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Abstract
To find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is
a discrete form of the differential energy equation. Such an approach requires the average en-
ergy slope between cross-sections to be estimated. In the literature, many methods are proposed
for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the
standard step method, the harmonic mean and the geometric mean. Also hydraulic averaging
by means of conveyance is commonly used. In this study, water surface profiles numerically
computed using different formulas for expressing the average slope were compared with exact
analytical solutions of the differential energy equation. Maximum relative and mean square
errors between numerical and analytical solutions were used as measures of the quality of
numerical models. Experiments showed that all methods gave solutions useful for practical
engineering purposes. For every method, the numerical solution was very close to the analyt-
ical one. However, from the numerical viewpoint, the differences between the methods were
significant, as the errors differed up to two orders of magnitude.

Key words: open channel, steady flow, gradually varied flow, standard step method, energy
slope

1. Introduction

Steady gradually varied flow (SGVF) is one of the main interests of practical
open-channel hydraulics. Parameters of such flow are steady in time, but can vary
in space because of changes in channel geometry, bed slope or the existence of lateral
inflow or hydraulic structures. The method most frequently used for computations
of one-dimensional SGVF is based on the discrete energy equation (Chanson 2004,
Chow 1959, French 1985). This method results from Bernoulli’s equation written
for a reach of an open channel. For a channel reach bounded by the neighbouring
cross-sections indexed i and i + 1 (Fig. 1), Bernoulli’s equation has the following
form:

hi+1 + αi+1
U2

i+1
2g

= hi + αi
U2

i
2g
− ∆xi · Si, (1)
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where:

α – energy correctional coefficient,
g – gravitational acceleration,
h – water level elevation above the assumed datum,
S – average slope of the energy line over the channel reach bounded by the

cross-sections i and i + 1,
U – average velocity in a cross section,
∆x – step size (distance between the cross sections i and i + 1).

A graphical interpretation of Eq. (1) is displayed in Fig. 1.

Fig. 1. Graphical interpretation of Eq. (1)

As all variables in Eq. (1) are related to the cross sections, the average slope of
energy can be expressed by using only the nodal values. If the average energy slope
Si is estimated by the arithmetic mean

Si =
1
2

(Si + Si+1) , (2)

then the formula (1) becomes the well-known standard step method (Chanson 2004,
Chow 1959, French 1985). The friction slope in a cross-section can be computed with
Manning’s formula:

Si =
Q2 · n2

R4/3
i · A

2
i

, (3)

where Q is a flow rate, A is a wetted cross-sectional area, R denotes a hydraulic ra-
dius, and n is the Manning roughness coefficient, or with the Darcy-Weisbach formula
(Chanson 2004):

Si =
Q2 · λ

8 · g · Ri · A2
i
, (4)

where λ is a friction factor.
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In the literature regarding the subject of open-channel flow hydraulics, other for-
mulas than the one given by Eq. (2) are proposed for the estimation of the average
energy slope in the reach considered. For instance, the HEC-RAS software (US Army
Corps of Engineers (2010)) uses the hydraulic mean, geometric mean and harmonic
mean for the estimation of Si. The hydraulic mean of energy slopes is given by

Si =

(
Qi + Qi+1

Ki + Ki+1

)2

, (5)

in which K denotes conveyance:

Ki =
Ai · R2/3

i
n

.

If Q = const, then Eq. (5) simplifies to

Si =

(
2Q

Ki + Ki+1

)2

. (6)

Eq. (5) is a default averaging method in the HEC-RAS software. Geometric and har-
monic mean averaging result in the following formulas, respectively:

Si =
√

Si · Si+1, (7)

Si =
2 · Si · Si+1

Si + Si+1
. (8)

When investigating the differences between the formulas given by Eqs. (2), (5),
(6), (7) and (8), Laurenson (1986) showed that these formulas “systematically give
different estimates” of the average energy slope. He also concluded that the arithmetic
mean slope (Eq. (2)) is the safest and generally the best method. However, in some
cases, it gives a slightly greater error of average slope estimation than the formulas
given by Eqs. (5) to (8). Moreover, Chadderton and Miller (1980), when investigating
the abovementioned slope averaging formulas, examined the relative magnitude of Si
based on the values of the friction slopes Si and Si+1. They showed that the arithmetic
mean slope gives systematically the highest values of the average slope, whereas the
harmonic mean gives the lowest values. They also pointed out that all other formulas
for slope estimation (e.g. those proposed by Reed and Wolfkill (1976)) give average
slope values in between the values obtained by arithmetic and harmonic mean aver-
aging.

The original research of Chadderton and Miller (1980) focused on finding the
average slope estimation method that would return values lower than the harmonic
mean. That solution would fit computations of the drawdown water stage profile. They
proposed an improvement in average slope estimation for the drawdown water stage
profile.
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A general formula proposed by Chadderton and Miller (1980) for average slope
estimation is described by

Si = C1 · Si + C2 · Si+1, (9)

where the weighting parameters C1 and C2 are positive constants such that C1 + C2 =

1. To find C1 and C2, the energy slope function S(x) was assumed. For a drawdown
curve, the authors used both parabolic and elliptic functions. The slope function is
then integrated analytically at a distance from xi to xi+1, giving values of C1 and C2
as a result. Finally, Chadderton and Miller obtained two formulas for the assumed
parabolic S(x) function:

Si =
1
3

Si +
2
3

Si+1 (10)

and for the elliptic one:
Si =

(
1 −

π

4

)
· Si +

π

4
Si+1. (11)

There are also other types of averaging, in which formulas for the average slope are
expressed by averaging the hydraulic radius, wetted perimeter and active flow areas,
similarly as in Eq. (5). So the average energy slope is expressed by the mean values
of hydraulic parameters rather than by manipulating the slope frictions Si and Si+1 in
cross-sections considered. Examples of such formulas can be found in French (1979)
who quotes them from the original study by Reed and Wolfkill (1976)

S =
Q2 · n2[

2 ·
Ai · Ai+1

Ai + Ai+1

]2

·

[
Ri + Ri+1

2

]4/3 , (12)

S =
Q2 · n2[

Ai + Ai+1

2

]2

·

[
Ai + Ai+1

Pi + Pi+1

]4/3 , (13)

S =
Q2 · n2[

Ai + Ai+1

2

]2

·

[
Ri + Ri+1

2

]4/3 , (14)

S =
Q2 · n2Ai · R2/3

i + Ai+1 · R2/3
i+1

2

2 . (15)

where P denotes the hydraulic perimeter. It can be noticed that, in fact, Eq. (15) is
identical to Eq. (6).

When considering SGVF, one can assume another viewpoint. The problem of
finding the water stage profile when flow discharge is known, can be regarded as
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a problem of the numerical solution of an ordinary differential equation (ODE). Thus,
the problem of averaging the energy slope can be seen as closely related to using dif-
ferent methods for the numerical solution of the energy ODE. On the other hand, for
specific flow cases it is possible to obtain an analytical solution of the ODE for SGVF
(MacDonald et al 1997). This fact makes it possible to compare the numerical results
with the analytical solution of the SGVF ODE.

Reed and Wolfkill (1976) compared the results of slope averaging formulas with
the results obtained by the numerical integration of the energy slope with Simpson’s
rule. Laurenson (1986) compared averaging formulas to the friction slope line as-
sumed to be third-degree polynomial. Chadderton and Miller (1980) used HEC-2 nu-
merical solutions as reference. To the best of the authors’ knowledge, a comparison
of numerical solutions obtained with different energy slope averaging formulas with
analytic solutions of the SGVF equation has not been performed.

In further sections, the formulas given by Eqs (2), (5)–(15) for average energy
slope estimation will be used in computations of water profiles. The results of nu-
merical experiments will be compared with analytical benchmark solutions, three of
which represent tranquil flow, and one represents rapid flow.

2. Governing Equation

The governing equation of SGVF can be derived in many ways (Szymkiewicz 2010).
Using the energy principle, the following one-dimensional equation can be derived:

d
dx

(
h +

α · Q2

2g · A2

)
= −S. (16)

In an alternative form, Eq. (16) can be expressed as

dE
dx

= −S (17)

with

E = h +
α · Q2

2g · A2 . (18)

Equation (17) is an ODE. It should be noted that there are other possible forms
of the governing equation of SGVF. If the flow rate Q is known, then the initial-value
problem (IVP) for Eq. (17) can be stated (Ascher and Petzold 1998, Kincaid and
Cheney 2006, Szymkiewicz 2010). The IVP requires that the energy stage at one of
the bounds of the solution domain (i.e. channel reach) is given (Szymkiewicz 2010). If
flow is tranquil, then the energy stage should be imposed in the outflow cross-section,
so the initial condition will take the following form (Fig. 2a):

EL = E(xL = L), (19)
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Fig. 2. Graphical representation of the channel and required initial values

with L denoting the length of the channel. In the case of rapid flow, the energy stage
must be imposed in the inflow cross-section, and the initial value becomes (Fig. 2b):

E0 = E(x0 = 0). (20)

In practice, this means that the solution of the IVP for Eq. (17), requires water stage
in the first or last cross-section of the channel to be given. In this way, the IVP can
be formulated and solved even when the water flow profile passes through the critical
depth (Artichowicz and Szymkiewicz 2014).

Consider the IVP for a general ODE:

dy(x)
dx

= f (x, y(x)) (21)

with
y0 = y(x = x0), (22)

where:

x – independent variable,
y(x) – dependent variable,
f (x, y) = y′(x) – derivative of the function y(x),
y0 = y(x = x0) – initial value.

If the problem stated by Eqs. (21) and (22) cannot be solved analytically, it is necessary
to apply numerical methods. Detailed descriptions of applicable methods, their ad-
vantages and disadvantages can be found, for example, in Ascher and Petzold (1998),
Hairer et al (2005), Kincaid and Cheney (2002) and many other publications. How-
ever, for open-channel flow, the most suitable methods are those which involve the
flow and channel parameters from the measured cross-sections, i.e. those which do
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not require interpolation between cross-sections. Applications of such methods to hy-
draulic engineering problems are presented, for example, by Cunge et al (1979) and
Szymkiewicz (2010).

The approach developed by Chadderton and Miller (1980) is, in fact, an applica-
tion of the so-called general two-level formula for numerical integration of ODEs to
the energy equation. It is a generalization of one-step numerical methods used for the
numerical solving of ODEs. The general two-level formula is expressed as follows:

yi+1 = yi + ∆xi · ((1 − θ) · f (xi, yi) + θ · f (xi+1, yi+1)) , (23)

in which θ ∈ [0, 1] is a weighting parameter that makes it possible to control the order
of the approximation scheme. For θ = 0, Eq. (23) becomes the explicit (forward) Euler
formula, for θ = 1, the implicit (backward) Euler method, and for θ = 1/2, the implicit
trapezoidal rule. If θ = 2/3, then Eq. (23) becomes the formula proposed by Chad-
derton and Miller (1980), corresponding to the one commonly known as Galerkin’s
formula.

Applying formula (23) to energy equation (17), one obtains:

Ei+1 = Ei +
∆xi

2
(−(1 − θ) · Si − θ · Si+1) . (24)

The introduction of the average flow velocity U = Q/A and Eq. (18) yields:

hi+1 + αi+1
U2

i+1
2g

= hi + αi
U2

i
2g
−

∆xi

2
((1 − θ) · Si + θ · Si+1) . (25)

One of the most popular methods in open-channel hydraulics is the implicit trape-
zoidal rule. It has very good numerical properties fitting the needs of open-channel
hydraulics (Szymkiewicz 2010). When the trapezoidal rule is applied (θ = 1/2), then
Eq. (25) becomes:

hi+1 + αi+1
U2

i+1
2g

= hi + αi
U2

i
2g
−

∆xi

2
(Si + Si+1) . (26)

Note that Eq. (26) is the standard step method given by formula (1) with Eq. (2)
(Chow 1959, Cunge et al 1979, French 1985, Szymkiewicz 2010, US Army Corps
of Engineers 2010). Therefore, the approximation of energy equation (17) with the
trapezoidal rule leads to average energy slope estimation by the arithmetic mean. Note
that other numerical methods of solving ODEs imply other formulas for averaging the
slope energy. Therefore, the application of the previously listed methods means that
different methods for solving the IVP for ODE (17) are used. However, this question
is beyond the scope of this paper.

Eqs (25) and (26) are algebraic non-linear equations with only one unknown. All
other variables are known from the initial condition or from the previous step of
computation. By solving this equation in subsequent cross-sections iteratively, it is
possible to find the water stage profile along the channel.
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3. Benchmark Solution Test Cases

The best way to test the quality of the numerical methods of solving ODEs is to com-
pare the outcome of computations with the analytic solution. Therefore, the analytic
benchmark solution methodology described by MacDonald et al (1997) was used.
Although MacDonald et al (1997) derived their methodology for the SGVF equation
in the form proposed by Chow (1959), it was possible to apply it to the energy equation
in the form of Eq. (17) as is. This approach relies on the construction of the inverse
problem for the SGVF equation, in which the bed level function z(x) is estimated
for a given or assumed depth function H(x). To find z(x), one also needs to know
cross-sectional geometry: the channel width B(x,H(x)), active flow area A(x,H(x)),
and wetted perimeter P(x,H(x)), as well as the function expressing the friction slope
S(x,H(x)). The bed slope function is given by

sb(x) =
dH
dx

+ S(x,H(x)) +
α · Q2

2g
d
dx

(
1

A2(x,H(x))

)
. (27)

The bed level corresponding to the imposed depth function H(x) and channel geom-
etry can be found by integrating the bed slope function:

z(x) = −

L∫
x

sb(χ) dχ. (28)

If the analytical integration of z(x) is impossible, then high accuracy numerical
quadrature methods can be used, which give nearly exact result. Therefore, the an-
alytic functions H(x) and S(x,H(x)) can be used as perfect reference for testing the
SGVF numerical solvers.

Computations of water stage in the test cases were performed by means of
Bernoulli’s equation (Eq. (1)) with different mean slope averaging formulas applied:

– arithmetic mean (Eq. (2));
– hydraulic averaging with Eq. (6);
– geometric mean (Eq. (7));
– harmonic mean (Eq. (8));
– averaging with coefficients obtained by assuming a parabolic function (Eq. (10));
– averaging with coefficients obtained by assuming an elliptic function (Eq. (11));
– Eqs 12–15 denoted in figures and tables by the initials of their authors as RW1,

RW2, RW3 and RW4 respectively.

In all test cases channels were assumed to have rectangular cross-sections. Also in
each case, the energy slope function expressed with Manning’s formula (Eq. (3)) with
a constant roughness coefficient was used.

Four test cases typical of open-channel hydraulics were considered. The test cases
were selected to determine whether formulas recommended for specific water profile
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types would prove to be the best compared with analytical solutions. Examples were
also selected in such a way that the shapes of energy slope functions would be sig-
nificantly different. The first test case represents a channel with a variable bed slope.
In this case, the energy slope function has inflection points, as well as local maxima
and minima, so it can represent river flow profiles in which the channel bed slope
varies along the river. The second test case represents a drawdown water flow profile
for which the energy slope is a function increasing exponentially along with the flow
direction. Such a profile is typical of channels with a pending outflow cross-section
or of channels with a bed slope changing from subcritical to supercritical. Formulas
given by Eqs (10) and (11) examined in this paper were derived especially for such
a water profile. Test case 3 is a backwater curve commonly found in open channels
crossed with a dam or an overflow. The last test case represents rapid flow in a spillway
with an increasing bed slope. The energy slope is an increasing one, and it reaches
much higher values than in the previous test cases.

In each test case, the numerical solution for each slope averaging method was
compared with the analytic solution. The comparison was made for the depth func-
tion Hi, obtained by computation, and the analytic depth function H(x), estimated in
computational cross-sections xi, that is H(xi).

Computations were conducted with two step sizes ∆x for each averaging method:
the first step size used was ten times as large as the second. This made it possible to
estimate error reduction when decreasing the step length by 90%. Errors examined
were
– the maximum relative error:

δmax = max
(
|Hi − H(xi)|

H(xi)

)
; (29)

– the mean square error:

MSE =
1
N

∑
i

(Hi − H(xi))2 , (30)

where i = 1, 2, ..., N , with N denoting the number of computational cross-sections.
For all test cases, rectangular channels of width b = 10 m with Manning’s rough-

ness coefficient n = 0.03 s/m1/3 were assumed. The energy correctional coefficient and
gravitational acceleration were assumed as α = 1.1 and g = 9.81 m/s2, respectively.
To estimate the critical depth, the following formula was used:

HC =
3

√
α · Q2

g · b2 ,

where b denotes the channel width. The critical depth level hC for the channel in
a given test case was estimated as the sum of the constant HC and the bed level z(x),
that is hC(x) = z(x) + HC .
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4. Test Case 1

Consider a channel of length L = 1000 m. The flow rate in the channel is Q = 15 m3/s,
and the imposed depth in the last cross-section is HL = 1.125 m. The assumed depth
function is described by the following equation:

H(x) =
9
8

+
1
4

sin

π · xL
2

 . (31)

The bed level z(x), water stage h(x) = z(x) + H(x), energy line E(x) and critical depth
level resulting from Eq. (31) are displayed in Fig. 3.

Fig. 3. Plot of the analytic water depth function for test case 1

The ratio of the numerical solution to the analytic solution Hi/H(xi) for computations
performed with the step ∆x = 50 m is displayed in Fig. 4a. The parabolic and ellip-
tic methods produced much greater errors than other methods. Therefore, to provide
a clear view of other solutions, it was necessary to plot them without the parabolic
and elliptic methods (Fig. 4b). The horizontal line marked on the vertical axis at 1.0
denotes the analytic depth function.

Errors computed on the basis of Eqs. (29) and (30) are given in Table 1.

Table 1. Test case 1 errors for ∆x = 50 m

Method δmax
√

MSE
arithmetic 2.079 · 10−3 1.215 · 10−3

hydraulic/RW4 2.417 · 10−3 1.347 · 10−3

geometric 2.237 · 10−3 1.073 · 10−3

harmonic 2.878 · 10−3 1.739 · 10−3

parabolic 9.015 · 10−3 6.223 · 10−3

elliptic 14.785 · 10−3 10.766 · 10−3

RW1 2.216 · 10−3 1.040 · 10−3

RW2 2.360 · 10−3 1.247 · 10−3

RW3 2.346 · 10−3 1.220 · 10−3
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Fig. 4. Test case 1: plots of Hi/H(xi) for ∆x = 50 m, a) with and b) without the parabolic and
elliptic methods

The ratio of the numerical solution to the analytic solution Hi/H(xi) for computa-
tions performed with the step ∆x = 5 m is displayed in Fig. 5a. The values obtained for
the parabolic and elliptic methods are much greater than for others, so it is impossible
to distinguish between them. Therefore, another plot (Fig. 5b) was made to provide a
clear view.

Errors for computations with the smaller step ∆x = 5 m are given in Table 2.

Table 2. Test case 1 errors for ∆x = 5 m

Method δmax
√

MSE
arithmetic 2.041 · 10−5 1.193 · 10−5

hydraulic/RW4 2.412 · 10−5 1.372 · 10−5

geometric 2.249 · 10−5 1.088 · 10−5

harmonic 2.831 · 10−5 1.771 · 10−5

parabolic 92.432 · 10−5 67.384 · 10−5

elliptic 157.707 · 10−5 115.626 · 10−5

RW1 2.225 · 10−5 1.051 · 10−5

RW2 2.341 · 10−5 1.266 · 10−5

RW3 2.392 · 10−5 1.242 · 10−5

Table 3 presents error reduction estimated as the ratio of error for computations
with the greater step (∆x = 50 m) to error for computations with the smaller step
(∆x = 5 m).
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Fig. 5. Test case 1: plots of Hi/H(xi) for ∆x = 5 m, a) with and b) without the parabolic and
elliptic methods

Table 3. Error reduction for test case 1

Method δmax
√

MSE
arithmetic 101.86 101.84

hydraulic/RW4 100.21 98.18
geometric 99.47 98.62
harmonic 101.67 98.19
parabolic 9.75 9.24
elliptic 9.38 9.31
RW1 99.60 98.95
RW2 100.81 98.50
RW3 100.73 98.22

The elliptic and parabolic methods performed the worst, giving the greatest er-
ror and the least error reduction. In computations with the step size ∆x = 50 m the
parabolic and elliptic methods gave errors greater than those obtained with the other
methods by one order of magnitude. For the numerical experiment carried out with the
step size ∆x = 5 m the elliptic and parabolic methods gave errors greater than those
obtained with the other methods by two orders of magnitude. For both step sizes, the
smallest δmax errors were obtained for computations with the arithmetic mean. The
greatest error reduction, as well, was obtained for computations by arithmetic mean
averaging. The least mean square error for both step sizes was obtained by averaging
method denoted as RW1.



Comparison of Average Energy Slope Estimation Formulas for One-dimensional . . . 101

5. Test Case 2

In this test case, computations were performed for a channel of length L = 1000 m,
and the flow rate Q = 20 m3/s. The imposed depth in the last cross-section is HL = 0.8
m, which is greater than the critical depth. The assumed depth function, representing
the drawdown profile, is described by the following equation:

H(x) =
37

1000
√

L − x +
8
10
. (32)

The plot of the bed level, water stage, energy line and critical depth level resulting
from Eq. (32) is displayed in Fig. 6.

Fig. 6. Plot of the analytic water depth function for test case 2

First, computations were performed with the spatial step ∆x = 50 m. The plot of
the ratio Hi/H(xi) is given in Fig. 7. The errors obtained are given in Table 4.

Fig. 7. Test case 1: plots of Hi/H(xi) for ∆x = 50 m

For ∆x = 5 m, the plot of the ratio Hi/H(xi) is given in Fig. 8, the estimated errors
are given in Table 5 and the error reduction is presented in Table 6.
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Table 4. Test case 2 errors for ∆x = 50 m

Method δmax
√

MSE
arithmetic 7.321 · 10−2 2.116 · 10−2

hydraulic/RW4 2.231 · 10−2 0.613 · 10−2

geometric 3.627 · 10−2 1.022 · 10−2

harmonic 1.110 · 10−2 0.286 · 10−2

parabolic 2.380 · 10−2 0.722 · 10−2

elliptic 1.250 · 10−2 1.289 · 10−2

RW1 3.967 · 10−2 1.123 · 10−2

RW2 2.650 · 10−2 0.736 · 10−2

RW3 2.749 · 10−2 0.765 · 10−2

Fig. 8. Test case 2: plots of Hi/H(xi) for ∆x = 5 m

Table 5. Test case 2 errors for ∆x = 5 m

Method δmax
√

MSE
arithmetic 6.736 · 10−3 0.666 · 10−3

hydraulic/RW4 4.644 · 10−3 0.441 · 10−3

geometric 5.323 · 10−3 0.514 · 10−3

harmonic 3.987 · 10−3 0.370 · 10−3

parabolic 1.094 · 10−3 1.035 · 10−3

elliptic 3.965 · 10−3 1.986 · 10−3

RW1 5.466 · 10−3 0.530 · 10−3

RW2 4.865 · 10−3 0.465 · 10−3

RW3 4.911 · 10−3 0.470 · 10−3

In this test, the greatest maximum relative error δmax was obtained for the method
using the arithmetic mean for energy slope averaging with both step sizes. For com-
putations with the step size of 50 m, the least δmax was obtained for energy slope
averaging with the harmonic mean. In computations with the smaller step size, the
least δmax was obtained for the parabolic method, which was designed for such flow
profiles. The least mean square error was obtained for both step sizes when harmonic
mean averaging was used.
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Table 6. Error reduction for test case 2

Method δmax
√

MSE
arithmetic 10.87 31.77

hydraulic/RW4 4.81 13.91
geometric 6.82 19.88
harmonic 2.78 7.73
parabolic 21.76 6.98
elliptic 3.15 6.49
RW1 7.26 21.20
RW2 5.45 15.84
RW3 5.60 16.29

6. Test Case 3

This test case represents a typical backwater water profile. To obtain the analytic
depth function for this case, a synthetic example of a backwater curve was formu-
lated and solved numerically. The numerical solution obtained was approximated with
a second-degree polynomial by the least squares method. The depth function obtained
is

H(x) = 5.716 · 10−7x2 − 4.392 · 10−5x + 0.44, (33)

and it is displayed in Fig. 9. The given channel has length L = 1000 m and the flow
rate Q = 2.5 m3/s. The imposed depth in the last cross-section is HL = 0.9677 m.

Fig. 9. lot of the analytic water depth function for test case 3

Errors for each computation method with the step size ∆x = 50 m are presented
in Table 7. All relative water depths Hi/H(x) are displayed in Fig. 10a, whereas Fig.
10b shows relative depths with the elliptic and parabolic methods neglected.
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Table 7. Test case 3 errors for ∆x = 50 m

Method δmax
√

MSE
arithmetic 4.082 · 10−4 1.120 · 10−4

hydraulic/RW4 7.753 · 10−4 2.518 · 10−4

geometric 5.445 · 10−4 1.576 · 10−4

harmonic 10.867 · 10−4 3.515 · 10−4

parabolic 61.326 · 10−4 19.171 · 10−4

elliptic 102.433 · 10−4 32.129 · 10−4

RW1 5.307 · 10−4 1.416 · 10−4

RW2 6.735 · 10−4 2.182 · 10−4

RW3 6.618 · 10−4 2.132 · 10−4

Fig. 10. Plots of Hi/H(xi) for ∆x = 50 m

Table 8. Test case 3 errors for ∆x = 5 m

Method δmax
√

MSE
arithmetic 4.067 · 10−6 1.111 · 10−6

hydraulic/RW4 7.736 · 10−6 2.540 · 10−6

geometric 5.441 · 10−6 1.570 · 10−6

harmonic 10.833 · 10−6 3.561 · 10−6

parabolic 604.638 · 10−6 191.754 · 10−6

elliptic 1032.750 · 10−6 327.639 · 10−6

RW1 5.303 · 10−6 1.404 · 10−6

RW2 6.742 · 10−6 2.195 · 10−6

RW3 6.616 · 10−6 2.143 · 10−6
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Errors for each computation method with the step size ∆x = 5 m are presented in
Table 8, whereas the plot of relative water depths is displayed in Fig. 11a. Another
plot (Fig. 11b) was made, neglecting the parabolic and elliptic methods, to make the
other methods distinguishable. The reduction of errors is presented in Table 9.

Table 9. Error reduction for test case 3

Method δmax
√

MSE
arithmetic 100.37 100.81

hydraulic/RW4 100.22 99.13
geometric 100.07 100.34
harmonic 100.31 98.72
parabolic 10.14 100.00
elliptic 9.92 9.81
RW1 100.08 100.85
RW2 99.90 99.39
RW3 100.03 99.481

Fig. 11. Plots of Hi/H(x) for ∆x = 5 m

The parabolic and elliptic methods were developed for drawdown profiles. There-
fore, when applied to computations of a backwater profile, they produced the greatest
relative maximum and mean square errors, for both step sizes. The least maximum
relative and mean square errors were obtained for the method using arithmetic mean
averaging for both step sizes.
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7. Test Case 4

This test case represents rapid flow in a rectangular channel of length L = 15 m. The
flow rate is Q = 22 m3/s, and the imposed depth in the first cross-section is HL =

0.7341 m, which is less than the critical depth HC = 0.816 m. The assumed depth
function is described by the following equation:

H(x) = −0.1
√

x + 0.9HC . (34)

The channel bed, critical depth level, water profile H(x) and energy line for this
test case are presented in Fig. 12.

Fig. 12. Plots of the analytic water depth function for test case 4

Computations for this test case were performed with step size values of 3 m and
0.3 m. The errors for the former (∆x = 3 m) are presented in Table 10, whereas the
plot of relative depths is displayed in Fig. 13.

Table 10. Test case 4 errors for ∆x = 3 m

Method δmax
√

MSE
arithmetic 3.061 · 10−3 0.765 · 10−3

hydraulic/RW4 10.497 · 10−3 2.992 · 10−3

geometric 8.014 · 10−3 2.197 · 10−3

harmonic 12.821 · 10−3 3.750 · 10−3

parabolic 11.261 · 10−3 3.260 · 10−3

elliptic 18.103 · 10−3 5.612 · 10−3

RW1 7.541 · 10−3 2.049 · 10−3

RW2 9.653 · 10−3 2.717 · 10−3

RW3 9.521 · 10−3 2.677 · 10−3

The errors produced by different methods for the smaller step (∆x = 0.3 m) are
presented in Table 11, whereas relative depths are depicted in Fig. 14. The error re-
duction is presented in Table 12.

The smallest mean square error was produced by the arithmetic method for both
step sizes. For computations with the step size ∆x = 3 m, the least δmax error was ob-
tained by the arithmetic averaging of the energy slope, whereas the greatest δmax was
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Fig. 13. Plots of Hi/H(x) for ∆x = 3 m

Table 11. Test case 4 errors for ∆x = 0.3 m

Method δmax
√

MSE
arithmetic 3.581 · 10−3 0.368 · 10−3

hydraulic/RW4 3.478 · 10−3 0.369 · 10−3

geometric 3.512 · 10−3 0.368 · 10−3

harmonic 3.444 · 10−3 0.370 · 10−3

parabolic 3.972 · 10−3 0.511 · 10−3

elliptic 4.248 · 10−3 0.723 · 10−3

RW1 3.519 · 10−3 0.368 · 10−3

RW2 3.490 · 10−3 0.369 · 10−3

RW3 3.492 · 10−3 0.369 · 10−3

Fig. 14. Plots of Hi/H(x) for ∆x = 0.3 m

obtained for the elliptic method. For the smaller step size, the least δmax was obtained
by harmonic mean averaging. What is interesting, the arithmetic method gave the
maximum absolute and relative error reduction smaller than one. This means that the
maximum error actually increased when the step size was reduced. This phenomenon
is explained by the placement of the computational cross-sections. Mean square error
of this method was reduced by half.
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Table 12. Error reduction for test case 4

Method δmax
√

MSE
arithmetic 0.86 2.08

hydraulic/RW4 3.02 8.11
geometric 2.28 5.96
harmonic 3.72 10.14
parabolic 2.84 6.38
elliptic 4.26 7.76
RW1 2.14 5.57
RW2 2.77 7.37
RW3 2.73 7.26

8. Conclusions

Numerical experiments showed that all methods examined can be successfully applied
in engineering practice, as all numerical solutions turned out to be very close to the
analytical ones. Moreover, no stability or convergence problems were observed.

The indicators of the quality of the methods examined were relative maximum
and mean square errors. In the test cases considered, the errors were relatively small
from the practical point of view.

For each water profile, the methods suggested in the literature were confronted
with computation outcomes. The first test case represented a typical water flow profile
found in open-channel hydraulics, which contains channel reaches with different water
profiles. In this case, the arithmetic mean RW1 averaging method turned out to be the
best.

For a drawdown profile (test case 2), the method suggested by French (1979) is
geometric mean averaging. However, harmonic mean averaging turned out to be the
best, giving the least mean square error, regardless of the step size. Harmonic mean
averaging is the method suggested for such profiles by the US Army Corps of Engi-
neers (2010). The standard step method (arithmetic averaging) turned out to be the
worst in this case, producing the greatest errors.

For the backwater curve example (test case 3), the averaging method suggested
by French is hydraulic averaging. However, the best performance was obtained with
the arithmetic averaging method, recommended by the US Army Corps of Engineers
(2010).

For cases like the spillway example (test case 4), French (1979) suggests hydraulic
averaging, but arithmetic mean averaging, recommended by the US Army Corps of
Engineers (2010), performed better.

The hydraulic averaging method (default HEC-RAS energy slope averaging
method), did not prove generally better than any other. It gave errors similar to other
methods. However, its errors were greater than those for the methods suggested for
specific types of water flow profiles. In fact, in most cases the standard step method
gave smaller error.
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From the numerical point of view, it seems reasonable to use different methods
for different profiles. In reality, however, the biggest problem and the source of errors
is roughness estimation for cross-sections of natural channels. Therefore, numerical
error seems of less importance than it was assumed.

The result of energy slope averaging based on the parameters of neighbouring
cross-sections is closely related to the choice of method for the numerical solution
of the IVP for an ODE. This problem requires further analyses because, apart from
the accuracy of the method, also other numerical properties, such as stability, conver-
gence, and the ability to conserve physical quantities, are important.
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