DOI:10.2478/gm-2019-0015

\$ sciendo

q-analogue of generalized Ruschweyh operator related to a new subfamily of multivalent functions ${ }^{1}$

Shahram Najafzadeh, Mugur Acu

Abstract

A new subfamily of p-valent analytic functions with negative coefficients in terms of q-analogue of generalized Ruschweyh operator is considered. Several properties concerning coefficient bounds, weighted and arithmetic mean, radii of starlikeness, convexity and close-to-convexity are obtained. A family of class preserving integral operators and integral representation are also indicated.

2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: p-valent function, Fractional q-calculus operator, Ruschweyh operator, Coefficient inequality, Weighted mean, Arithmetic mean, Radii structures.

1 Introduction

Let \mathcal{A}_{p} be the class of p-valent analytic functions defined in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and are of the type:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geqslant 0, \quad n, p \in \mathbb{N}=\{1,2, \ldots\}\right) . \tag{1}
\end{equation*}
$$

[^0]In the theory of q-calculus, the q-shifted factorial $(w, q)_{k}$ for $w, q \in \mathbb{C}$ and $k \in \mathbb{N}_{0}=$ $\mathbb{N} \cup\{0\}$ is defined by:

$$
(w, q)_{k}= \begin{cases}1 & , \quad k=0 \tag{2}\\ (1-w)(1-w q) \cdots\left(1-w q^{k-1}\right) & , \quad k \in \mathbb{N}\end{cases}
$$

and according to the gamma function:

$$
\begin{equation*}
\left(q^{w}, q\right)_{k}=\frac{\Gamma_{q}(w+k)(1-q)^{k}}{\Gamma_{q}(w)}, \quad(k>0) \tag{3}
\end{equation*}
$$

where the q-gamma function is given by:

$$
\begin{equation*}
\Gamma_{q}(y)=\frac{(q, q)_{\infty}(1-q)^{1-y}}{\left(q^{y}, q\right)_{\infty}}, \quad(0<q<1) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
(w, q)_{\infty}=\prod_{t=0}^{\infty}\left(1-w q^{t}\right), \quad(|q|<1) . \tag{5}
\end{equation*}
$$

If $\Gamma_{q}(y)$ be the ordinary Eular gamma function, then it is easy to see that:

$$
\begin{equation*}
\lim _{q \rightarrow 1} \Gamma_{q}(y)=\Gamma(y), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{w}, q\right)_{k}}{(1-q)^{k}}=(w)_{k}, \tag{7}
\end{equation*}
$$

where $(w)_{k}=w(w-1) \cdots(w+k-1)$ is the familiar Pochhammer symbol. For more details see [3] and [4].

The Jackson's q-derivative and q-integral are given by Gasper and Rahman as follow:

$$
\begin{align*}
\mathcal{D}_{q, z} f(z) & =\frac{f(z)-f(q z)}{z(1-q)}, \quad(z \neq 0, \quad q \neq 0), \tag{8}\\
\int_{0}^{z} f(t) d_{q}(t) & =z(1-q) \sum_{k=0}^{\infty} q^{k} f\left(z q^{k}\right) . \tag{9}
\end{align*}
$$

See [3].
From (8), we conclude:

$$
\begin{equation*}
D_{q} z^{k}=\frac{z^{k}-(z q)^{k}}{z(1-q)}=[k]_{q} z^{k-1}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} . \tag{11}
\end{equation*}
$$

$[k]_{q}$ is called q-analogue of k, and we have:

$$
\begin{equation*}
\lim _{q \rightarrow 1}[k]_{q}=k . \tag{12}
\end{equation*}
$$

Now, we recall some important definitions of fractional q-calculus operators of a complex-valued function $f(z)$, see [8].
Definition 1 Let $f(z)$ is analytic in a simple-connected domain containing $z=0$. The fractional q-integral operator $\mathcal{I}_{q, z}^{\delta}$ of order $\delta>0$ is given by:

$$
\begin{equation*}
\mathcal{I}_{q, z}^{\delta} f(z)=\mathcal{D}_{q, z}^{-\delta} f(z)=\frac{1}{\Gamma_{q}(\delta)} \int_{0}^{z}(z-q t)_{\delta-1} f(t) d_{q}(t) \tag{13}
\end{equation*}
$$

where $(z-q t)_{\delta-1}$ is single-valued when:

$$
\left|\arg \left(\frac{-t q^{w}}{z}\right)\right|<\pi, \quad\left|\frac{t q^{w}}{z}\right| \quad \text { and } \quad|\arg z|<\pi .
$$

Definition 2 The fractional q-derivative of order $\delta(0 \leqslant \delta<1)$, is given by:

$$
\begin{equation*}
\mathcal{D}_{q, z}^{\delta} f(z)=\mathcal{D}_{q, z} \mathcal{I}_{q, z}^{1-\delta} f(z)=\frac{1}{\Gamma_{q}(1-\delta)} \mathcal{D}_{q, z} \int_{0}^{z}(z-q t)_{-\delta} f(t) d_{q}(t) \tag{14}
\end{equation*}
$$

Definition 3 Under the same assumption of Definition 2, the extended fractional q-derivative of order $\delta(0 \leqslant \delta<1)$ is defined by:

$$
\begin{equation*}
\mathcal{D}_{q, z}^{\delta} f(z)=\mathcal{D}_{q, z}^{m} \mathcal{I}_{q, z}^{m-\delta} f(z), \quad\left(m-1 \leqslant \delta<m, \quad m \in \mathbb{N}_{0}\right) . \tag{15}
\end{equation*}
$$

By applying known extensions of q-differintegral, we consider the linear operator:

$$
\begin{align*}
\Omega_{q, p}^{\delta} f(z) & =\frac{\Gamma_{q}(p+1-\delta)}{\Gamma_{q}(p+1)} z^{\delta} \mathcal{D}_{q, z}^{\delta} f(z) \\
& =z^{p}+\sum_{k=n+p}^{\infty} \frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)} a_{k} z^{k} . \tag{16}
\end{align*}
$$

We can easily check that $\Omega_{q, z}^{\delta}$ is fractional q-integral of order δ when $-\infty<\delta<p+1$. Also, if $\delta=0$, then $\Omega_{q, p}^{0} f(z)=f(z)$.

Now, we consider the generalize Al-Oboudi differential operator which was introduced by Selvakumaran et al. [11], as follows:

$$
\begin{align*}
\mathcal{D}_{q, p, \lambda}^{\delta, m} & : \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}, \\
\mathcal{D}_{q, p, \lambda}^{\delta, 0} f(z) & =f(z), \\
\mathcal{D}_{q, p, \lambda}^{\delta, 1} f(z) & =(1-\lambda) \Omega_{q, p}^{\delta} f(z)+\frac{\lambda z}{[p]_{q}} \mathcal{D}_{q}\left(\Omega_{q, p}^{\delta} f(z)\right), \\
\mathcal{D}_{q, p, \lambda}^{\delta, m} f(z) & =\mathcal{D}_{q, p, \lambda}^{\delta, 1}\left(\mathcal{D}_{q, p, \lambda}^{\delta, m-1} f(z)\right), \tag{17}
\end{align*}
$$

where $\lambda \geqslant 0$ and $m \in \mathbb{N}$.
We note that, by specializing the parameters, the above operator reduces to many well-known operators. For example see $[2,1]$ and [10].

Analogously, we consider the generalized Ruschweyh operator $\mathcal{R}_{q, p, \lambda}^{\delta, m}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ as follows:

$$
\begin{align*}
\mathcal{R}_{q, p, \lambda}^{\delta, 0} f(z) & =f(z) \\
\mathcal{R}_{q, p, \lambda}^{\delta, 1} f(z) & =\frac{z}{[p]_{q}} \mathcal{D}_{q, p}\left(\Omega_{q, p}^{\delta} f(z)\right) \\
(m+1) \mathcal{R}_{q, p, \lambda}^{\delta, m+1} f(z) & =\frac{z}{[p]_{q}} \mathcal{D}_{q}\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)+m \mathcal{R}_{q, p, \lambda}^{\delta, m} f(z), \quad(m \in \mathbb{N}) \tag{18}
\end{align*}
$$

For $f(z) \in \mathcal{A}_{p}$ given by (1), by using (18), we get:

$$
\begin{equation*}
\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)=z^{p}-\sum_{k=p+1}^{\infty}\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right) a_{k} z^{k} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{m}(x)=\frac{x(x+1) \cdots(x+m)}{m!} \tag{20}
\end{equation*}
$$

See [5].
In special case, $\delta=0, p=1$ and $q \rightarrow 0$, then above operator reduces to the operator introduced by Ruschweyh [9].

Definition 4 For the functions f and F, analytic in \mathbb{U}, we say f is subordinate to F denoted by $f \prec F$ if for some analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1$,

$$
f(z)=F(w(z)), \quad(z \in \mathbb{U})
$$

Definition 5 A function $f(z) \in \mathcal{A}_{p}$ is said to be a member of the class $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$ if and only if:

$$
\begin{equation*}
\frac{z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}{f_{t}(z)} \prec \frac{p+(\alpha p+(\beta-\alpha)(p-\gamma)) z}{1+\alpha z}, \tag{21}
\end{equation*}
$$

where $-1 \leqslant \alpha<\beta \leqslant 1,0 \leqslant t<1,0<\gamma<p$,

$$
\begin{equation*}
f_{t}(z)=(1-t) z^{p}+t f(z), \quad\left(f(z) \in \mathcal{A}_{p}\right) \tag{22}
\end{equation*}
$$

and $\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)$ is defined in (19).

2 Main results

In this section, we obtain coefficient inequality and conclude weighted and arithmetic mean properties.

Theorem 1 Let $f(z)=z^{p} \sum_{k=n+p}^{\infty} a_{k} z^{k} \in \mathcal{A}_{p}$ be analytic in \mathbb{U}. Then $f(z) \in$ $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$ if and only if:

$$
\begin{align*}
& \sum_{k=n+p}^{\infty}\left[\left(k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right)-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)\right] a_{k} \tag{23}\\
& \leqslant(\beta-\alpha)(p-\gamma)
\end{align*}
$$

where $C_{m}(x)$ is given in (20).
Proof. The relation (21) is equivalent to the condition given by:

$$
\begin{equation*}
\left|\frac{\frac{z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}{f_{t}(z)}-p}{(\alpha p+(\beta-\alpha)(p-\gamma))-\alpha z \frac{\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}{f_{t}(z)}}\right|<1 \tag{24}
\end{equation*}
$$

Let $|z|=1$ and (23) holds true. So we have:

$$
\begin{aligned}
& W=\left|z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}-p f_{t}(z)\right|-\left|(\alpha p+(\beta-\alpha)(p-\gamma))+\alpha z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}\right| \\
& =\left\lvert\, z\left(p z^{p-1}-\sum_{k=n+p}^{\infty} k a_{k}\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right) z^{k-1}\right)\right. \\
& -p\left((1-t) z^{p}+t f(z)\right)|=|(\alpha p+(\beta-\alpha)(p-\gamma))\left((1-t) z^{p}+t f(z)\right) \\
& \left.-\alpha z\left(p z^{p-1}-\sum_{k=n+p}^{\infty} k a_{k}\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right) z^{k-1}\right) \right\rvert\, \\
& =\left|-\sum_{k=n+p}^{\infty}\left[k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right)-p t\right] a_{k} z^{k}\right| \\
& -\mid(\beta-\alpha)(p-\gamma) z^{p}-\sum_{k=n+p}^{\infty}[t(\alpha p+(\beta-\alpha)(p-\gamma)) \\
& \left.-\alpha k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right)\right] a_{k} z^{k} \mid .
\end{aligned}
$$

By putting:

$$
\begin{aligned}
& t(\alpha p+(\beta-\alpha)(p-\gamma))-\alpha k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right) \\
& =t(\beta-\alpha)(p-\gamma)-\left[k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right)-p t\right] \alpha
\end{aligned}
$$

the above expression reduces to:
(25)
$W \leqslant$

$$
\begin{aligned}
& \left\lvert\, \sum_{k=n+p}^{\infty}\left[\left(k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right)-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)\right] a_{k}\right. \\
& -(\beta-\alpha)(p-\gamma) \mid
\end{aligned}
$$

By (23), we have $W \leqslant 0$, so $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$.
To prove the converse, let $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, thus:

$$
\begin{aligned}
Y & =\left|\frac{\frac{z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}{f_{t}(z)}-p}{(\alpha p+(\beta-\alpha)(p-\gamma))-\alpha z \frac{\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}{f_{t}(z)}}\right| \\
& =\frac{\left|z\left(p z^{p-1}-\sum_{k=n+p}^{\infty} k a_{k} Q^{*} z^{k-1}\right)-p\left[(1-t) z^{p}+t f(z)\right]\right|}{\left|(\alpha p+(\beta-\alpha)(p-\gamma))\left[(1-t) z^{p}+t f(z)\right]-\alpha z\left(p z^{p-1}-\sum_{k=n+p}^{\infty} k a_{k} Q^{*} z^{k-1}\right)\right|} \\
& <1
\end{aligned}
$$

where

$$
\begin{equation*}
Q^{*}=\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right) . \tag{26}
\end{equation*}
$$

Since for all $z, \operatorname{Re}\{z\} \leqslant|z|$, so we have:

$$
\operatorname{Re}\{Y\}=\operatorname{Re}\left\{\frac{\sum_{k=n+p}^{\infty}\left(k Q^{*}-p t\right) a_{k} z^{k}}{(\beta-\alpha)(p-\gamma) z^{p}-\sum_{k=n+p}^{\infty}\left[t(\alpha p+(\beta-\alpha)(p-\gamma))-\alpha k Q^{*}\right] a_{k} z^{k}}\right\}
$$

$$
<1
$$

where Q^{*} is given (26).
By letting $z \rightarrow 1$ through positive real values and choose the values of z such that $\frac{z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}{f_{t}(z)}$ is real, we have:

$$
\sum_{k=n+p}^{\infty}\left(k Q^{*}-p t\right) a_{k} \leqslant(\beta-\alpha)(p-\gamma)-\sum_{k=n+p}^{\infty}\left[t(\alpha p+(\beta-\alpha)(p-\gamma))-\alpha k Q^{*}\right] a_{k}
$$

where Q^{*} is defined by (26).
By (25), we get:

$$
\begin{aligned}
& \sum_{k=n+p}^{\infty}\left[\left(k\left(\frac{\Gamma_{q}(p+1-\delta) \Gamma_{q}(k+1)}{\Gamma_{q}(p+1) \Gamma_{q}(k+1-\delta)}\right)^{m} C_{m}\left(\frac{[k]_{q}}{[p]_{q}}\right)-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)\right] a_{k} \\
& \leqslant(\beta-\alpha)(p-\gamma)
\end{aligned}
$$

and this completes the proof.

Remark 1 We note that:
(i) The function:

$$
G(z)=z^{p}-\sum_{k=n+p}^{\infty} \frac{(\beta-\alpha)(p-\gamma)}{\left(k Q^{*}-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)} z^{k}
$$

shows that the inequality (23) is sharp.
(ii) If $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then:

$$
a_{k} \leqslant \frac{(\beta-\alpha)(p-\gamma)}{\left(k Q^{*}-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)}, \quad(k \geqslant n+p)
$$

where Q^{*} is given in (26).

By applying Theorem 1, we can easily prove that the class $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$ is closed under weighted and arithmetic mean. Also it is easy to obtain radii of starlikeness, convexity and close-to-convexity. So we state the following three theorems without proof.

Theorem 2 If $f(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k} z^{k}$ and $g(z)=z^{p}-\sum_{k=n+p}^{\infty} b_{k} z^{k}$, be in the class $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then the weighted mean of f and g given by:

$$
h_{j}(z)=\frac{1}{2}[(1-j) f(z)+(1+j) g(z)]
$$

is also in $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$.

Theorem 3 If $f_{j}(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k, j} z^{k}, j=1,2, \ldots, \ell$, be in the class $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then the arithmetic mean of $f_{j}(z)$ given by:

$$
h(z)=\frac{1}{\ell} \sum_{j=1}^{\ell} f_{j}(z)
$$

is also in the same class.
Theorem 4 Let the function $f(z)$ defined by (1) be in the class $\mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then:
(i) $f(z)$ is starlike of order $\theta(0 \leqslant \theta<p)$ in $|z|<R_{1}$, where:

$$
R_{1}=\inf _{k \geqslant n+p}\left\{\frac{p-\theta}{k-\theta}\left[\frac{\left(k Q^{*}-p t\right)(1-\alpha)}{(\beta-\alpha)(p-\gamma)}+t\right]\right\}^{\frac{1}{k-p}}
$$

(ii) $f(z)$ is convex of order $\theta(0 \leqslant \theta<p)$ in $|z|<R_{2}$, where:

$$
R_{2}=\inf _{k \geqslant n+p}\left\{\frac{p(p-\theta)}{k(k-\theta)}\left[\frac{\left(k Q^{*}-p t\right)(1-\alpha)}{(\beta-\alpha)(p-\gamma)}+t\right]\right\}^{\frac{1}{k-p}}
$$

(iii) $f(z)$ is close-to-convex of order $\theta(0 \leqslant \theta<p)$ in $|z|<R_{3}$, where:

$$
R_{3}=\inf _{k \geqslant n+p}\left\{\frac{p-\theta}{k}\left[\frac{\left(k Q^{*}-p t\right)(1-\alpha)}{(\beta-\alpha)(p-\gamma)}+t\right]\right\}^{\frac{1}{k-p}}
$$

In relations R_{1}, R_{2} and R_{3}, Q^{*} and $C_{m}(x)$ are defined by (26) and (20) respectively.

3 Preserving properties and integral representation

In this section, we investigate some class preserving integral operators. We recall the Komatu [7] and generalized Jung-Kim-Srivastava [6] operators defined by:

$$
\begin{aligned}
\mathcal{K}_{p}^{c, d} f(z) & =\frac{(c+p)^{d}}{\Gamma(d) z^{c}} \int_{0}^{z} t^{c-1}\left(\log \frac{z}{t}\right)^{d-1} f(t) d t \\
\mathcal{J} \mathcal{K} \mathcal{S}_{p}^{c, d} f(z) & =\frac{\Gamma(d+c+p)}{\Gamma(c+p) \Gamma(d) z^{c}} \int_{0}^{z} t^{c-1}\left(1-\frac{t}{z}\right)^{d-1} f(t)
\end{aligned}
$$

where $d>0, c>-p, f \in \mathcal{A}_{p}$ and $z \in \mathbb{U}$.
Finally, in the end of this section, we introduce integral representation for $\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)$, where $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$.

Theorem 5 If $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then $\mathcal{K}_{p}^{c, d} f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$.

Proof. Let $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$ be defined by (1). It is easy to show that:

$$
\mathcal{K}_{p}^{c, d} f(z)=z^{p}-\sum_{k=n+p}^{\infty}\left(\frac{c+p}{c+k+p}\right)^{d} a_{k} z^{k}, \quad\left(a_{k} \geqslant 0, \quad p \in \mathbb{N}\right)
$$

But $\mathcal{K}_{p}^{c, d} f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, if:

$$
\begin{aligned}
L & =\sum_{k=n+p}^{\infty}\left[\left(k Q^{*}-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)\right]\left(\frac{c+p}{c+k+p}\right)^{d} a_{k} \\
& \leqslant(\beta-\alpha)(p-\gamma)
\end{aligned}
$$

where Q^{*} is given in (26).
Since for $k \in \mathbb{N}, \frac{c+p}{c+k+p} \leqslant 1$, so it clear that:

$$
L \leqslant \sum_{k=n+p}^{\infty}\left[\left(k Q^{*}-p t\right)(1-\alpha)+t(\beta-\alpha)(p-\gamma)\right] a_{k}
$$

then by (23), we have:

$$
L \leqslant(\beta-\alpha)(p-\gamma)
$$

Therefore $\mathcal{K}_{p}^{c, d} f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$.
Theorem 6 If $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then $\mathcal{J} \mathcal{K} \mathcal{S}_{p}^{c, d} f(z)$ is in the same class.
Proof. Let $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$ be defined by (1). It can be easily verified that:

$$
\mathcal{J} \mathcal{K} \mathcal{S}_{p}^{c, d} f(z)=z^{p}-\sum_{k=n+p}^{\infty} \frac{\Gamma(d+c+p) \Gamma(c+k)}{\Gamma(c+p) \Gamma(d+c+k)} a_{k} z^{k} .
$$

By the similar steps as in the proof of Theorem 5, we can state the proof concerning $\mathcal{J} \mathcal{K} \mathcal{S}_{p}^{c, d} f(z)$, so the details are omitted.

Theorem 7 Let $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, then:

$$
\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)=\int_{0}^{z} \frac{f_{t}(z)[(\alpha p+(\beta-\alpha)(p-\gamma)) H(s)+p]}{s(1+\alpha H(s))} d s
$$

where $|H(z)|<1$ and f_{t} is given in (23).
Proof. For $f(z) \in \mathcal{X} \mathcal{R}(\alpha, \beta, \gamma)$, we have the subordination relation (21), or equivalently the inequality (24). Thus:

$$
\frac{z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}-p f_{t}(z)}{(\alpha p+(\beta-\alpha)(p-\gamma)) f_{t}(z)-\alpha z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}}=H(z)
$$

where $|H(z)|<1$. Therefore we get:

$$
z\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}-p f_{t}(z)=(\alpha p+(\beta-\alpha)(p-\gamma)) H(z) f_{t}(z)-\alpha z H(z)\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}
$$

or

$$
\left(\mathcal{R}_{q, p, \lambda}^{\delta, m} f(z)\right)^{\prime}(z+\alpha z H(z))=f_{t}(z)[(\alpha p+(\beta-\alpha)(p-\gamma)) H(z)+p]
$$

After integration, we get the required result. So the proof is complete.

References

[1] F. Al-Oboudi, K. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., vol. 339, no. 1, 2008, 655-667.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. j. math. math. sci. , vol. 2004, no. 27, 2004, 1429-1436.
[3] G. Gasper, M. Rahman. Basic hypergeometric series, vol. 35 of Encyclopedia of Mathematics and its Applications, Cambridge university press Cambridge, UK, 1990.
[4] F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. Trans. Roy. Soc. Edinb., vol 46, no. 2, 1909, 253-281.
[5] L. Jasoria, S. Bissu, On certain generalized fractional q-integral operator of p-valent functions, International Journal on Future Revolution in Computer Science Communication Engineering, vol. 3, no. 8, 2015, 230-236.
[6] I. B. Jung, Y. C. Kim, H. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., vol. 176, no. 1, 1993, 138-147.
[7] Y. Komato, On analytic prolongation of a family of operators, Mathematica (Cluj), vol. 39, no. 55, 1990, 141-145.
[8] S. D. Purohit, R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., vol. 109, no. 1, 2011, 55-70.
[9] S. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc., vol. 49, no. 1, 1975, 109-115.
[10] G. S. Salagean, Subclasses of univalent functions, Complex Analysis: Fifth Romanian-Finnish Seminar, Part I Bucharest, Lecture Notes in Mathematics 1013, Springer-Verlag, 1983.
[11] K. Selvakumaran, S. D. Purohit, A. Secer, M. Bayram, Convexity of certain q-integral operators of p-valent functions, Abstr. Appl. Anal., Hindawi, 2014.

Shahram Najafzadeh

Payame Noor University
Department of Mathematics
Post Office Box: 19395-3697, Tehran, Iran
e-mail: najafzadeh1234@yahoo.ie.
Mugur Acu
Lucian Blaga University of Sibiu
Faculty of Science
Department of Mathematics and Computer Science
Street Dr. I. Raţiu 5-7, 550012 Sibiu, România
e-mail: mugur.acu@ulbsibiu.ro.

[^0]: ${ }^{1}$ Received 2 June, 2019
 Accepted for publication (in revised form) 21 October, 2019

