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REVIEW ARTICLE

Molecular advances on agricultural crop improvement to meet 
current cultivating demands 

T. Margaritopoulou1,* and D. Milioni2 

Abstract   Sunfl ower, maize and potato are among the world’s principal crops. In order to improve 
various traits, these crops have been genetically engineered to a great extent. Even though molecu-
lar markers for simple traits such as, fertility, herbicide tolerance or specifi c pathogen resistance have 
been successfully used in marker-assisted breeding programs for years, agronomical important com-
plex quantitative traits like yield, biotic and abiotic stress resistance and seed quality content are chal-
lenging and require whole genome approaches. Collections of genetic resources for these crops are 
conserved worldwide and represent valuable resources to study complex traits. Nowadays techno-
logical advances and the availability of genome sequence have made novel approaches on the whole 
genome level possible. Molecular breeding, including both transgenic approach and marker-assisted 
breeding have facilitated the production of large amounts of markers for high density maps and al-
lowed genome-wide association studies and genomic selection in sunfl ower, maize and potato. Mark-
er-assisted selection related to hybrid performance has shown that genomic selection is a successful 
approach to address complex quantitative traits and to facilitate speeding up breeding programs in 
these crops in the future. 
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ronomic traits

ing, are more genetically uniform than their 
wild relatives (Fu, 2015). Given that plant ge-
netic diversity increases options for innova-
tive, plant-based solutions to major environ-
mental challenges such as water scarcity, 
deforestation, energy and climate change, 
molecular plant breeding can be a valuable 
tool to meet these demands by rapid incor-
poration of important traits from wild rela-
tives into established crops and by shorten-
ing new crop domestication time (da Silva 
Dias, 2015).

Nowadays aff ordable high throughput 
DNA sequencing, coupled with improved bio-
informatics and statistical analyses, is bring-
ing major advances in the fi eld of molecular 
plant breeding. Multidisciplinary breeding 
programs on the world’s major crop plants 
are able to investigate genome-wide varia-
tions in DNA sequences and link them to in-
herited highly complex traits which are con-
trolled by several genes, such as hybrid vigor 
and fl owering. Furthermore, there has been 

Introduction

Agriculture is a human invention since more 
than 10,000 years and is estimated to have 
used more than 7,000 species to satisfy ba-
sic human needs (Esquinas-Alcázar, 2005). 
The primitive crop cultivars, known as lan-
draces, were adapted to local growing con-
ditions and practices, and therefore re-
mained genetically diverse for traits such 
as product qualities, stress tolerance, dis-
ease resistance, and yield stability. Today’s 
agricultural commodities and modern vari-
eties derived from the genetic modifi cation 
of wild plants through thousands of years of 
gradual selection, domestication and breed-
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a step-change in speed and cost-eff ective-
ness (Robinson et al., 2014). The availabili-
ty of dense genetic maps can facilitate re-
searchers to perform flexible marker-trait 
associations, concerning the correlations 
between pathogen resistance and alterna-
tive genes, and develop high performance 
markers that will promote marker- assisted 
choice (MAS) selection for resistant popu-
lations in segregating breeding programs 
(Ben-Ari and Lavi, 2012).

Herein, the molecular advances on agri-
cultural crop improvement to meet current 
cultivating demands are reviewed for three 
economically important crops worldwide, 
i.e. sunfl ower, maize, potato.

Sunfl ower (Helianthus annuus L.,
Asteraceae)

Sunfl ower is the foremost seed crop cul-
tivated within the world (Fernández-Luque-
ño et al., 2014). Sunfl ower oil contains less 
than 11% total saturated fat and does not 
contain any trans fat. Inexpensive produc-
tion of biofuel from sunfl ower oil has been 
achieved (Boumesbah et al., 2015). Further-
more, sunfl ower is an ideal plant for produc-
ing high quality rubber from  its leaves and 
stems and some of the taller perennial spe-
cies have high latex yield potential (Lu and 
Hoeft, 2009).

The multiple usages of sunfl ower prod-
ucts in food, feed, and industry are stimu-
lating the discovery of new sources of bio-
diversity for sunfl ower molecular breeding 
programs in combination with the appli-
cation of high throughput approaches and 
genetic manipulation. The primary objec-
tive for sunflower breeders it to increase 
the yield and agronomical performance 
of high oleic sunflower hybrids. To accom-
plish these goals, breeders need to ad-
dress pathogens, pests, and environmen-
tal constraints that have the potential to 
drastically reduce yield where sunflowers 
are grown (Dimitrijevic and Horn, 2018).

Genomic resources
A rich and various germplasm assort-

ment is the backbone of each crop improve-

ment program. Assessing genetic diversi-
ty within a genetic pool of novel breeding 
germplasm could make crop improvement 
more effi  cient by the directed accumulation 
of desired alleles (Darvishzadeh et al.,  2010).
Several bacterial artifi cial chromosome 
(BAC) libraries have been constructed for 
sunfl ower (Feng et al., 2006; Gentzbittel et 
al., 2002; Özdemir et al., 2004). The libraries 
are equivalent to approximately 8 haploid 
genomes of sunfl ower and provide a great-
er than 99% probability of obtaining a clone 
of interest and they have been employed for 
isolating and physical mapping of loci such 
as the FAD2-1 locus (Schuppert et al., 2006) 
or the fertility restorer Rf1 locus (Hamrit et 
al., 2008). In situ hybridization techniques 
involving Fluorescent In Situ Hybridization 
(FISH) and BAC-FISH have being optimized 
for diversity and biological process studies 
between species of the genus Helianthus 
and development of a physical helianthus 
map allowing a cross reference to the ge-
netic map (Giordani et al., 2014).

Various EST sequencing programs have 
been carried out in sunfl ower, including 
the Compositae Genome Project, and oth-
er programs (Tamborindeguy et al., 2004) 
and (Ben et al., 2005). The Compositae Ge-
nome Program (http://compgenomics.uc-
davis.edu/index.php) has developed and 
is utilizing a 2.6 million feature Aff ymetrix 
chip based on 87,000 unigenes from seven 
Helianthus spp. (Lai et al., 2012). Interesting 
associations have been detected between 
Expressed Sequence Tags (ESTs) and Quanti-
tative Trait Loci (QTLs) for salt tolerance and 
for domestication traits (Lai et al., 2005). Un-
til today, 94.33 % of HA412-HO ESTs are cor-
rectly mapped and 90,935 protein coding 
genes are predicted, excluding transposable 
elements (http://www.sunfl owergenome.
org). Extensive genotyping has been per-
formed for vegetative and fl ower sunfl ower 
organs together with uncovering gene net-
works for oil metabolism and fl owering time 
(Badouin et al., 2017; Renaut 2017).

Effi  cient breeding strategy development
Biotechnology has the potential to help 
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evoke the full potential of this valuable crop 
(Fig. 1). 

Resistance to pathogens
MAS technology has been used in sun-

flower breeding for various disease resis-
tance traits (Brahm and Friedt 2000). With 
the development of an array of molecular 
markers and a dense genetic map of the 
sunflower genome, MAS for both single 
genes and QTLs is now possible (Babu et 
al., 2004; Bowers et al., 2012). For example, 
biotechnology offers a variety of meth-
ods for managing white rot caused by Stro-
matinia cepivora (also known as Sclerotium 
cepivorum) (Schnabl et al., 2002), includ-
ing defense activation, pathogen inhibi-
tion and detoxification (Lu, 2003). Accord-
ing to Hu et al. (2003), the enzyme oxalate 
oxidase can confer resistance against Scle-
rotinia sclerotiorum, (Lib.) de Bary which 
causes sclerotinia wilt (midstalk rot), in 
transgenic sunflower plants while accord-
ing to Sawahel and Hagran (2006), overex-
pression of a human lysozyme gene in sun-
flower confers resistance to the pathogen. 
Recently, the quantitative nature of Scle-
rotinia resistance has been exploited and 
QTL analysis showed that different genom-
ic regions may contribute to resistance in 
different tissues of the plant (Würschum et 
al., 2014).

Alternative transgenic methods have 
been developed to reinforce sunfl ower resis-
tance to diseases. A number of homologues 
resistance (R) gene have been isolated from 
sunfl ower, providing a valuable resource for 
engineering disease resistance in sunfl ow-
er (Dimitrijevic and Horn 2018; Hewezi et al., 
2006; Qi et al., 2016; Talukder et al., 2016).

Quality traits. Sunfl ower with high oleic 
acid content is optimal for the biodiesel in-
dustry since the produced oil has up to 90% 
mono-unsaturated fatty acid concentra-
tion, which has high oxidative stability and 
uniformity. Therefore, producing high con-
centrations of industrially valuable fatty ac-
ids in plant seeds through biotechnological 
improvements along with modifi cations of 
the fatty acid composition can make vege-
table oil more versatile for its use (Burton et 
al., 2004).

One of the challenges for oil composi-
tion modifi cation in sunfl ower is increas-
ing the extent of the new fatty acids. Much 
work has been performed for the identifi ca-
tion of genes involved in primary metabol-
ic pathways and signal transduction at var-
ious growth and stress conditions (Liang et 
al., 2017; Pan et al., 2016; Velasco et al., 2014) 
to gain insight into the mechanism of an-
tioxidant defense. New genes have been 
identifi ed and the metabolism of ROS and 
RNS have been analyzed under various biot-

Fig. 1. Schematic depiction of the available resources in sunfl ower for marker-assisted selection and future genomic selec-

tion. Sunfl ower diverse genetic information is available for breeding and represents a large portion of genetic diversity that 

can be exploited for improving sunfl ower traits. Accessing sunfl ower genome sequences, large resources of SNP or high res-

olution maps and/or SNP arrays, along with huge amount of expression data can accelerate sunfl ower breeding by making 

the selection steps more effi  cient and precise. Marker-assisted breeding toward genomic selection can produce high qual-

ity breeding values. 
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ic and abiotic conditions (Chaki et al., 2013; 
Chaki et al., 2008; Chaki et al., 2011). 

Overall, transgenic sunfl ower has the 
potential to meet the demands for yield im-
provement, to increase the effi  cient use of 
renewable resources, such as land, water 
and soil nutrients, and to signifi cantly bene-
fi t everyday life by providing additional nu-
tritive and healthy foods and valuable in-
dustrial products. 

Ease of use and robustness of molecular 
markers

Markers’ validation assesses their link-
age to and association with QTLs and their 
eff ectiveness in selection of the target phe-
notype in independent populations and dif-
ferent genetic backgrounds (Collard et al., 
2005). An overall QTL mapping has been 
performed using microsatellite and Single 
Nucleotide Polymorphisms (SNP) markers 
in sunfl ower giving the ability to assess the 
genetic diversity and population structure 
across diff erent sunfl ower populations (Fil-
ippi et al., 2015). 

Validation of genomic Simple Sequence 
Repeats (SSRs) in four genotypes of sunfl ow-
er (RHA266, PAC2, HA89 and RHA801) result-
ed in amplifi cation of 74 sequences from 
a total of 127 analyzed. Out of them, 13% 
represented polymorphic loci, 45% mono-
morphic, 5% null alleles and the remaining 
37% showed either no amplifi cation prod-
uct, nonspecifi c amplifi cation or complex 
or diffi  cult to resolve banding patterns (Ta-
lia et al., 2010). The percentage of polymor-
phisms within sunfl ower that can be geneti-
cally mapped using SSR markers is shown to 
be less than 10% that comes in agreement 
with reports from other species (Varshney et 
al., 2005).

Examples of markers/QTLs validation 
across various genetic backgrounds in sun-
fl ower include:

A set of markers have been validated  −
in a number of diff erent genetic back-
grounds for the Or5 gene conferring re-
sistance to race E of the parasitic weed 
broomrape (Orobancche cumana), in-
fecting the sunfl ower roots (Höniges et 

al., 2008; Pérez-Vich et al., 2004; Tang 
and Knapp, 2003). 
Markers have been validated for the  −
dominant PI genes determining resis-
tance to diff erent downy mildew races 
(Brahm and Friedt 2000; Hvarleva et al.,  
2009; Ma et al., 2017) and to the R1, Radv 
and Pu6 genes conferring resistance to 
rust (Bulos et al., 2014). 
QTLs controlling three resistant (stem le- −
sion, leaf lesion and speed of fungal con-
trol) and two morphological (leaf length 
and leaf length with petiole) traits have 
been validated for S. sclerotiorum across 
generations (Micic et al., 2005) and across 
environments (Talukder et al., 2016). 
QTLs have been validated for sunfl ower  −
oil content, across generations, environ-
ments and mapping populations (Tang 
et al., 2006b).
Markers have been developed in sun- −
fl ower for simple traits selection, based 
on gene mutations underlying the trait 
of interest. There has been identifi ed a 
mutation in codon 205 in the acetohy-
droxyacid synthase gene AHAs-1 that 
confers resistance to imidazolinone (IMI) 
herbicides and developed a SNP geno-
typing assay diagnostic for it (Kolkman 
et al., 2004).

Maize (Zea mays L., Poaceae)
Cultivation of maize is extensively wide-

spread throughout the world and is surpass-
ing any other grains (Council, 2019). With a 
fraction of total maize production being con-
sumed by humans, its main products are eth-
anol, animal feed and processed corn starch 
and corn syrup (Klopfenstein et al., 2013). 
Maize has high nutritional value but also is a 
fi ne source of various major phytochemicals 
such as carotenoids, phenolic compounds, 
and phytosterol, depicting its potential 
health benefi ts (Rouf Shah et al., 2016).

Genome as the core base
B73 decoding. The 2.3-billion-base ge-

nome of an inbred line of maize called B73, 
an important commercial crop variety has 
been decoded (Schnable et al., 2009). It has 
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been reported that the Palomero genome, a 
corn variety diverged from B73 about 9,000 
years ago, is around 400 million nucleotides 
smaller and contains about 20% less repet-
itive DNA than B732 (Vielle-Calzada et al., 
2009). To map maize haplotypes a part of 
the gene-rich region of 27 maize varieties 
was sequenced. ‘HapMap’ revealed thou-
sands of genes around the centres of the 
chromosomes, where they were unlikely to 
be shuffl  ed around during recombination 
(Gore et al., 2009). Schnable et al. (2011) dem-
onstrated that the maize subgenomes are 
diff erentiated by genome dominance and 
both ancient and ongoing gene loss. Most 
of the economically important traits consid-
ered in maize breeding are inherited quanti-
tatively. Multiple genes or quantitative trait 
loci (QTLs) aff ecting fl owering traits, root 
characteristics, cell wall traits, and toler-
ance to biotic/abiotic stresses panicle mor-
phology and grain development have been 
cloned, and gene expression research has 
provided new information about the na-
ture of complex genetic networks involved 
in the expression of these traits (Buckler et 
al., 2009; Chung et al., 2011; Fernandez et 
al., 2009; Messmer et al., 2009; Poland et al., 
2011; Trachsel et al., 2009). A meta-analysis of 
QTL associated with plant digestibility and 
cell wall composition in maize identifi ed 
key chromosomal regions involved in silage 
quality and potentially associated genes for 
most of these regions (Truntzler et al., 2010).

Association mapping (associating specif-
ic DNA polymorphisms with traits of interest 
based on linkage disequilibrium). McMullen 
et al. (2009) described the maize NAM pop-
ulation generated by crossing 25 diverse 
inbred lines to a common line, inbred B73. 
Sequenome-based SNP-typing assay was 
used to identify 1,359 SNPs in maize tran-
scriptome and 75% of these SNPs were con-
fi rmed and applied in association analysis 
(Liu et al., 2010). Currently, there are over 2 
million maize ESTs in GenBank (Benson et al., 
2009). However, the assembly of these ESTs 
into gene models presents practical prob-
lems. Therefore, a full length cDNA library 
has been recently constructed for Zea mays 

(http:www.maizecdna.org/) (Soderlund et 
al., 2009). A normalized cDNA library, cov-
ering most of the developmental stages of 
maize seeds, was also constructed and 57 
putative transcription factors were identi-
fi ed (Wang et al., 2010). The cDNA libraries 
can serve as primary resources for design-
ing microarray probes and as clone resourc-
es for genetic engineering to improve crop 
effi  ciency.

Maize GDB (http://www.maizegdb.org/). 
Maize GDB is a database that provides docu-
mentation and data for the microarrays pro-
duced by the Maize Gene Discovery Proj-
ect. An extensive expression atlas covering 
a wide array of tissues and developmental 
stages of maize using a NimbleGen microar-
ray encompassing 80 301 probe sets was 
recently constructed (Sekhon et al., 2011). 
Random-sheared, paired-end Illumina GAII 
reads have been generated from 103 maize, 
teosinte and maize landrace inbred lines at 
a depth ranging from 4-30x (Chia et al., 2012; 
Huff ord et al., 2012). Microarray studies have 
also been performed to study cell wall me-
tabolism in maize, with the aim of identi-
fying tissue-specifi c or developmentally 
regulated gene expression of members of 
multigene families or to obtain a better un-
derstanding of regulatory networks that are 
exposed when cell wall-related genes are 
mutated (Guillaumie et al., 2007a; Guillaumie 
et al., 2007b). The MAIZEWALL sequence da-
tabase and expression profi ling resource has 
been developed (www.polebio.scsv.ups-
tlse.fr/MAIZEWALL). Rajhi and co-workers 
performed transcriptome analysis in maize 
root cortical cells during lysigenous aeren-
chyma formation and discovered a number 
of genes whose expression changed in re-
sponse to ethylene under waterlogged con-
ditions (Rajhi et al., 2011).

Maize small RNAs. Small RNAs in the wild 
type and in the isogenic Mediator Of Para-
mutation1 loss-of- function (mop1-1) mu-
tant have been examined by deep sequenc-
ing to analyze the size distribution of maize 
small RNAs (Nobuta et al., 2008). Small RNAs 
are playing roles as major components of 
epigenetic processes and gene networks 
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involved in development and homeosta-
sis. It has been recently demonstrated that 
a change in expression of a key component 
of the RNA silencing pathway is associat-
ed with both vegetative phase change and 
shifts in epigenetic regulation of a maize 
transposon (Li et al., 2010).

RNA interference (RNAi) [RNA-mediated 
gene silencing by sequence-specifi c degrada-
tion of homologous mRNA triggered by dou-
ble-stranded RNA (dsRNA)]. The RNAi system 
was used to improve resistance to maize 
dwarf mosaic virus on transgenic maize 
(Zhang et al., 2011). Maize lines expressing 
RNAi to chromatin remodeling factors were 
shown to be similarly hypersensitive to UV-B 
radiation but exhibit distinct transcriptome 
responses (Casati and Walbot 2008). By us-
ing near infrared refl ectance spectrosco-
py (NIRS), a set of 39 maize mutants with al-
tered spectral phenotypes (‘spectrotypes’) 
have been identifi ed (Vermerris et al., 2007). 
A number of these mutants were shown to 
have altered lignin-to-carbohydrate ratios 
(Penning et al., 2009). Sequence- specifi c 
DNA binding Transcription Factors (TFs) are 
key molecular switches that control or in-
fl uence many biological processes, such as 
development or response to environmen-
tal changes. The Maize Transcription Factor 
Database provides a comprehensive collec-
tion of 764 predicted transcription factors 
from maize with available links to informa-
tion on mutants, map positions or puta-
tive functions for these transcription factors 
(MaizeTFDB) (http://grassius.org/browse-
family.html?species=Maize). Information 
resources related to metabolomics can play 
major role not only in metabolomics re-
search but also in synergistic integration 
with other omics data. MaizeCYc is a bio-
chemical pathway database that provides 
manually curated or reviewed information 
about metabolic pathways in maize.

Molecular breeding for current needs
Molecular breeding, including both 

transgenic approach and marker-assist-
ed breeding, is primary associated with the 
challenges for developing cultivars with 

combinations of adaptive traits (Brown et al., 
2011; Varshney et al., 2011). For making mo-
lecular marker-assisted breeding success-
ful, marker-trait associations are now known 
for almost all important economic traits, in-
cluding thousands of mapped microsatel-
lite or SSR markers, and additional recently, 
SNPs, and insertion-deletion (InDel) mark-
ers. For maize, there is an updated compila-
tion of mapped QTL for abiotic stress resis-
tance (http://www.plantstress.com; http://
www.maizegdb.org; http://www.gramene.
org). Additionally, a large number of genes 
controlling various aspects of plant devel-
opment, biotic and abiotic stress resistance, 
quality characters, etc. have been cloned 
and characterized in maize, which are ex-
cellent assets for molecular marker- assist-
ed breeding (Aslam and Ali 2018; Prasanna 
et al., 2010). 

Tolerance against drought. Since drought 
is considered to be the most important con-
straint across all areas where maize is culti-
vated, and global warming is predicted to 
further exacerbate drought’s impact, a to-
tal management plan is necessary for in-
creasing maize yield in stress-prone envi-
ronments (Fig. 2). The high variability to 
drought stress and also the uncontrollable 
fact that drought response has great fl uc-
tuations across environments, have made 
it diffi  cult to spot specifi c metabolic path-
ways which limits breeding eff orts towards 
drought tolerance (Collins et al., 2008). A 
Marker-Assisted BackCross (MABC) selec-
tion approach meant for improving grain 
yield under water limited conditions in trop-
ical maize, was successfully conducted at 
CIMMYT (Ribaut and Ragot 2006) and more 
recently at sub-Saharan Africa (Beyene et al., 
2016). However, this approach delivers a re-
stricted level of improvement in drought 
tolerance since it provides an improved ver-
sion of an existing genotype (Ribaut et al., 
2009). Nevertheless, a molecular breeding 
approach-marker-assisted recurrent selec-
tion (MARS) can be used to overcome this 
problem. MARS studies exploit association 
mapping and can eff ectively double the 
rate of yield gain compared to conventional 
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breeding in elite germplasms when favored 
and stress environments are been examined 
(Crosbie et al., 2006; Eathington et al., 2007; 
Edgerton 2009). Most recently, the role of 
Abscisic Acid (ABA) pathway in drought re-
sistance has been investigated and natural 
variants of ABA-(PYR1/PYL/RCAR) protein 
(PYL) receptors have been identifi ed that 
can serve as potential molecular markers for 
breeding drought-resistant maize cultivars 
(He et al., 2018).

Resistance against pathogens. Eff orts to 
scale down maize losses from pathogen at-
tacks through resistant crop varieties could 
provide tremendous opportunities for in-
creasing and stabilizing maize productivity. 
QTL related to resistance to several diseas-
es, such as downy mildew and rust, and in-
sect-pests are known and mapped in maize, 
creating marker assisted choice as a poten-
tially viable strategy to improve resistance 
to these biotic stresses (Ali and Yan 2012; 
García-Lara et al., 2009; Krakowsky et al., 
2004; Wisser et al., 2006). 

Resistance against insect pests. The indus-
try has made substantial progress with in-
sect resistant maize through transformation 
with insecticidal proteins from Bacillus thu-
ringiensis (Bt) which have been particularly 
successful in providing protection against 
several corn borers (Glaser and Matten 2003; 
Jiang et al., 2018). 

Quality traits. Quality traits, like oil con-

tent or high nutritional value molecules, 
have induced a shift in maize production 
far from strictly an identity-preserved culti-
vation to more a value-added product. The 
capability of changing cell membrane poly-
saccharides into possible sugars for grain 
ethanol production depends on cell mem-
brane structure. Molecular markers can be a 
valuable tool when breeding for feed maize 
but with improved quality on grain ethanol. 

QTLs with comparatively effi  cient results 
are found for feed maize including cell mem-
brane composition and glucose release (GL-
CRel) (Lorenzana et al., 2010), and some im-
portant constitutive and adaptive QTLs are 
identifi ed by using meta-analysis (Hao et al., 
2010). (Torres et al., 2015) presented the mo-
lecular progress that has been made in al-
tering maize’s cellulosic content in order to 
exploit useful biomass characteristics and 
design new breeding strategies.

Quality traits and tolerance to abiot-
ic stress. There has been increasing inter-
est in addressing advanced traits like grain 
quality and abiotic/biotic stress toleranc-
es through recombinant DNA technology. 
Elite inbred South African transgenic corn 
plants were modifi ed in 3 separate metabol-
ic pathways to produce increased quantities 
of vitamin β-carotene, ascorbate and folate 
(Naqvi et al., 2009). It has been demonstrat-
ed that engineering of the alkaloid synthe-
sis pathway could have great impact on im-

Fig. 2. Schematic representation that highlights the required key steps to facilitate enhanced adoption and impacts of im-

proved climate-resilient maize varieties in the developing world.  Increasing maize yields in stress-prone environments and 

reducing year-to-year variability is an important step in improving food safety, livelihoods and adaptation to the changing 

climate in the developing world (Cairns and Prasana, 2018).  
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proving cold tolerance in maize (Quan et al., 
2004). Furthermore, genome-wide associa-
tion analyses (GWAS) in temperate maize in-
bred lines is serving as a tool to fi nd strate-
gies for identifying genes for cold tolerance 
(Revilla et al., 2016) and has been report-
ed that the introduction of an antisense 
gene for pyruvate orthophosphate dikinase 
(PPDK) into maize with Agrobacterium-me-
diated transformation resulted in shifting 
the break point 3oC less than that of the wild 
type (Ohta et al., 2004).

Drought is another stress factor that has 
been addressed in maize improvement. Nu-
clear Factor-Y (NF-Y) is a 3- subunit com-
plex that has been shown to play major role 
in growth, development, and response to 
environmental stress. Except studies that 
have been performed for characterizing 
NF-Y gene families in maize (Zhang et al., 
2016), when ZmNF-YB2 or ZmNF-YB16 were 
constitutively expressed in elite maize in-
bred lines, the transgenic lines displayed 
improved drought tolerance compared to 
wild-type plants under water-stressed con-
ditions in the fi eld (Nelson et al., 2007; Wang 
et al., 2018). (Castiglioni et al., 2008) demon-
strated that transgenic maize lines recom-
binant with bacterial RNA chaperones re-
sulted in not only abiotic stress tolerance 
but also improved grain yield under water-
limited conditions. The application of this 
technology has the potential to consider-
ably impact maize production systems that 
have drought. However, commercializa-
tion of transgenic maize for abiotic stress-
es like drought tolerance has been terribly 
restricted (Xu et al., 2009).

Moreover, the past ten years we have 
witnessed extensive eff orts toward the de-
velopment of an effi  cient Agrobacterium-
mediated transformation system for an 
array of maize developing organs with par-
ticular emphasis on increasing the effi  ciency 
and extending the range of amenable gen-
otypes (Cao et al., 2014; Lee and Zhang 2014; 
Shrawat and Lörz, 2006). 

Validation of quantitative traits
In maize, a trait that has been exten-

sively investigated as an indirect measure 
of drought tolerance is the capacity of ABA 
accumulation. The presence of a major QTL 
for root features (root-ABA1) was mapped 
on bin 2.04 in Os420 × IABO78. This major 
QTL aff ecting abscisic acid (ABA) concentra-
tion in the leaf, root traits and relative wa-
ter content was further evaluated in maize 
using NILs (Landi et al., 2005). Interestingly, 
the QTL allele for larger root mass and high-
er ABA concentration negatively aff ected 
grain yield (Landi et al., 2006). Laurie et al. 
(2004) were able to detect 50 QTL account-
ing for genetic variance in maize oil content 
with a resolution of the order of a few centi-
morgans across generations.

QTL conditioning resistance to plant 
pathogens (rQTL) have been discovered 
and reviewed by several authors (Balint-
Kurti and Johal, 2009; Redinbaugh and 
Pratt, 2009). To date only a few QTL confer-
ring resistance to maize streak mastrevirus, 
Cercospora zeae-maydis, Exserohilum turci-
cum (Pass.) and Peronosclerospora sorghiin 
have been validated (Abalo et al., 2009; Asea 
et al., 2009; Nair et al., 2005). For Cercospo-
ra resistance in maize, QTLs have been val-
idated across genetic backgrounds (Pozar 
et al., 2009) and environments (Juliatti et al.,  
2009). Furthermore, a major QTL control-
ling maize streak virus resistance explains 
50–70% of total phenotypic variation (Per-
net et al., 1999). Several microsatellite mark-
ers associated with this QTL were validated 
across populations and have been success-
fully used for the selection of resistant lines 
(William et al., 2007).

Analyses for evaluating the signifi cance 
of QTL x genetic background interactions in 
several diverse mapping populations, have 
been performed in maize for grain mois-
ture, silking date and grain yield (Blanc et al.,  
2006; Huo et al., 2016). QTL meta-analysis 
is another approach to identify consensus 
QTL across studies, to validate QTL eff ects 
across environments/genetic backgrounds, 
and also to refi ne QTL positions on the con-
sensus map (Goffi  net and Gerber 2000). The 
concept of meta-analysis has been applied 
to the analysis of QTL/genes for fl owering 
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time (Chardon et al., 2004) and drought tol-
erance in maize (Hao et al., 2010). A meta-
analysis of QTL associated with plant digest-
ibility and cell wall composition in maize has 
been carried out and fi fteen meta QTL with 
confi dence interval (CI) smaller than 10cM 
were identifi ed (Truntzler et al., 2010). 

Potato (Solanum tuberosum, L.,
Solanaceae)

Cultivated potato is the world’s third 
most important human food crop (www.
cipotato.org). It is also used as raw materi-
al for starch and alcohol production (Can-
tos-Lopes et al., 2018). The basic chromo-
some number for potato species is 12. Even 
though one of the most widespread food 
crop around the world, the genetics of many 
potato traits is poorly understood.

Insights in genomic properties
An ultrahigh-density (UHD) genetic map 

composed of approximately 10,000 Ampli-
fi ed Fragment Length Polymorphism (AFLP) 
markers has been  developed, which is most 
likely the densest map for a plant species 
ever constructed (Van Os et al., 2006). Re-
cently, the relationship between the ge-
netic and chromosome map in potato was 
displayed and two linkage maps were inte-
grated with potato genome sequence de-
veloping 8303 Single Nucleotide Polymor-
phism (SNP) for genome-guided breeding 
(Felcher et al., 2012). Moreover, (Sharma et 
al., 2013) elaborated 2469 marker loci in 
a linkage map which was integrated with 
potato reference genome (DM) and other 
physical and genetic maps of potato pro-
viding detailed information about chromo-
somal gene distribution. Using RFLP and 
AFLP markers, a QTL and linkage map of 
two segregating diploid populations previ-
ously evaluated for sugar content after cold 
storage, was generated. Ten potato genes 
with unknown function in carbon metabo-
lism or transport were mapped and tested 
for their eff ects on sugar content. Results 
displayed linkage between glucose, fruc-
tose and sucrose QTLs and all of eight can-
didate gene loci (AGPaseS, AGPaseB, SbeI, 

GapC, Invap, Ppa1, Sut1, Sut2) (Menéndez 
et al., 2002). Several QTLs aff ecting the abil-
ity to form tubers under long photoperiods 
(earliness) have been identifi ed (Šimko et al., 
1999). A functional map for pathogen resis-
tance, enriched with RGA (resistance gene 
analog) and DRL (defence related locus) se-
quences, SNPs and insertion-deletion poly-
morphisms (InDels) tightly linked or locat-
ed within Nucleotide Binding Site - Leucine 
Rich Repeat (NBS-LRR) -like genes, has been 
developed on the basis of two potato pop-
ulations (BC9162 and F1840) (Rickert et al., 
2003; Trognitz et al., 2002). Recently, twen-
ty-one QTL and eight reference published 
potato maps were merged together and 
the fi rst consensus map was built. Individual 
QTLs for resistance to the late blight patho-
gen, Phytophthora infestans (Mont.) de Bary, 
and maturity traits were projected onto the 
consensus map and the fi rst meta-analysis 
performed deals with both development 
trait and resistance to a biotic stress in pota-
to (Danan et al., 2011).

As a major follow-up, the genome of po-
tato (850 Mb) was sequenced by the inter-
national Potato Genome Sequencing Con-
sortium (PGSC), which was comprised by 13 
countries [http://www.potatogenome.net/]. 
The new genome sequence data provides 
information about extensive copy number 
variation (CNV) which has great impact on 
219.8 Mb (30.2%) of the potato genome. Al-
most 30% of genes are subjected to at least 
partial duplication or deletion which reveals 
the highly heterogeneous nature of the po-
tato genome (Hardigan et al., 2016). Com-
parative sequence analysis of Solanum and 
Arabidopsis in a hot spot for pathogen re-
sistance on potato chromosome V has also 
been performed and revealed a patchwork 
of conserved and rapidly evolving genome 
segments (Ballvora et al., 2007).

Several eff orts to generate EST resources 
for potato have been performed (Flinn et al.,  
2005). Potato cDNA microarray analysis was 
performed to assess the potential of tran-
scriptomics to detect diff erences in gene ex-
pression due to genetic diff erences or envi-
ronmental conditions (van Dijk et al.,  2009). A 
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cDNA- AFLP approach and bulked segregate 
analysis (BSA) was used to identify genes co-
segregating with earliness of tuberization in 
a diploid potato population. 81 candidate 
polymorphic transcript-derived fragments 
(TDFs) showing polymorphism between the 
early and late bulks were selected for fur-
ther analysis (Fernández-del-Carmen et al.,  
2007). Genetic engineering could enhance 
desirable characteristics of crops by mod-
ifying key regulatory steps for entire meta-
bolic or developmental pathways. The op-
timal conditions for genetic transformation 
of Solanum spp mediated by Agrobacterium 
tumefaciens have been established (Chakra-
varty et al., 2007). It has been demonstrated 
that transgenic katahdin plants containing 
the RB gene showed resistance to all test-
ed Pythophtora isolates, including a super 
race that can overcome all eleven known R 
genes in potato. An RNA interference (RNAi)-
based potato gene silencing approach us-
ing agroinfi ltration, has been recently estab-
lished (Bhaskar et al., 2009).

How to design effi  cient breeding strate-
gies

Tolerance to salt stress. Potato crop pro-
duction is highly inversely connected to salt 
stress with substantial economic impacts 
(Katerji et al., 2000). When potato is subject-
ed to salt stress, increased activation of an-
tioxidant enzymes, accumulation of proline, 
decrease in micro tubers and negative ef-
fects on physiological characteristics occur  
(Rahnama and Ebrahimzadeh 2004; Tang et 
al., 2006a; Zhang et al., 2005). Gene expres-
sion studies on potato cultivars under dif-
ferent stress conditions, such as cold, heat 
or salt, revealed that transcription factors, 
signal transduction factors and heat shock 
protein (HSP) are associated with abiotic 
stress responses (Rensink et al., 2005; Tang 
et al., 2016). In addition, when Δ-pyrroline-5-
carboxylase synthetase, which is involved in 
proline production, is overexpressed, it con-
fers salt tolerance to potato (Hmida-Sayari et 
al., 2005). 

Aghaei et al. (2008) examined closely in a 
protein level the diff erences between a salt 

tolerant and a salt sensitive potato culture. 
They pointed out that among the proteins 
that were diff erentially expressed photosyn-
thesis- and protein synthesis-related proteins 
were drastically down-regulated, whereas 
osmotine-like proteins, type VI secretion im-
munity protein (TSI-1), heat-shock proteins, 
protein inhibitors, calreticulin, and fi ve nov-
el proteins were remarkedly up-regulated. 
Under salt conditions, major changes occur 
within the photosytem protein machinery 
and the Calvin cycle as demonstrated by an 
in-depth cDNA microarray map constructed 
from potato leaves (Legay et al., 2009). 

More recently, advances have been 
made in identifying several genes that play 
key roles to biotic and abiotic stress respons-
es. A pathogen-related protein, named PR-
10a, has been identifi ed which is not only 
induced under biotic stress conditions in po-
tato, but also exhibits signifi cantly increased 
tolerance under salt and osmosis conditions 
(El-Banna et al., 2010). Two diff erent studies 
showed that the metal zinc fi nger protein 
St ZFP1 could participate to salt associated 
potato responses through the ABA- depen-
dent pathway (Tian et al., 2010) and also the 
cinnamyl alcohol dehydrogenase ibCAD1 
may play a very important role in each abi-
otic and biotic stress resistance mechanisms 
(Kim et al., 2010).

Tolerance to drought. Another major abi-
otic stress issue that ends up in crop losses 
in potato cultivars, is drought. The develop-
ment of drought tolerant cultivars is of pri-
mary importance for maintaining yields be-
neath temperature change conditions and 
for the extension of cultivation to sub-op-
timal cropping areas. Extensive cDNA mi-
croarray analysis showed that a tolerant 
accession to drought, named 397077.16, pre-
sented diff erentially expressed genes when 
compared to a sensitive variety (Legay et 
al., 2011). The genes belonged to groups of 
carbohydrate metabolism, cell protection 
and detoxifi cation, meaning that the toler-
ant accession can respond more effi  ciently 
to stress and be more adaptive when com-
pared to the sensitive one. Additionally, the 
work of other groups identifi ed a transcrip-
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tion factor which is involved in the activa-
tion of drought related genes (Shin et al., 
2011) and showed the importance of the 
overexpression of the L-gulono-c-lactone 
oxidase (GLOase gene) gene to the resis-
tance to various abiotic stress factors (Upad-
hyaya et al., 2009).

Resistance to pathogens. The use of re-
sistant varieties is taken into account to be 
the foremost appropriate approach for the 
management of Phytophthora infestans. Ex-
tensive examination of potato genotype 
SD20 revealed WRKY domain transcription 
factor (WRKY), single AP2/ERF domain tran-
scription factor (ERF), MAP kinase (MAPK), 
and NBS-LRR gene families that play es-
sential role in late blight (Yang et al., 2018). 
Moreover, it has been suggested that the R8 
gene, found in fi eld trials, is responsible for 
late blight resistance and that its mapping 
on the long arm of chromosome IX along 
with the generation of markers would be a 
helpful tool for marker assisted breeding (Jo 
et al., 2011). Nowadays, R8 gene is a world-
wide tool for late blight resistance (Vossen 
et al., 2016). The introduction of simultane-
ously three resistance genes from three po-
tato accessions to a sensitive cultivar (Zhu et 
al., 2012), the silencing of six S-genes in the 
susceptible potato cultivar Desiree (Sun et 
al., 2016) or the contribution of R-gene dos-
age and biochemical pathways to resistance 
(Gao and Bradeen 2016), are good examples 
in the literature, considering transformation 
techniques for late blight resistance. On the 
other hand, since potato late blight resis-
tance has been thoroughly studied, an ex-
tensive map of QTLs and Rpi-genes (resis-
tance genes to Phytophthora infestans) has 
been generated (Danan et al., 2011; Jiang et 
al., 2018; Stefańczyk et al., 2017).

Other efforts to increase potato re-
sistance to pathogens include exploita-
tion of inhibitor genes. (Khadeeva et al., 
2009) showed that transformation of pota-
to plants with an inhibitor gene of buck-
wheat provides protection to the plants 
against pathogens. Furthermore, a gene 
family that function against nematode in-
fections have been sequenced and char-

acterized from Solamun tuderosum cv. De-
siree (Turra et al., 2009). Also, advances 
have been made in the identification of 
genes that are involved in the mechanisms 
controlling the arbuscular mychorrhizal es-
tablishment by the regulation of plant de-
fense genes (Gallou et al., 2012).

Molecular markers as a key tool for crop 
improvement

Tuber susceptibility to bruising. Diagnos-
tic markers for tuber bruising and enzymat-
ic discoloration, which are very crucial char-
acteristics to crop quality of the cultivated 
potato, have been validated (Urbany et al., 
2011). The markers diagnostic for increased 
or decreased bruising susceptibility is ex-
pected to facilitate the combination of su-
perior alleles in breeding programs.

Potato germplasm (use of sources of resis-
tance to pests and diseases in order to breed 
varieties cheaper to grow). Although the ac-
tual copy number of the genes is not known, 
DNA markers located close to genes that en-
code resistance or hypersensitive response 
to the Potato virus Y (PVY), which can reduce 
yield up to 80 percent while being relatively 
symptomless, have been identifi ed and val-
idated (Fulladolsa et al., 2015; Szajko et al., 
2014; Tomczyńska et al., 2014). Furthermore, 
Cleaved Amplifi ed Polymorphic Sequenc-
es (CAPs) and Sequence Characterized Am-
plifi ed Regions (SCARs) have allowed the 
breeding of genotypes resistant to PVY (Ka-
sai et al., 2000). 

The successful employment of four PCR-
based diagnostic assays to combine the 
Ry adg gene for extreme resistance to PVY 
with Gro1 for nematode resistance and with 
Rx1 for extreme resistance to potato virus 
X (PVX, genus Potexvirus), or with Sen1 for 
wart resistance (Synchytrium endobioticum) 
has been reported (Gebhardt et al., 2006).

The availability of DNA-based markers, 
which are easy to score, cost-eff ective and 
diagnostic for resistance to Pathotypes 2/3 
(Pa2/3) of the most signifi cant soilborne 
pests of potato, the potato cyst nematode 
(Globodera pallida), would greatly speed up 
the process of new variety development. A 
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set of markers have been validated for QTL 
on linkage group IV (renamed GpaIV adg s) 
across a wide range of germplasm (Moloney 
et al., 2010). 

Field resistance to Phytophthora infestans 
has been characterized in a potato segregat-
ing family of 230 full-sub progenies derived 
from a cross between two hybrid S. phure-
ja x S. stenotomum clones. QTLs have been 
identifi ed and validated for the new genet-
ic loci in this diploid potato family contribut-
ing to general resistance against late blight 
(Costanzo et al., 2005).

Potato breeding widely exploits molecu-
lar techniques for generation and conserva-
tion of advanced clones, increasing the pota-
to cultivar number every year (Fig. 3). Reliable 
maintenance of large culture collections is 
becoming more problematic and a rapid and 
robust method for variety diff erentiation is 
becoming highly desirable. The validation 
of a set of six SSRs markers that can be used 

to diff erentiate over 400 potato cultivars has 
been reported (Reid and Kerr, 2007).

Prospects

Genomic research allows high-through-
put analysis for crop improvement. Genet-
ic markers designed to cover a genome ex-
tensively allow not only identification of 
individual genes associated with complex 
traits by quantitative trait loci analysis but 
also the exploration of genetic diversity 
with regard to natural variations.

Wild relatives are valuable knowledge 
that can upscale with valuable traits the 
crop species. Nowadays, only a little fraction 
is exploited for crop improvement. One of 
the basic issues of crop improvement is to 
access the genetic variation from such wild 
species. This is particularly important to the 
transfer of valuable, novel genes from wild 

Fig. 3. Gene variants are a valuable tool for improving potato cultivars. Schematic overview of the individual sections that 

constitute the integrated management of potato genomic resources for the generation of elite breeding clones with im-

proved agronomical traits of interest.
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relatives to crops for non-food uses. Biotech-
nology off ers the greatest potential in con-
tributing solutions to problems that agricul-
ture is facing now and the years to come.

This work was part of the Crops2Industry proj-
ect that was funded by the Seventh (7th) Re-
search Framework Program of the European 
Community. 
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ΑΡΘΡΟ ΑΝΑΣΚΟΠΗΣΗΣ

Μοριακές πρόοδοι στη βελτίωση των γεωργικών καλλιεργειών 
για την κάλυψη των σύγχρονων απαιτήσεων στη γεωργία

Θ. Μαργαριτοπούλου και Δ. Μηλιώνη

Περίληψη   Ο ηλίανθος, ο αραβόσιτος και η πατάτα, είναι μεταξύ των σημαντικότερων καλλιεργειών 
στον κόσμο. Προκειμένου να βελτιωθούν διάφορα χαρακτηριστικά τους, οι καλλιέργειες έχουν υπο-
στεί γενετική τροποποίηση σε μεγάλο βαθμό. Αν και οι μοριακοί δείκτες έχουν χρησιμοποιηθεί με επι-
τυχία για την ταυτοποίηση απλών χαρακτηριστικών, όπως η γονιμότητα, η ανοχή σε ζιζανιοκτόνα ή η 
αντίσταση στα παθογόνα, σημαντικά αγρονομικά χαρακτηριστικά, τα οποία είναι πολύπλοκα και πο-
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σοτικά, όπως η απόδοση, η αντοχή σε συνθήκες στρες από βιοτικούς και αβιοτικούς παράγοντες και η 
ποιότητα του σπόρου, παραμένουν μία πρόκληση και απαιτούν προσεγγίσεις που περιλαμβάνουν τη 
μελέτη ολόκληρου του γονιδιώματος. Γενετικό υλικό για αυτές τις καλλιέργειες διατηρείται σε τράπε-
ζες σε παγκόσμια κλίμακα και αντιπροσωπεύει πολύτιμους πόρους για τη μελέτη σύνθετων χαρακτηρι-
στικών. Σήμερα, οι τεχνολογικές εξελίξεις και η δυνατότητα αλληλούχησης ολόκληρων γονιδιωμάτων 
έχουν καταστήσει εφικτές νέες προσεγγίσεις στο επίπεδο του γενώματος. Η μοριακή βελτίωση, συμπε-
ριλαμβανομένων τόσο των διαγονιδιακών μεθόδων όσο και της βελτίωσης με τη βοήθεια γενετικών 
δεικτών, διευκόλυνε την ταυτοποίηση δεικτών για γενετικούς χάρτες υψηλής πυκνότητας και επέτρεψε 
μελέτες συσχέτισης ολόκληρου του γονιδιώματος και τη γονιδιακή επιλογή στον ηλίανθο, τον αραβό-
σιτο και την πατάτα. Η επιλογή μέσω γενετικών δεικτών σχετιζόμενων με τις αποδόσεις υβριδίων έχει 
δείξει ότι η γονιδιωματική επιλογή είναι μια επιτυχημένη προσέγγιση για την αντιμετώπιση σύνθετων 
ποσοτικών χαρακτηριστικών και μπορεί να διευκολύνει την επιτάχυνση των προγραμμάτων αναπαρα-
γωγής σε αυτές τις καλλιέργειες στο μέλλον.
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