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q–analogue of generalized Ruschweyh operator related to a new
subfamily of multivalent functions 1
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Abstract

A new subfamily of p–valent analytic functions with negative coefficients in
terms of q–analogue of generalized Ruschweyh operator is considered. Several
properties concerning coefficient bounds, weighted and arithmetic mean, radii
of starlikeness, convexity and close-to-convexity are obtained. A family of class
preserving integral operators and integral representation are also indicated.
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1 Introduction

Let Ap be the class of p–valent analytic functions defined in the open unit disk
U = {z ∈ C : |z| < 1} and are of the type:

f(z) = zp −
∞∑

k=n+p

akz
k, (ak > 0, n, p ∈ N = {1, 2, . . .}).(1)
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In the theory of q–calculus, the q–shifted factorial (w, q)k for w, q ∈ C and k ∈ N0 =
N ∪ {0} is defined by:

(w, q)k =

{
1 , k = 0,

(1− w)(1− wq) · · · (1− wqk−1) , k ∈ N,
(2)

and according to the gamma function:

(qw, q)k =
Γq(w + k)(1− q)k

Γq(w)
, (k > 0),(3)

where the q–gamma function is given by:

Γq(y) =
(q, q)∞(1− q)1−y

(qy, q)∞
, (0 < q < 1),(4)

where

(w, q)∞ =
∞∏
t=0

(1− wqt), (|q| < 1).(5)

If Γq(y) be the ordinary Eular gamma function, then it is easy to see that:

lim
q→1

Γq(y) = Γ(y),(6)

and

lim
q→1−

(qw, q)k
(1− q)k

= (w)k,(7)

where (w)k = w(w−1) · · · (w+k−1) is the familiar Pochhammer symbol. For more
details see [3] and [4].

The Jackson’s q–derivative and q–integral are given by Gasper and Rahman as
follow:

Dq,zf(z) =
f(z)− f(qz)

z(1− q)
, (z 6= 0, q 6= 0),(8) ∫ z

0
f(t)dq(t) = z(1− q)

∞∑
k=0

qkf(zqk).(9)

See [3].
From (8), we conclude:

Dqz
k =

zk − (zq)k

z(1− q)
= [k]qz

k−1,(10)
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where

[k]q =
1− qk

1− q
.(11)

[k]q is called q–analogue of k, and we have:

lim
q→1

[k]q = k.(12)

Now, we recall some important definitions of fractional q–calculus operators of a
complex-valued function f(z), see [8].

Definition 1 Let f(z) is analytic in a simple-connected domain containing z = 0.
The fractional q–integral operator Iδq,z of order δ > 0 is given by:

Iδq,zf(z) = D−δq,zf(z) =
1

Γq(δ)

∫ z

0
(z − qt)δ−1f(t)dq(t),(13)

where (z − qt)δ−1 is single-valued when:∣∣∣∣arg
(−tqw

z

)∣∣∣∣ < π,

∣∣∣∣ tqwz
∣∣∣∣ and |arg z| < π.

Definition 2 The fractional q–derivative of order δ (0 6 δ < 1), is given by:

Dδq,zf(z) = Dq,zI1−δq,z f(z) =
1

Γq(1− δ)
Dq,z

∫ z

0
(z − qt)−δf(t)dq(t).(14)

Definition 3 Under the same assumption of Definition 2, the extended fractional
q–derivative of order δ (0 6 δ < 1) is defined by:

Dδq,zf(z) = Dmq,zIm−δq,z f(z), (m− 1 6 δ < m, m ∈ N0).(15)

By applying known extensions of q–differintegral, we consider the linear operator:

Ωδ
q,pf(z) =

Γq(p+ 1− δ)
Γq(p+ 1)

zδDδq,zf(z)

= zp +
∞∑

k=n+p

Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)
akz

k.
(16)

We can easily check that Ωδ
q,z is fractional q–integral of order δ when −∞ < δ < p+1.

Also, if δ = 0, then Ω0
q,pf(z) = f(z).

Now, we consider the generalize Al-Oboudi differential operator which was in-
troduced by Selvakumaran et al. [11], as follows:

Dδ,mq,p,λ : Ap → Ap,

Dδ,0q,p,λf(z) = f(z),

Dδ,1q,p,λf(z) = (1− λ)Ωδ
q,pf(z) +

λz

[p]q
Dq
(
Ωδ
q,pf(z)

)
,

Dδ,mq,p,λf(z) = Dδ,1q,p,λ
(
Dδ,m−1q,p,λ f(z)

)
,(17)
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where λ > 0 and m ∈ N.

We note that, by specializing the parameters, the above operator reduces to
many well-known operators. For example see [2, 1] and [10].

Analogously, we consider the generalized Ruschweyh operator Rδ,mq,p,λ : Ap → Ap
as follows:

Rδ,0q,p,λf(z) = f(z),

Rδ,1q,p,λf(z) =
z

[p]q
Dq,p

(
Ωδ
q,pf(z)

)
,

(m+ 1)Rδ,m+1
q,p,λ f(z) =

z

[p]q
Dq
(
Rδ,mq,p,λf(z)

)
+mRδ,mq,p,λf(z), (m ∈ N).(18)

For f(z) ∈ Ap given by (1), by using (18), we get:

Rδ,mq,p,λf(z) = zp −
∞∑

k=p+1

(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
akz

k,(19)

where

Cm(x) =
x(x+ 1) · · · (x+m)

m!
.(20)

See [5].

In special case, δ = 0, p = 1 and q → 0, then above operator reduces to the
operator introduced by Ruschweyh [9].

Definition 4 For the functions f and F , analytic in U, we say f is subordinate to
F denoted by f ≺ F if for some analytic function w(z) with w(0) = 0 and |w(z)| < 1,

f(z) = F (w(z)), (z ∈ U).

Definition 5 A function f(z) ∈ Ap is said to be a member of the class XR(α, β, γ)
if and only if:

z
(
Rδ,mq,p,λf(z)

)′
ft(z)

≺
p+

(
αp+ (β − α)(p− γ)

)
z

1 + αz
,(21)

where −1 6 α < β 6 1, 0 6 t < 1 , 0 < γ < p,

ft(z) = (1− t)zp + tf(z),
(
f(z) ∈ Ap

)
,(22)

and Rδ,mq,p,λf(z) is defined in (19).
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2 Main results

In this section, we obtain coefficient inequality and conclude weighted and arithmetic
mean properties.

Theorem 1 Let f(z) = zp
∑∞

k=n+pakz
k ∈ Ap be analytic in U. Then f(z) ∈

XR(α, β, γ) if and only if:

∞∑
k=n+p

[(
k
(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
− pt

)
(1− α) + t(β − α)(p− γ)

]
ak

6 (β − α)(p− γ)

(23)

where Cm(x) is given in (20).

Proof. The relation (21) is equivalent to the condition given by:∣∣∣∣∣∣∣∣∣
z
(
Rδ,mq,p,λf(z)

)′
ft(z)

− p

(
αp+ (β − α)(p− γ)

)
− αz

(
Rδ,mq,p,λf(z)

)′
ft(z)

∣∣∣∣∣∣∣∣∣ < 1.(24)

Let |z| = 1 and (23) holds true. So we have:

W =
∣∣∣z(Rδ,mq,p,λf(z)

)′ − pft(z)∣∣∣− ∣∣∣(αp+ (β − α)(p− γ)
)

+ αz
(
Rδ,mq,p,λf(z)

)′∣∣∣
=

∣∣∣∣∣∣z
pzp−1 − ∞∑

k=n+p

kak

(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
zk−1


− p
(

(1− t)zp + tf(z)
)∣∣∣∣∣∣ =

∣∣∣∣∣∣(αp+ (β − α)(p− γ)
)(

(1− t)zp + tf(z)
)

−αz

pzp−1 − ∞∑
k=n+p

kak

(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
zk−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
∞∑

k=n+p

[
k
(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
− pt

]
akz

k

∣∣∣∣∣∣
−

∣∣∣∣∣∣(β − α)(p− γ)zp −
∞∑

k=n+p

[
t
(
αp+ (β − α)(p− γ)

)
−αk

(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)]
akz

k

∣∣∣∣ .
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By putting:

t
(
αp+ (β − α)(p− γ)

)
− αk

(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
= t(β − α)(p− γ)−

[
k
(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
− pt

]
α,

the above expression reduces to:

W 6∣∣∣∣∣∣
∞∑

k=n+p

[(
k
(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
−pt

)
(1− α) + t(β − α)(p− γ)

]
ak

− (β − α)(p− γ)

∣∣∣∣∣∣ .

(25)

By (23), we have W 6 0, so f(z) ∈ XR(α, β, γ).
To prove the converse, let f(z) ∈ XR(α, β, γ), thus:

Y =

∣∣∣∣∣∣∣∣∣
z
(
Rδ,mq,p,λf(z)

)′
ft(z)

− p

(
αp+ (β − α)(p− γ)

)
− αz

(
Rδ,mq,p,λf(z)

)′
ft(z)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣z(pzp−1 − ∞∑
k=n+p

kakQ
∗zk−1

)
− p
[
(1− t)zp + tf(z)

]∣∣∣∣∣∣∣∣∣∣(αp+ (β − α)(p− γ)
)[

(1− t)zp + tf(z)
]
− αz

(
pzp−1 −

∞∑
k=n+p

kakQ∗zk−1
)∣∣∣∣∣

< 1,

where

Q∗ =
(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
.(26)

Since for all z, Re{z} 6 |z|, so we have:

Re{Y } = Re


∞∑

k=n+p

(
kQ∗ − pt

)
akz

k

(β − α)(p− γ)zp −
∞∑

k=n+p

[
t
(
αp+ (β − α)(p− γ)

)
− αkQ∗

]
akzk


< 1,
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where Q∗ is given (26).

By letting z → 1 through positive real values and choose the values of z such

that
z(Rδ,mq,p,λf(z))

′

ft(z)
is real, we have:

∞∑
k=n+p

(
kQ∗ − pt

)
ak 6 (β − α)(p− γ)−

∞∑
k=n+p

[
t
(
αp+ (β − α)(p− γ)

)
− αkQ∗

]
ak,

where Q∗ is defined by (26).

By (25), we get:

∞∑
k=n+p

[(
k
(Γq(p+ 1− δ)Γq(k + 1)

Γq(p+ 1)Γq(k + 1− δ)

)m
Cm

( [k]q
[p]q

)
− pt

)
(1− α) + t(β − α)(p− γ)

]
ak

6 (β − α)(p− γ),

and this completes the proof.

Remark 1 We note that:

(i) The function:

G(z) = zp −
∞∑

k=n+p

(β − α)(p− γ)(
kQ∗ − pt

)
(1− α) + t(β − α)(p− γ)

zk,

shows that the inequality (23) is sharp.
(ii) If f(z) ∈ XR(α, β, γ), then:

ak 6
(β − α)(p− γ)(

kQ∗ − pt
)
(1− α) + t(β − α)(p− γ)

, (k > n+ p),

where Q∗ is given in (26).

By applying Theorem 1, we can easily prove that the class XR(α, β, γ) is closed
under weighted and arithmetic mean. Also it is easy to obtain radii of starlikeness,
convexity and close-to-convexity. So we state the following three theorems without
proof.

Theorem 2 If f(z) = zp −
∑∞

k=n+pakz
k and g(z) = zp −

∑∞
k=n+pbkz

k, be in the
class XR(α, β, γ), then the weighted mean of f and g given by:

hj(z) =
1

2

[
(1− j)f(z) + (1 + j)g(z)

]
,

is also in XR(α, β, γ).
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Theorem 3 If fj(z) = zp−
∑∞

k=n+pak,jz
k, j = 1, 2, . . . , `, be in the class XR(α, β, γ),

then the arithmetic mean of fj(z) given by:

h(z) =
1

`

∑̀
j=1

fj(z),

is also in the same class.

Theorem 4 Let the function f(z) defined by (1) be in the class XR(α, β, γ), then:

(i) f(z) is starlike of order θ (0 6 θ < p) in |z| < R1, where:

R1 = inf
k>n+p

{
p− θ
k − θ

[(
kQ∗ − pt

)
(1− α)

(β − α)(p− γ)
+ t

]} 1
k−p

.

(ii) f(z) is convex of order θ (0 6 θ < p) in |z| < R2, where:

R2 = inf
k>n+p

{
p(p− θ)
k(k − θ)

[(
kQ∗ − pt

)
(1− α)

(β − α)(p− γ)
+ t

]} 1
k−p

.

(iii) f(z) is close-to-convex of order θ (0 6 θ < p) in |z| < R3, where:

R3 = inf
k>n+p

{
p− θ
k

[(
kQ∗ − pt

)
(1− α)

(β − α)(p− γ)
+ t

]} 1
k−p

.

In relations R1, R2 and R3, Q∗ and Cm(x) are defined by (26) and (20) respectively.

3 Preserving properties and integral representation

In this section, we investigate some class preserving integral operators. We recall
the Komatu [7] and generalized Jung-Kim-Srivastava [6] operators defined by:

Kc,dp f(z) =
(c+ p)d

Γ(d)zc

∫ z

0
tc−1

(
log

z

t

)d−1
f(t)dt,

JKSc,dp f(z) =
Γ(d+ c+ p)

Γ(c+ p)Γ(d)zc

∫ z

0
tc−1

(
1− t

z

)d−1
f(t),

where d > 0, c > −p, f ∈ Ap and z ∈ U.

Finally, in the end of this section, we introduce integral representation for
Rδ,mq,p,λf(z), where f(z) ∈ XR(α, β, γ).

Theorem 5 If f(z) ∈ XR(α, β, γ), then Kc,dp f(z) ∈ XR(α, β, γ).
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Proof. Let f(z) ∈ XR(α, β, γ) be defined by (1). It is easy to show that:

Kc,dp f(z) = zp −
∞∑

k=n+p

( c+ p

c+ k + p

)d
akz

k, (ak > 0, p ∈ N).

But Kc,dp f(z) ∈ XR(α, β, γ), if:

L =

∞∑
k=n+p

[(
kQ∗ − pt

)
(1− α) + t(β − α)(p− γ)

] ( c+ p

c+ k + p

)d
ak

6 (β − α)(p− γ),

where Q∗ is given in (26).
Since for k ∈ N, c+p

c+k+p 6 1, so it clear that:

L 6
∞∑

k=n+p

[(
kQ∗ − pt

)
(1− α) + t(β − α)(p− γ)

]
ak

then by (23), we have:

L 6 (β − α)(p− γ),

Therefore Kc,dp f(z) ∈ XR(α, β, γ).

Theorem 6 If f(z) ∈ XR(α, β, γ), then JKSc,dp f(z) is in the same class.

Proof. Let f(z) ∈ XR(α, β, γ) be defined by (1). It can be easily verified that:

JKSc,dp f(z) = zp −
∞∑

k=n+p

Γ(d+ c+ p)Γ(c+ k)

Γ(c+ p)Γ(d+ c+ k)
akz

k.

By the similar steps as in the proof of Theorem 5, we can state the proof concerning
JKSc,dp f(z), so the details are omitted.

Theorem 7 Let f(z) ∈ XR(α, β, γ), then:

Rδ,mq,p,λf(z) =

∫ z

0

ft(z)
[(
αp+ (β − α)(p− γ)

)
H(s) + p

]
s
(
1 + αH(s)

) ds,

where |H(z)| < 1 and ft is given in (23).

Proof. For f(z) ∈ XR(α, β, γ), we have the subordination relation (21), or equiva-
lently the inequality (24). Thus:

z
(
Rδ,mq,p,λf(z)

)′ − pft(z)(
αp+ (β − α)(p− γ)

)
ft(z)− αz

(
Rδ,mq,p,λf(z)

)′ = H(z)
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where |H(z)| < 1. Therefore we get:

z
(
Rδ,mq,p,λf(z)

)′ − pft(z) =
(
αp+ (β − α)(p− γ)

)
H(z)ft(z)− αzH(z)

(
Rδ,mq,p,λf(z)

)′
,

or (
Rδ,mq,p,λf(z)

)′(
z + αzH(z)

)
= ft(z)

[(
αp+ (β − α)(p− γ)

)
H(z) + p

]
.

After integration, we get the required result. So the proof is complete.
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