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Entropies related to integral operators 1
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Abstract

We consider classical entropies associated with several

continuous distributions of probabilities. Explicit expressions and prop-

erties of them are presented.
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1 Introduction

Let p = (p0(x), p1(x), p2(x), ...) be a probability distribution, where each

pk is a continuous function on an interval I, pk(x) ≥ 0 and∑
k

pk(x) = 1, x ∈ I.
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Given some points xk ∈ I, k = 0, 1, 2, ..., we can construct a positive linear

operator

(1.1) Lf(x) =
∑
k

f(xk)pk(x), x ∈ I,

for those functions f ∈ C(I), for which the right-hand side is defined.

On the other hand the index of coincidence associated with p

is defined by

(1.2) S(x) =
∑
k

p2k(x), x ∈ I,

and the corresponding Rényi entropy and Tsallis entropy of order 2

can be expressed as

(1.3) R(x) =− logS(x), x ∈ I,

respectively

(1.4) T (x) = 1− S(x), x ∈ I.

For details see, e.g., [10], [14] and the references therein.

For example, the binomial distribution

pn,k(x) :=

(
n

k

)
xk(1− x)n−k, k = 0, 1, 2, ..., n; x ∈ [0, 1]

is related to the classical Bernstein operators

Bnf(x) :=

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, x ∈ [0, 1].

The Poisson distribution

pn,k(x) := e−nx
(nx)k

k!
, k = 0, 1, ...; x ≥ 0
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corresponds to the Szász −Mirakjan operators

Mnf(x) :=
∞∑
k=0

f

(
k

n

)
e−nx

(nx)k

k!
, x ≥ 0,

and the negative binomial distribution

pn,k(x) :=

(
n+ k − 1

k

)
xk(1 + x)−n−k, x ≥ 0, k = 0, 1, 2, ... .

corresponds to the Baskakov operators

Vnf(n) :=

∞∑
k=0

f

(
k

n

)(
n+ k − 1

k

)
xk(1 + x)−n−k, x ≥ 0.

In these three classical cases, the corresponding indices of coincidence were

denoted in [14] by

Fn(x) =
n∑
k=0

((
n

k

)
xk(1− x)n−k

)2

, x ∈ [0, 1],

Kn(x) =
∞∑
k=0

(
e−nx

(nx)k

k!

)2

, x ∈ [0,∞),

Gn(x) =
∞∑
k=0

((
n+ k − 1

k

)
xk(1 + x)−n−k

)2

, x ∈ [0,∞).

The Bleimann−Butzer −Hahn operators

Hnf(x) :=
n∑
k=0

f

(
k

n− k + 1

)(
n

k

)
xk(1 + x)−n, x ≥ 0,

are associated with the distribution

pn,k(x) :=

(
n

k

)
xk(1 + x)−n, k = 0, 1, ..., n; x ≥ 0

and with index of concidence

Un(x) :=

n∑
k=0

((
n

k

)
xk(1 + x)−n

)2

, x ≥ 0.
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For the Meyer −König and Zeller operators

Rnf(x) :=

∞∑
k=0

f

(
k

n+ k

)(
n+ k

k

)
xk(1− x)n+1, x ∈ [0, 1],

the corresponding probability distribution is

pn,k(x) :=

(
n+ k

k

)
xk(1− x)n+1, k = 0, 1, 2, ...; x ∈ [0, 1],

and the index of coincidence is

Jn(x) :=
∞∑
k=o

((
n+ k

k

)
xk(1− x)n+1

)2

, x ≥ 0.

The above indices of coincidence were studied in [1], [3], [4], [7], [9], [11],

[14], [15], [16].

The logarithmic convexity of Fn has been established recently in [2], [4],

[12].

Consider now an integral operator of the form

(1.5) Lf(x) =

∫
I
K(x, t)f(t)dt, x ∈ I,

where the kernel K is positive and continuous on IxI. Suppose that

(1.6)

∫
I
K(x, t)dt = 1, x ∈ I,

so that K(x, •) can be considered as a probability density function on I,

for each x ∈ I.

Let us define (see also [10])

(1.7) S(x) :=

∫
I
(K(x, t))2 dt, x ∈ I.
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The function S(x) is called the information potential associated with

K(x, •).
The associated Rényi and Tsallis entropies will be R(x) := − logS(x),

T (x) := 1 − S(x), x ∈ I. These definitions, related to the integral operators

(1.5), correspond to the definitions (1.2), (1.3), (1.4), related to the discrete

operator (1.1).

In this paper we shall compute S(x) from (1.7), for some integral operators

of the form (1.5), and establish bounds for S(x).

2 The Post-Widder operators

For the definition of these operators see, e.g., [5, p.114].

Lnf(x) =

(
n
x

)n
(n− 1)!

∫ ∞
0

e−
nt
x tn−1f(t)dt, x > 0

Theorem 1 The corresponding information potential is

(2.1) Sn =

(
2n− 2

n− 1

)
n

22n−1
1

x
, x > 0.

Proof. The corresponding kernel is

K(x, t) :=

(
n
x

)n
(n− 1)!

e−
nt
x tn−1, t, x > 0,

so that

Sn(x) =

∫ ∞
0

(
n
x

)2n
(n− 1)!2

e−
2nt
x t2n−2dt.

Setting 2n
x t = s, we get

Sn(x) =
n2n

x2n
1

(n− 1)!2

( x
2n

)2n−1
Γ(2n− 1)

=
n2n

x2n
(2n− 2)!

(n− 1)!2
x2n−1

(2n)2n−1
=

(
2n− 2

n− 1

)
n

22n−1
1

x
.
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Corollary 1 The function Sn(x) given by (2.1) satisfies the inequalities

(2.2)
n

2
√
π(n+ 2)

1

x
< Sn(x) <

n

2
√
π(n− 2)

1

x
, x > 0, x ≥ 3.

Consequently, for a fixed n ≥ 1,

(2.3) lim
x→∞

Sn(x) = 0, lim
x→0

Sn(x) =∞,

and for a fixed x > 0,

(2.4) lim
n→∞

Sn(x) =∞,

Proof. We use the inequalities (see [6, (1.9)])

(2.5)
1√

π(n+ 3)
<

1

4n

(
2n

n

)
<

1√
π(n− 1)

, n ≥ 2,

Now (2.2) follows from (2.1) and (2.5). Let us remark that

(2.6) S1(x) = S2(x) =
1

2x
, x > 0.

Thus (2.3) and 2.4 are also valid, and the proof is finished.

3 The Gamma operators

These operators are defined, e.g., in [5, p.114]:

Gnf(x) =
xn+1

n!

∫ ∞
0

e−uxunf
(n
u

)
du, x > 0.

Theorem 2 The associated information potential is

(3.1) Sn(x) =

(
2n

n

)
(n+ 1)(2n+ 1)

n4n+1

1

x
, x > 0.

Proof.

Setting n
u = y, we get

Gnf(x) =
xn+1

n!

∫ ∞
0

e
−nx

y

(
n

y

)n
f(y)

n

y2
dy =

(nx)n+1

n!

∫ ∞
0

e
−nx

y
1

yn+2
f(y)dy.
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Therefore Sn(x) =
(nx)2n+2

n!2

∫ ∞
0

e
− 2nx

y
1

y2n+4
dy.

Let z = 2nx
y . Then

Sn(x) =
(nx)2n+2

n!2

∫ ∞
0

e−z
z2n+4

(2nx)2n+4

2nx

z2
dz =

=
(nx)2n+2

n!2
1

22n+3(nx)2n+3

∫ ∞
0

e−zz2n+3−1dz =

=
1

nx

1

n!222n+3
(2n+ 2)! =

(
2n

n

)
(n+ 1)(2n+ 1)

n4n+1

1

x
.

Corollary 2 The function Sn(x) from (3.1) satisfies

S1(x) =
3

4x
, x > 0

and

(n+ 1)(2n+ 1)

4n
√
π(n+ 3)

1

x
< Sn(x) <

(n+ 1)(2n+ 1)

4n
√
π(n− 1)

1

x
, x > 0, n ≥ 2.

It also satisfies (2.3) and (2.4).

The proof is similar to that of Corollary 1.

4 The Rayleigh operator

This operator is related to the probability density function (see [8, p.458])

K(x, t) := 2xte−xt
2
, x, y > 0, so that

Lf(x) =

∫ ∞
0

2xte−xt
2
dt, x > 0.
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Let ek(t) := tk, k = 0, 1, ... . We start by computing the moments Lek(x)

of the operator L, for k = 0, 1, 2, ... .

Lek(x) =

∫ ∞
0

2xtk+1e−xt
2
dt, x > 0.

Setting xt2 = y, we get

Lek(x) =

∫ ∞
0

2x

(√
y

x

)k+1

e−y
1

2
√
x
√
y
dy =

= x−
k
2

∫ ∞
0

y
k
2 e−ydy = x−

k
2 Γ

(
k

2
+ 1

)
, k ≥ 0.

In particular, Le0(x) = 1, Le1(x) = 1
2

√
π
x , Le2(x) = 1

x , x > 0.

Theorem 3 For the Rayleigh probability density function we have

S(x) =

√
πx

8
, V (x) =

4− π
4x

, x > 0.

Proof. By definition,

S(x) =

∫ ∞
0

4x2t2e−2xt
2
dt.

Let 2xt2 = y. Then

S(x) =

∫ ∞
0

4x2
y

2x
e−y

1

2
√

2x
√
y
dy =

√
x

2

∫ ∞
0

y
1
2 e−ydy =

=

√
x

2
Γ(

3

2
) =

√
πx

8
, x > 0.

Furthermore,

V (x) = Le2(x)− (Le1(x))2 =
1

x
− π

4x
=

4− π
4x

, x > 0.
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5 Other operators

Let n ∈ N, n ≥ 2. Consider the operators

Lnf(x) := (n− 1)xn−1
∫ ∞
0

f(t)

(x+ t)n
dt, x > 0.

For 0 ≤ k ≤ n− 2, the moments Lek(x) are given by

Lnek(x) = (n− 1)xn−1
∫ ∞
0

tk

(x+ t)n
dt.

Setting t = xy, we get

Lnek(x) = (n− 1)xn−1
∫ ∞
0

xkyk

xn(1 + y)n
xdy =

= (n− 1)xk
∫ ∞
0

y(k+1)−1

(1 + y)(k+1)+(n−k−1)dy =

= (n− 1)xkB(k + 1, n− k − 1) = (n− 1)xk
Γ(k + 1)Γ(n− k − 1)

Γ(n)
,

and finally,

Lnek(x) =

(
n− 2

k

)−1
xk, x > 0.

Theorem 4 With the above notation, we have

S(x) =
(n− 1)2

2n− 1

1

x
, V (x) =

n− 1

(n− 2)2(n− 3)
x2, x > 0, n ≥ 4.

Proof.

By definition,

S(x) =

∫ ∞
0

(n− 1)2x2n−2
1

(x+ t)2n
dt =

= (n− 1)2x2n−2
1

(2n− 1)x2n−1
,

so that

S(x) =
(n− 1)2

2n− 1

1

x
, x > 0.
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Moreover,

V (x) = Le2(x)− (Le1(x))2 =
(n− 1)x2

(n− 2)2(n− 3)
, n ≥ 4.

Remark 1 All the properties of the information potential, mentioned above,

can be used to derive properties of the Rényi entropy and Tsallis entropy,

described by (1.3) and (1.4). For the sake of brevity we omit the details.
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