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Entropies related to integral operators!
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Abstract

We consider classical entropies associated with several
continuous distributions of probabilities. Explicit expressions and prop-

erties of them are presented.
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1 Introduction

Let p = (po(z),p1(x), p2(x),...) be a probability distribution, where each

pr is a continuous function on an interval I, py(z) > 0 and

Zpk(x) =1, zel
k
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Given some points z; € I, £ = 0,1,2, ..., we can construct a positive linear
operator
(1.1) Lf(x) =) flex)pr(z), z €1,
k

for those functions f € C(I), for which the right-hand side is defined.

On the other hand the index of coincidence associated with p
is defined by

(1.2) S(x) = sz(x), z el
k

and the corresponding Rényi entropy and Tsallis entropy of order 2

can be expressed as

(1.3) R(z) = —log S(z), = €1,
respectively
(1.4) T(x)=1-S5(z), x €l

For details see, e.g., [10], [14] and the references therein.

For example, the binomial distribution

P k() == ( Z > zF(1 - ac)"_k, k=0,1,2,...,n; z €0,1]

is related to the classical Bernstein operators

" k n
Bufw) =S f (% ( )x’fu—x)"’txe[o,l].
/(G

The Poisson distribution

Pni(T) =€
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corresponds to the Szdasz — Mirakjan operators

00 k
My f(z) =) f (f‘;) e (”,ff , >0,
k=0 )

and the negative binomial distribution

kE—1
Pn k() = ( n+k ):ck(l +m)*”*k, x>0, k=0,1,2,....

corresponds to the Baskakov operators

(k[ n+k—1
Vaf(n) = fl- ( > xk(l + x)_"_k, x> 0.
2

In these three classical cases, the corresponding indices of coincidence were
denoted in [14] by

o9 2
Gn(z) ZZ << n—i—l]:—l ):Uk(1+x)_"_k) , x € [0,00).

k=0
The Bletmann — Butzer — Hahn operators

= k n n
Hy, f(z) ::kzzof(”—k“) ( k )xk(l—i—x) , ¢ >0,

are associated with the distribution

P k() = ( Z ) *14+2)™ k=0,1,...n; >0

and with index of concidence
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For the Meyer — Konig and Zeller operators

._Oo k n+k k(1 _ gy .
R"f(x)'_kzof<n+k>< N >x(1 e o, 1],

the corresponding probability distribution is

k

and the index of coincidence is

2
> n+k K
Jn(x) = f1—z)" ]z >o0.
o= ((")romar)

The above indices of coincidence were studied in [1], [3], [4], [7], [9], [11],
[14], [15], [16].

The logarithmic convexity of F), has been established recently in [2], [4],
[12].

Consider now an integral operator of the form

(1.5) Li(z) = /K(x,t)f(t)dt, rel,
I
where the kernel K is positive and continuous on IxI. Suppose that

(1.6) /K(x,t)dt =1, z el
I

so that K (z,e) can be considered as a probability density function on I,

for each z € L.
Let us define (see also [10])

(1.7) S(z) = /(K(m,t))zdt, rel

I
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The function S(x) is called the information potential associated with
K(z,e).

The associated Rényi and Tsallis entropies will be R(z) := —logS(x),
T(xz) :=1—8(x), z € I. These definitions, related to the integral operators
(1.5), correspond to the definitions (1.2), (1.3), (1.4), related to the discrete
operator (1.1).

In this paper we shall compute S(z) from (1.7), for some integral operators
of the form (1.5), and establish bounds for S(x).

2 The Post-Widder operators

For the definition of these operators see, e.g., [5, p.114].

n

) / e Tl (t)dt, x> 0
0

Theorem 1 The corresponding information potential is

2n — 2 n 1

so that

S I (%)% —2nt -2
n(x)—/o me z { t.

Setting 2?“25 = s, we get

n2n 1 ( x

2n—1F2 1
z) =D

n?" (2n —2)! 221 _(271—2) n 1

220 (n—1)12 2n)2»1 | -1 92n—1 4
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Corollary 1 The function S,(z) given by (2.1) satisfies the inequalities

1 1
" Sn(x)<L—,a:>O,x23.

2\/7r(n+2)5< 2\/m(n—2)T

Consequently, for a fitedn > 1,

(2.2)

(2.3) wlglgo Sp(x) =0, :lli% Sn(x) = o0,
and for a fized x > 0,
(2.4) lim S, (z) = oo,

Proof. We use the inequalities (see [6, (1.9)])

1 1 2n 1

Now (2.2) follows from (2.1) and (2.5). Let us remark that

(2.6) Si(a) = Safw) = 5, © > 0.

Thus (2.3) and 2.4 are also valid, and the proof is finished.

3 The Gamma operators

These operators are defined, e.g., in [5, p.114]:

n+1 00 n
/ e "ty f (—) du, x > 0.
n! Jo u

Theorem 2 The associated information potential is

51) Su() = ( 2 ) (n+1)(2n+1)i’ Lo

X

Gnf(x) =

n n4n+1

Proof.
Setting * = y, we get

n+1 © . n n+1 © e 1
Gufa) =T [T (2) s =0 [T




Entropies related to integral operators 103

(n$)2n+2 ST |
Therefore S, (x) = ), e v ——dy.

Y

Let z = Q"Tx Then

2n+2 o] 2n+4 2
() = P [T e T e,
nl2 0 (2nz)2n+4 2

2n+2
— (TL:E) nr 1 o 6—zz2n+3—1dz _
nl2 22n+3(nx)2n+3 0

1 1

2n ) (n+1)2n+1)

1
n4n+1 ;

n

Corollary 2 The function S, (x) from (3.1) satisfies

3
Sl(w)ZQ, x>0

and

(n+1)(2n+1)l<sn(x)< (n+1)(2n—|—1)1’ >0, n>2.

dn\/m(n+3) T dn\/m(n—1) @

It also satisfies (2.3) and (2.4).

The proof is similar to that of Corollary 1.

4 The Rayleigh operator

This operator is related to the probability density function (see [8, p.458])
K(x,t) = oxte ot x,y > 0, so that

oo
Lf(x) = / 2:L‘t€_$t2dt, x> 0.
0
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Let eg(t) :=t*, k = 0,1,... . We start by computing the moments Ley(x)
of the operator L, for k=10,1,2,... .

o0
Ley(x) —/ 2ath e~ at 4 > 0.
0

Setting zt? = y, we get

Len(z) = /OOO 2% (ﬁ) o 692\/;\@@ _

o0 k
:x_g/ yge_ydy:x_gf <2+1> , k>0.
0

In particular, Leg(x) =1, Lej(z) = %\/g, Lea(z) =2, 2 >0,

Theorem 3 For the Rayleigh probability density function we have

Proof. By definition,

S(x) :/ Az?t2e =200 g,
0

Let 22t> = 3. Then

o y o 1 x [ 1 _
Sx:/ 4> LV — — (g :\/7/ 2¢ Ydy =
(z) ; o 2@\/@11 2 ) Y y

V(@) = Lea(w) - (Ler(a))’ = — = = = ?” x> 0.
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5 Other operators

Let n € N, n > 2. Consider the operators

Luf(@)i= (-t [~ O

For 0 < k <n — 2, the moments Ley(x) are given by

dt, © > 0.

L 0o tk
L =(n—1)z"" dt.
nek(aj) (n )33 /O ($ —I—t)n
Setting t = xy, we get
o) k, k
- -1 rY -

. 00 y(k+1)—1 J
=(n—1z /O (1 + y)FFD+—k=1) Y=

E+1DI'(n—k—1)
I'(n) ’

=(n— l)ka(k:Jr In—k—-1)=(mn-— 1)xkr(

~1
-2
Lnek(az):<nk ) z* x> 0.

and finally,

Theorem 4 With the above notation, we have

_(n—l)Ql B n—1 9
S(x)—72n_1 o V(m)—(n_Q)Z(n_B)x,x>0,n24.

Proof.
By definition,

oo 1
_ 1\2,2n—2 _
S(z) —/0 (n—1)"x EFTIED t
1
— (n — 1)24272
(n—1)% (2n — 1)a2n—1’
so that )
Sy ==V
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Moreover,

(n —1)a?

V() = Lea(w) = (Lea(w))” = (e

n > 4.

Remark 1 All the properties of the information potential, mentioned above,
can be used to derive properties of the Rényi entropy and Tsallis entropy,
described by (1.3) and (1.4). For the sake of brevity we omit the details.
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