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Improved error estimate and applications of the
complete quartic spline 1
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Abstract

In this paper an improved error bound is obtained for the complete quartic
spline with deficiency 2, in the less smooth class of continuous functions. In the
case of Lipschitzian functions, the obtained estimate improves the constant from
Theorem 3, in J. Approx. Theory 58 (1989) 58-67. Some applications of the
complete quartic spline in the numerical integration and in the construction
of an iterative numerical method for fourth order two-point boundary value
problems with pantograph type delay are presented.
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1 Introduction

In this paper we intend to improve the error bound in the interpolation with quartic
C2-spline stated in Theorem 3 from [6] in terms of the modulus of continuity for less
smooth class of functions which are only continuous. In the C5−smoothness class,
several error bounds for complete quartic spline with deficiency 2 were established
(see [4], [6], [11], and [14]). This deficient complete quartic spline s ∈ S (4,∆n) ,
s : [0, a]→ R, s ∈ C2 [0, a] , is uniquely determined by the interpolation conditions

(1) s (xi) = f (xi) , i = 0, n, s

(
xi−1 + xi

2

)
= f

(
xi−1 + xi

2

)
, i = 1, n
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(2) s′ (0) = f ′ (0) , s′ (a) = f ′ (a)

for given values

yi = f (xi) , i = 0, n, yi/2 = f
(
xi−1+xi

2

)
, i = 1, n,

y′0 = f ′ (0) , y′n = f ′ (a)

on the knots xi, i = 0, n, and on the midpoints of the intervals [xi−1, xi] , i = 1, n,
of the partition ∆n: 0 = x0 < x1 < ... < xn−1 < xn = a. His expression is

(3) si (x) =
(xi − x)2

[
(xi − x)2 + 4 (xi − x) (x− xi−1)− 5 (x− xi−1)2

]
h4i

· yi−1+

+
16 (x− xi−1)2 (xi − x)2

h4i
· yi/2+

+
(x− xi−1)2

[
(x− xi−1)2 + 4 (xi − x) (x− xi−1)− 5 (xi − x)2

]
h4i

· yi+

+
(xi − x) (x− xi−1) (xi−1 + xi − 2x) [(xi − x) ·mi−1 + (x− xi−1) ·mi]

h3i

for x ∈ [xi−1, xi], where hi = xi − xi−1, i = 1, n and the values mi = s′ (xi),
i = 0, n, are obtained by the smoothnes condition s ∈ C2 [0, 1] , as the solution of
the three-diagonal linear system

(4) − 1

hi
·mi−1 +

(
4

hi
+

4

hi+1

)
·mi −

1

hi+1
·mi+1 =

5

h2i
· yi−1 −

5

h2i+1

· yi+1+

+

(
11

h2i
− 11

h2i+1

)
· yi +

16

h2i+1

· yi+1/2 −
16

h2i
· yi/2, i = 1, n− 1

with the end-point conditions: m0 = f ′ (0) , mn = f ′ (a). This diagonally dominant
system has the matriceal form A ·m = d with the condition number K (A) ≤ 5

3 .
Concerning the error estimate, for a = 1, in the case f ∈ C5 [0, 1] the following

result was obtained:
Theorem 2 (in [6]): Let f ∈ C5 [0, 1]. Then we have:

(5) |f (x)− s (x)| ≤ C0h
5

5!
· max
x∈[0,1]

∣∣fV (x)
∣∣ , x ∈ [0, 1]

where

C0 =

(
1

30
+

√
30

3

)
·

√(
1

4
− 1√

30

)
= max

x∈[0,1]
|c (t)|

c (t) =
3t2 (1− 2t) (1− t)2 + t (1− t) (1− 2t)

6
.
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Also we have

(6)
∣∣f ′ (xi)− s′ (xi)∣∣ ≤ h4

6!
· max
x∈[0,1]

∣∣fV (x)
∣∣ , i = 1, n− 1.

Furthermore, C0 in (5) cannot be improved for an equally spaced partition. Inequal-
ity (6) is also best possible. Also we have

(7)
∣∣f ′ (x)− s′ (x)

∣∣ ≤ c1h4
6!
· max
x∈[0,1]

∣∣fV (x)
∣∣ .

The best constant c1 for the estimate (7) was established in [14]. Similar error
estimates were obtained in [4]. Optimal error bounds for complete quartic splines
in the case f ∈ C5 [0, 1], by considering

sup
f∈C5[0,1]

‖f − s‖
‖fV ‖ · h5

were obtained in [15]. In [11], the interpolation conditions (1) are generalized as

s (xi) = f (xi) , i = 0, n, s (xi−1 + θhi) = f (xi−1 + θhi) , i = 1, n

with θ ∈ (0, 1) , obtaining the eqistence and uniqueness of the deficient quartic spline
interpolant for 1

4 ≤ θ ≤
3
4 and the following error estimate:

Theorem 3.1 (in [11]): If f ∈ C5 [0, 1], then

|f (x)− s (x)| ≤ Kh5

5!
· max
x∈[0,1]

∣∣fV (x)
∣∣

where K = max
x∈[0,1],θ∈[ 1

4
, 3
4
]

1
6

∣∣∣6 |θ − t| t2 (1− t)2 + (k1 (θ) + k2 (θ)) |K (t, θ)|
∣∣∣ , and

∣∣f ′ (xi)− s′ (xi)∣∣ ≤ (k1 (θ) + k2 (θ))h4

6!
· max
x∈[0,1]

∣∣fV (x)
∣∣ , i = 1, n− 1

which are best possible in the limit 1
4 ≤ θ ≤

3
4 , with

k1 (θ) = [(1− θ) θ3 (4− 3θ) + (1− θ)3
(
3θ2 + 2θ + 1

)
]

k2 (θ) = [
(
3θ2 − 8θ + 6

)
θ3 + θ (1− θ)3 (3θ + 1)]

|K (t, θ)| = t (1− t) |θ − t| [ t

1− θ
+

1− t
θ

].

Also we have ∣∣f ′ (x)− s′ (x)
∣∣ ≤ C0

h4

6!
· max
x∈[0,1]

∣∣fV (x)
∣∣ .

In the case s′ (0) = s′ (1) = 0, in [6], without proof, is stated the following
estimate in terms of the modulus of continuity:
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Theorem 3 (page 66 in [6]): Let f ∈ C [0, 1]. If {xi}ki=0 is the partition of
equally spaced knots, then for xi−1 ≤ x ≤ xi−1+xi

2 and t = x−xi−1

h , i = 1, k, we have

(8) |f (x)− s (x)| ≤ c1 (1− t)ω (f, h) ≤ c2ω (f, h)

where

c1 (t) = 1 +
13

3
t− 3t2 − 58

3
t3 + 16t4

c2 = max |c1 (t)| ≈ 1.6572, 0 ≤ t ≤ 1

2
.

Since the error estimate (8) was established for the first half of the intervals
[xi−1, xi] , i = 1, n, in that follows we try to extend this estimate for the entire
subinterval [xi−1, xi] for each i = 1, n, improving the constant c2 ≈ 1.6572, and
pointing out the estimate in the case of Lipschitzian functions. As applications of the
complete quartic spline (3), we present the corresponding quadrature rule for uniform
partitions and investigate the possibility to apply the iterated splines technique (see
[2] and [3]) based on complete quartic spline, for the numerical solution of the
two-point boundary value problem associated to the beam fourth order differential
equation with clamped end-conditions (see [7] and [17]).

2 Main result

In the case s′ (0) = s′ (a) = 0 and considering f ∈ C [0, a], we obtain the following
result in terms of the modulus of continuity.

Theorem 1 For f ∈ C [0, a], the error estimate in the interpolation by the complete
quartic spline s ∈ C2 [0, a] , satisfying (1) and with the end-point conditions s′ (0) =
s′ (a) = 0, is

(9) |f (x)− s (x)| ≤

[
9317

8192
+

107 + 51
√

17

384
· h

2

h
2

]
· ω
(
f,
h

2

)
+

1125

8192
· ω (f, h)

for all x ∈ [xi−1, xi], i = 1, n, where h = max
i=1,n

hi and h = min
i=1,n

hi. In the case of

uniform partition, the estimate is

(10) |f (x)− s (x)| ≤

(
9317

8192
+

107 + 51
√

17

384

)
· ω
(
f,
h

2

)
+

1125

8192
· ω (f, h) ≤

≤ 1.963574902 · ω
(
f,
h

2

)
+ 0.137329102 · ω (f, h) , ∀x ∈ [xi−1, xi], i = 1, n.

Proof. Denoting d = (d1, ..., dn−1) , with

(11) di =
5

h2i
·yi−1−

5

h2i+1

·yi+1+

(
11

h2i
− 11

h2i+1

)
·yi+

16

h2i+1

·yi+1/2−
16

h2i
·yi/2, i = 1, n− 1
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and m = (m0,m1, ...,mn), m0 = mn = 0, by the diagonally dominant system (4) we
have

∥∥A−1∥∥ ≤ 4
3 and ‖m‖ = max{|mi| : i = 0, n} ≤

∥∥A−1∥∥ ·max{|di| : i = 1, n− 1}.
Since yi = f (xi) , i = 0, n, yi/2 = f

(
xi−1+xi

2

)
, i = 1, n, by (11) we get

|di| ≤
4hi

hi+1 (hi + hi+1)
· ω
(
f,
hi+1

2

)
+

4hi+1

hi (hi + hi+1)
· ω
(
f,
hi
2

)
, ∀i = 1, n− 1

obtaining,

|di| ≤
4h

h
2 · ω

(
f,
h

2

)
, ∀i = 1, n− 1

and so, ‖m‖ ≤ 16h

3h
2 · ω

(
f, h2

)
. Considering the notation t = x−xi−1

hi
, i = 1, n, the

expression (3) becomes

si (t) = P1 (t) ·si (0)+P2 (t) ·si
(

1

2

)
+P3 (t) ·si (1)+hi

(
P4 (t) · s′i (0) + P5 (t) · s′i (1)

)
where,

P1 (t) = (1− t)2 (1− 2t) (1 + 4t)

P2 (t) = 16t2 (1− t)2
P3 (t) = t2 (2t− 1) (5− 4t)

P4 (t) = t (1− t)2 (1− 2t)
P5 (t) = t2 (1− t) (1− 2t)

, t ∈ [0, 1]

and consequently,

max
x∈[xi−1,xi]

∣∣∣∣∣(xi − x)2 (xi−1 + xi − 2x) (x− xi−1)
h3i

∣∣∣∣∣ =

∣∣∣∣∣P4

(
7−
√

17

16

)∣∣∣∣∣ · hi =

=
107 + 51

√
17

4096
· hi

and

max
x∈[xi−1,xi]

∣∣∣∣∣(x− xi−1)2 (xi−1 + xi − 2x) (xi − x)

h3i

∣∣∣∣∣ =

∣∣∣∣∣P5

(
9 +
√

17

16

)∣∣∣∣∣ · hi =

=
107 + 51

√
17

4096
· hi.

Because for t ∈ [0, 12 ] we have P1 (t) ≥ 0, P2 (t) ≥ 0, P4 (t) ≥ 0, P5 (t) ≥ 0 and
P3 (t) ≤ 0, on the first half interval [xi−1, xi−1 + 1

2 (xi − xi−1)] the estimate will be

|f (x)− s (x)| ≤ |P1 (t) + P2 (t)| ·max{|f (x)− yi−1| ,
∣∣f (x)− yi/2

∣∣}+
+ |P3 (t)| · |f (x)− yi|+ max

t∈[0, 12 ]
|P4 (t)|hi · |mi−1|+ max

t∈[0, 12 ]
|P5 (t)|hi · |mi| ≤
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≤ 9317

8192
·max{|f (x)− yi−1| ,

∣∣f (x)− yi/2
∣∣}+

1125

8192
· |f (x)− yi|+

+

(
107 + 51

√
17
)
hi

4096
· |mi−1|+

(
107 + 51

√
17
)
hi

4096
· |mi| ≤

9317

8192
· ω
(
f,
h

2

)
+

+
1125

8192
·ω (f, h) +

(
107 + 51

√
17
)

4096
· 32h2

3h
2 ·ω

(
f,
h

2

)
, x ∈ [xi−1, xi−1 +

1

2
(xi − xi−1)].

Similarly, on the second half interval [xi−1 + 1
2 (xi − xi−1) , xi], for t ∈ [12 , 1], we have

P1 (t) ≤ 0, P4 (t) ≤ 0, P5 (t) ≤ 0 and P2 (t) ≥ 0, P3 (t) ≥ 0, and the estimate is

|f (x)− s (x)| ≤ |P2 (t) + P3 (t)| ·max{|f (x)− yi| ,
∣∣f (x)− yi/2

∣∣}+
+ |P1 (t)| · |f (x)− yi−1|+ max

t∈[ 12 ,1]
|P4 (t)|hi · |mi−1|+ max

t∈[ 12 ,1]
|P5 (t)|hi · |mi| ≤

≤ 1125

8192
· |f (x)− yi−1|+

9317

8192
·max{|f (x)− yi| ,

∣∣f (x)− yi/2
∣∣}+

+

(
107 + 51

√
17
)
hi

4096
· |mi−1|+

(
107 + 51

√
17
)
hi

4096
· |mi| ≤

1125

8192
· ω (f, h) +

+
9317

8192
·ω
(
f,
h

2

)
+

(
107 + 51

√
17
)

4096
· 32h2

3h
2 ·ω

(
f,
h

2

)
, x ∈ [xi−1 +

1

2
(xi − xi−1) , xi].

Then, we get the estimate

|f (x)− s (x)| ≤

(
9317

8192
+

107 + 51
√

17

384
· h

2

h
2

)
· ω
(
f,
h

2

)
+

1125

8192
· ω (f, h)

for all x ∈ [xi−1, xi] , i = 1, n. In the case of uniform partition this inequality
becomes

|f (x)− s (x)| ≤

(
9317

8192
+

107 + 51
√

17

384

)
· ω
(
f,
h

2

)
+

1125

8192
· ω (f, h)

obtaining (10).

Corollary 1 If the function f is Lipschitzian, f ∈ LipL[0, a], in the case of uniform
partition the error estimate (10) becomes

(12) |f (x)− s (x)| ≤

(
11567

16384
+

107 + 51
√

17

768

)
· Lh ≤

≤ 1.119117 · Lh, ∀x ∈ [xi−1, xi], i = 1, n.

Remark 1 If f ∈ LipL[0, 1], then the error estimate (8) from [6] becomes

|f (x)− s (x)| ≤ 1.6572 · Lh, ∀x ∈ [xi−1,
xi−1 + xi

2
], i = 1, n

and we see that the estimate (12) is better.
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3 Applications of complete quartic spline

3.1 Numerical integration

Integrating on [0, a] the interpolation formula provided by the complete quartic
spline (3) on equally spaced knots, with given values of the derivative on the end-
points f ′ (0) , f ′ (a), we obtain the following quadrature rule

(13)

∫ a

0
f (x) dx =

a

30n
·
n∑
i=1

[7f (xi−1) + 16f

(
xi−1 + xi

2

)
+ 7f (xi)]−

− a2

60n2
·
[
f ′ (a)− f ′ (0)

]
+Rn (f)

which is just the corrected Simpson’s quadrature rule with the error estimate in the
case f ∈ C5 [0, a] ,

(14) |Rn (f)| ≤ a6

23040n5
·
∥∥fV ∥∥∞ .

Usually, the corrected Simpson’s quadrature rule is obtained by the classical way of
Richardson extrapolation. Here, it was obtained as an interpolatory quadrature rule
generated by the quartic Hermite interpolation polynomial given by the conditions
on f (0) , f

(
a
2

)
, f (a), f ′ (0) , f ′ (a) . Another way to obtain the same corrected

Simpson’s quadrature rule is the use of finite differences (see [12]). The quadrature
rule (13) was generalized in [8] as follows:∫ a

0
f (x) dx =

a

n
·
n∑
i=1

[
θ

2
(f (xi−1) + 7f (xi)) + (1− θ) f

(
xi−1 + xi

2

)
]−

−(1− 3θ) a2

24n2
·
[
f ′ (a)− f ′ (0)

]
+Rn (f) , θ ∈ [0, 1]

here, formula (13) being obtained for θ = 7
15 . Another generalization based on the

extended Euler formula was obtained in [10], and an extended quadrature formula
for functions with absolutely continuous derivative f (m−1) was obtained in [13]. An
extension of the quadrature formula (13) with variable weights was proposed in [5].
Using the Bernoulli polynomials, the study of corrected trapezoidal, midpoint, and
Simpson’s rule was unified in [9], provinding the corresponding error estimates.

As we can see, the order of convergence of the quadrature rule (13)-(14) is O
(
h5
)

and it is expected to provide better results than the Simpson’s rule which has the
order O

(
h4
)
. Another quadrature rule of order O

(
h4
)

is the corrected trapezoidal
rule investigated in [1]. For testing the performances of the quadrature rule (13)-(14)
in comparison with the Simpson’s rule and with the corrected trapezoidal rule we
consider the following two examples

π = displaystyle

∫ 1

0

4

1 + x2
dx and erf (1) =

2√
π

∫ 1

0
e−x

2
dx



78 A.M. Bica, D. Curilă, Z. Satmari

and applying the corrected Simpson’s rule (CSR), the Simpson’s rule (SR), and the
corrected trapezoidal rule (CTR) for stepsize h = 0.1 and h = 0.05 we obtain the
following results.

π error, n=10 error, n=20

TCR 1.984× 10−9 3.1002× 10−11

SR 6. 200 1× 10−10 9. 687 8× 10−12

CSR 9. 920 0× 10−11 1. 549 4× 10−12

erf (1) error, n=10 error, n=20

TCR 2.305× 10−7 1.4412× 10−8

SR 5. 761 9× 10−8 3. 602 5× 10−9

CSR 5. 876 0× 10−12 3. 713 7× 10−13

Table 1. The accuracy of the rule (13)
As can be observed, the best results were obtained with the corrected Simpson’s

rule and for the case of error-function value erf (1), this is highly significant.

3.2 Iterative numerical method for two-point boundary value prob-
lems

The fourth order boundary value problem modelling the bending of a rectangular
clamped beam of length L resting on an elastic foundation (see [7]) has the form:

(15)

{
xIV (t) = f(t, x (t)), t ∈ [0, L]

x (0) = c, x (L) = d, x′ (0) = w, x′ (L) = r

and generalizes the Euler’s model{
xIV (t) + K

D · x (t) = 1
D · f (t) , t ∈ [0, L]

x (0) = 0, x (L) = 0, x′ (0) = 0, x′ (L) = 0
.

Since recently was investigated the second order two-point boundary value problem
with pantograph type delay (see [16]){

x′′ (t) = f(t, x (t) , x (qt)), t ∈ [0, a], q ∈ (0, 1)
x (0) = c, x (a) = d

we can consider the generalization of (15)

(16)

{
xIV (t) = f(t, x (t) , x (qt)), t ∈ [0, a]

x (0) = c, x (a) = d, x′ (0) = w, x′ (a) = r.

The equivalent integral form of (16) is

(17) x (t) = g (t) +

∫ a

0
G (t, s) · f (s, x (s) , x (qs)) ds, t ∈ [0, a]

with

g (t) =
(a− t)2 (2t+ a) · c+ t2 [2 (a− t) + a] · d

a3
+



Improved error estimate and applications of the complete quartic spline 79

+
t (a− t)2 · w − t2 (a− t) · r

a2
, t ∈ [0, a]

and the Green function

G (t, s) =

{
1
6

(
s
a

)2 (
1− t

a

)2 · [ t−sa + 2
(
1− s

a

) (
t
a

)]
, s ≤ t

1
6

(
t
a

)2 (
1− s

a

)2 · [ s−ta + 2
(
1− t

a

) (
s
a

)]
, s ≥ t

.

Considering the Lipschitz constants of f with respect to the second and to the third
argument be α and β, the existence and uniqueness of the solution of (16) is ensured

by the contraction condition a(α+β)
192 < 1. By using the Picard iterations associated

to the integral equation (17), we can develop the technique of iterated splines (see
[2] and [3]) providing an iterative algorithm for solving (17) on the equally spaced
knots ti = i·a

n , i = 0, n,

(18) xk (ti−1 + γm · h) = g (ti−1 + γm · h) +
a

2n
·
n∑
j=1

[G (ti−1 + γm · h, tj−1) ·

·f (tj−1, xk−1 (tj−1) , sk−1(q · tj−1)) +G (ti−1 + γm · h, tj) ·

f (tj , xk−1 (tj) , sk−1(q · tj))], i = 1, n, γ0 = 0, γ1 =
1

2
, γ2 = 1, k ∈ N∗

where h = a
n and x0 (t) = g (t) .

Here, sk−1 is the complete quartic spline interpolating the values xk−1 (tj) , j =

0, n, xk−1

(
ti−1+ti

2

)
, i = 1, n and with the end-point conditions

s′k−1 (0) = w, s′k−1 (a) = r.

The stopping criterion is: |xk (ti)− xk−1 (ti)| < ε, ∀i = 1, n− 1, and the it-
erative sequence (xk (ti))k∈N approximates the exact solution x∗ (ti) on the knots
ti, i = 1, n− 1. Concerning the error estimate of the method, in the case f ∈
C5 ([0, a]× R× R), if a(c1α+c2β)

192 < 1, then the following inequality is obtained:

|xk (ti)− x∗ (ti)| ≤

(
a(α+β)
192

)m
1− a(α+β)

192

· aM0

192
+

+
aM4 · h4

720
[
1− a(c1α+c2β)

192

] +
c
∥∥xVk−1∥∥∞ · h5
1− a(α+β)

192

, i = 1, n− 1, k ∈ N∗

where M0 = max{|f (s, g (s) , g (qs))| : s ∈ [0, a]}, M4 =
∥∥∥F IVk,i ∥∥∥∞,

F IVk,i (ti−1 + γm · h, s) = G (ti−1 + γm · h, s) · f (s, xk (s) , xk (qs)) , m = 0, 2

k ∈ N∗, i = 1, n, γ0 = 0, γ1 = 1
2 , γ2 = 1, and c1, c2 > 1, c > 0 are suitable constants.

The order of convergence is O
(
h4
)
, but having a term with the order O

(
h5
)
.
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According to [2] and [3], the error estimate of the method which use the complete
cubic spline as interpolation procedure is the same O

(
h4
)

and the expression of the
complete cubic spline at each iterative step is more simple
(19)

s
(i)
k−1 (t) =

(ti − t)2 [2 (t− ti−1) + h]

h3
·xk−1(ti−1)+

(t− ti−1)2 [2 (ti − t) + h]

h3
·xk−1(ti)+

+
(ti − t)2 (t− ti−1)

h2
·m(i−1)

k−1 +

(
−(t− ti−1)2 (ti − t)

h2

)
·m(i)

k−1, ∀t ∈ [ti−1, ti], i = 1, n,

where m
(0)
k−1 = w, m

(n)
k−1 = r, and m

(i)
k−1, i = 1, n− 1, represent the solution of the

tridiadonal, diagonally dominant, linear system:

m
(i−1)
k−1 + 4m

(i)
k−1 +m

(i+1)
k−1 =

3 (xk−1(ti+1)− xk−1(ti−1))
h

, i = 1, n− 1.

For comparing the results provided by the iterated splines method which uses the
interpolation procedures of complete cubic splines and complete quartic splines,
rspectively, we consider the following numerical experiment:

The two-point boundary value problem

{
xIV (t) = 22

(t+1)5
+ 1

(t+1)2
·
(

[x (t)]2 + [x (t)]3
)
x
(
t
2

)
, t ∈ [0, 1]

x (0) = 1, x (1) = 0.5, x′ (0) = −1, x′ (1) = −0.25

has the exact solution x∗ (t) = 1
t+1 , and applying the iterative algorithm (18) for

n = 5 and n = 25, with ε = 10−15, the number of iterations will be k = 7. The
numerical results are presented in Table 2, where the absolute errors on the knots are
ei = |x∗ (ti)− xk (ti)| , i = 0, n. The involved quadrature rule is the same corrected
trapezoidal rule for the algorithms (18) and (19).

ti ei, n=5 ei, n=25

0 0 0

0.2 1.504103e-04 7.657559e-06

0.4 1.893587e-04 1.434412e-05

0.6 1.367446e-04 1.233097e-05

0.8 4.697401e-05 4.805814e-06

1 0 0

Table 2. Results with algorithm (18)

With the iterative algorithm (19), for n = 10 and n = 100, with ε = 10−15, the
number of iterations is again k = 7 and the numerical results are presented in Table
3.
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ti ei, n=10 ei, n=100

0 0 0

0.2 7.702524e-06 8.044273e-10

0.4 8.374001e-06 8.727925e-10

0.6 5.409719e-06 5.634118e-10

0.8 1.701300e-06 1.772970e-10

1 0 0

Table 3. Results with algorithm (19)

We see that the order of convergence in Table 2 seems to be weaker than O
(
h4
)
,

while in Table 3 the order O
(
h4
)

is confirmed. So we can say that better results are
obtained by using cubic splines.

4 Conclusions

In the case of continuous functions f ∈ C [0, 1], the error bound obtained in Theo-
rem 1 is an improvement of the corresponding results Theorem 3 from [6] providing
a smaller constant. This fact becomes obvious in Corollary 1 for the case of Lips-
chitzian functions. For the cases f ∈ C1 [0, 1] and f ∈ C2 [0, 1], corresponding error
estimates could be obtained by using the first and the second modulus of smooth-
ness, respectively. Concerning the quadrature rule generated by the complete quartic
spline interpolation, superior performances in numerical integration are guaranted
in comparison with the Simpson’s rule. The advantage is more clear considering the
computation of only two additional terms in formula (13) for any stepsize a

n (not

depending by n), given in the expression a2

60n2 · [f ′ (a)− f ′ (0)], but the accuracy is
increased by O

(
h4
)

to O
(
h5
)
. These are confirmed investigating the results from

Table 1. The situation is not the same for complicated algorithms. Despite of the
fact that theoretically the order of error should be better by using quartic splines
than those involving cubic splines, the numerical results after implementation con-
tradict this expectation as can be viewed in Tables 2 and 3. The reason is in the
accumulation of errors for highly elaborated algorithms by a step to another. Con-
sidering this fact of complexity of calculus, the use of elaborated algorithms is not
recommendable, the simpler algorithm being more useful in practice. This is the sit-
uation for the alternative of choosing the interpolation procedure in the application
of the iterated splines method for the boundary value problem (16), the use of the
simpler cubic spline being more effective.
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University of Oradea
Faculty of Informatics and Sciences
Department of Mathematics and Informatics
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