: lukrut44@gmail.com